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1. Introduction. Throughout the paper n denotes a fixed positive integer unless
otherwise specified. Let B — Bn denote the open unit ball of C" and let S = Sn denote its
boundary, the unit sphere. The unique rotation-invariant probability measure on 5 will be
denoted by o=on. For n = l, we use more customary notations D = BU T - Sx and
dax = dd/2ji. The Hardy space on B, denoted by H2{B), is then the space of functions/
holomorphic on B for which

ILf||2= sup f \f(rO\2do{0
0<r<l Js

Let q> be a holomorphic function on B such that (p(B) c D. For a function /
holomorphic on D it is clear that the composite function / ° <p is holomorphic on B. If, in
addition, / e H2(D), then f° (p e H2(B). This is a consequence of the harmonic majorant
characterization of the Hardy spaces (see [13, section 5.6]): a function g holomorphic on
B belongs to H2(B) if and only if \g\2 has a harmonic majorant. The composition operator
CV:H2(D)-*H2(B), Cvf =f°cp, induced by cp is therefore bounded by the closed graph
theorem.

In case B = D (i.e. n = 1) relations between the operator theoretic properties of Cv

and the function theoretic properties of the inducing function q> have been extensively
studied by many authors. See, for example, [5], [16], and references therein. In
particular, Shapiro [16] has recently completely answered the question "when is C^
compact?" In fact he obtained a complete function theoretic description of the essential
norm (=distance to the compact operators) of Cv in terms of the Nevanlinna counting
function of <p.

In the present paper we investigate the same question for general Cv in terms of the
pullback measures rv on D defined by rv(E) = a[(<p*)~'(.E)] (the superscript * denotes
the radial limit) for Borel subsets E of D. By a standard approximation one can easily find

\foq>*do=\ fdxw (1)
Js JD

for every Borel function / s O o n D . Note that (f ° q>)* =f°(p*[o] a.e. on S for functions /
continuous on D. Thus it is easy to see ||C,p|| = ||/r || where ITip denotes the densely
defined inclusion operator of H\D) into L2(TV). In fact the following is true:

I |CJ| 2 = | | / T J | 2 S | |T V | | C (2)

where ||rv||c denotes the Carleson norm of TV (see Section 2). The notation s means that
the ratios of two terms are bounded below and above by positive constants Cn. Here,
and elsewhere, Cn denotes an absolute constant, depending on the dimension n, which may
change with each occurrence. The second half of (2) is well known for measures T,,
concentrated on D, as the Carleson measure theorem, and remains true for measures xv
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144 BOO RIM CHOE

not necessarily concentrated on D (see 3.3). In Section 3 we obtain a complete analogue
of (2) for essential norms. In Section 4 we apply this result to calculate the precise
essential norms of certain composition operators. Two cases are considered here: the first
one involves inner functions and the second one deals with the so-called orthogonal
functions. Finally in Section 5 we indicate without detail the analogues in higher
dimensional cases and in the Bergman context.

2. Preliminary. For a function / : fl—> C, we let /*(£) = lim/(r£) if the limit exists
a t £ e S . r /M

It is a well-known fact that if feH2(B), then/* exists [a] a.e. on S and the map
f—*f* is a linear isometry of H2{B) into L2{a). We will often use the same letter for a
function / € H\B) and its boundary function / e L2{a).

For ae B we shall let Pa denote the test function defined by

(z e B).

Here ( , ) denotes the complex inner product on C". By the Cauchy formula on B we
have Pa e H2{B) and \\Pa\\ = 1. The Poisson-Szego kernel on B is the kernel

Note that P(z, £) = |P2(£)I2 f°r e v e r v t e s t function Pz. The Poisson-Szego integral P[k] of
a complex Borel measure A on 5 is defined by

(2 6 B).

If dk =fdo, then we write P[k] = P[f]. The symmetric derivative S)A of a complex Borel
measure A on 5 is defined for [o] a.e. £ e S by

where

By Kor^nyi's theorem we have

P[k]* = 2k [a] a.e.. (1)

This happens at every Lebesgue point of / if dk =fdo. Thus dk = 3)k da for A « a. See
[13, Section 5.4] for details.

In what follows the term "measure" will always refer to positive finite Borel
measures. Let x be a measure on B. We shall let lz denote the densely defined "inclusion"
operator of the Hardy space H\B) into L2{x). We also define its "Carleson norm" (see
3.3 below)
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and its "essential Carleson norm"

where
Q(^,t) = {ze B:\l-(z,O\<t).

A measure on a Borel subset E of B will be considered as a measure on B concentrated
on E. For example, A(Q(£, t)) = A(Q(£> f)) for a measure A on S.

Given a densely denned linear operator L of a Hilbert space X into another Hilbert
space Y, we will denote the operator norm of L by ||L|| when there is no possibility of
confusion with the H2 norm. If ||L|| <°°, we will use the same letter L for the unique
bounded extension on all of X. The essential norm |||L||| of bounded L is its distance to
the compact operators. More precisely,

HILHI = inf{||L - K\\ :K a compact operator X into Y}.

We will not complicate the notation by indicating the spaces explicity in ||L|| and |||L|||.
This should cause no confusion. Finally, dimensions involved in various notations defined
above will be clear from the context.

3. Essential norms. Let q?: B —• £> be a holomorphic function and let xv be its
pullback measure on D. Since Cv is bounded, 1.(1) and a consideration of test functions
therefore easily yield ||r,p||c<°°. The same is true for the restriction of xv to T. With this
in mind we prove the following:

PROPOSITION 3.1. Let A be a measure on S. Then the following conditions are
equivalent.

0) I|A||C<»;
(ii) A « a and SA e V°(o);

(iii) lk is bounded.
If one of the above holds, then

Proof. (i)=£>(ii): Let MA be the maximal function of the measure A defined by

«s S ) .
, t))

By assumption MA(£) < ||A||C < °° for every £ e 5 and therefore, by [13, Theorem 5.2.7],
A«CT. Clearly, p A | | . s | | A | | c .

(ii)^>(iii); Since A « a , we have dk = 3)kdo. Consequently, | |4 | | 2< ||SA||0O<«.
(iii)=>(i); Apply lx to test functions to derive ||/A||2>Cn ||A||C.
Hence the conditions (i) ~ (iii) are equivalent and, moreover, if one of those three

conditions holds, then the proof above shows that Cn ||A||C< | | /A | | 2 ^ ||SA||OO^ ||A||C.
Thus, to prove (1), it remains to show that |||/A|||2> HSiAIÎ .

Since lim \h(a)\2 (1 - \a\2)n = 0 for every h e H\B) (see [13, Theorem 7.2.5]), the

sequence of test functions Pa converges to 0 weakly on H2{B) as |<*|/1 by the Cauchy
formula. Let K:H2{B)-+L\X) be a compact operator. Since K transforms weakly
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146 BOO RIM CHOE

convergent sequences into norm convergent ones (see [19, Theorem 6.3]), we have

lim \\KPa\\2 = 0 (1)

where || ||2 denotes the L2(A) norm. Write L = lk for notational simplicitly. Then, for
every ae B,

\\L- K\\ ^ \\{L - K)Pa\\2 > \\LPa\\2 - \\KPa\\2,

so by (1),

||L-/C||>limsup||LPJ2.
\a\S\

Taking the infimum on the left side of the above over all K and writing cr = (l — t)t,
(£ 6 S, 0 < t < 1), we obtain

' >lim sup sup \Pa\
2dX.

(NO ?eS Js

Thus we have

|||L|||2>limsupP[A]((l-O0 (SeS).
(N.0

This completes the proof by 2.(1).

The following lemma is originally due to Ryff [15] in the setting B = D. A similar
lemma appears in [8].

LEMMA 3.2. Let q>:B—>Dbea holomorphic function and assume f e H2(D). Then

(f°<P)*=f°<P* M a . e .

where f = / o n D andf =f* on T.

Proof. First of all, note that the lemma is true if / is continuous on D. Let fr

( 0 < r < l ) be the dilated function z^>f{rz) on D. Then/,-»/in H2{D) and thus

f*q>y-f,o<p*\2do = Q. (1)

Let A be the restriction of %v to T. Since ||A||C<°° as remarked earlier,/* exists [A] a.e.
on T by Proposition 3.1. From this fact one easily obtains

/<p*(S)=/°<p*(£) for [a] a.e. £eS. (2)
r/l

An application of Fatou's lemma now shows the lemma by (1) and (2).

3.3. CARLESON MEASURES. A measure l o n f i such that | |r | | c < °° is called a Carleson
measure. The importance of Carleson measures lies in the so-called Carleson measure
theorem ([1], [8]; also [4], [11]):

IIAH2^ll*||c (1)
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holds for measures r on B. What is needed here is a slight variation of this result, where r
is not necessarily concentrated on B. In this setting the inequality | | / t | |

2s : Cn | |T| |C follows
as before by considering test functions. For the other direction of the inequality, suppose
| |r | | c<°°. Let JJ. and A be the restrictions of r to B and 5, respectively. Then it is easily
verified from (1) and Proposition 3.1 that

I l /J2^ PJ 2 + PAII2 = IWIc + Pile ̂ 2 ||T||C.

The following must have been also well known to some workers in the field. We include it
for the sake of completeness.

PROPOSITION 3.4. |||/T|||2= |||T|||C holds for measures x on B.

Proof. Write L = IT again for notational simplicity. Then, as in the proof of
Proposition 3.1, we have

>limsupsup \P{l_,K\2dt.
t\0 teS J§

Replace B by Q(£, t) in the integral of the above. Then the resulting integral is easily
seen to be bounded below by CMT(Q(£, t))t~". Since (see [13, Proposition 5.1.4])

o(Qtt,t))^t" (0<t<2), (1)

we obtain

Now we prove the other direction of the inequality. For 0 < r < 1, let Lx = LTr where
Tr denotes the restriction of T to the annulus B\(l — r)B and let Mr: L

2(r)—* L2(r) be the
multiplication by the characteristic function of (1 — r)B. Then Mr°L is compact (by a
normal family argument). Thus

and therefore, since the sequence ||Lr|| is monotone, we have

I- ( 2 )
r\0

Hence the following inequality will finish the proof by (2) and 3.3.(1):

ll^||c^Cn|| |T|| |c + o(l) ( r \0 ) .

The above is implicit in the proof of Theorem 1.1 of [8] in case |||T|||C = 0 and a slight
modification shows the general case. We include it for completeness. Fix t, e 5. We need
verify

SUP T f m ^ ' l S - c " H | T | | | C + o ( 1 ) (u n i f o r m lyi n o- (3)
0<r<2 O(Q(Q t))

Since Tr(G(£, t)) = T(Q(£ , 0) for t < r,

SUP Trm?/Hl-^c+o^ (uniform'yin£).
0O(Q(Qt))
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Now assume r<t<2. Before proceeding, we introduce a temporary notation:

D(^, 6) = {z e B: \z\ > 1 - 6, zl\z\ e Qtf, 6)}.

Note that Q(£, <5) c D(£, 6) c Q(£, 26). Let {rju rj2,. . . , i]N} be a maximal collection of
points in Q{£,,t) subject to the condition |1 - {r)h ?j,)| s=r for i^j. By the triangle
inequality (see [13, Proposition 5.1.2.])

| l - < f l , f t ) | 1 / 2 < | l - ( a , c ) | 1 / 2 + | l - ( 6 , c ) | 1 / 2 (a,b,ceB),

the balls Q(r]j,r/4) are pairwise disjoint and contained in Q(£,3r). Hence N^Cn(t/r)"
by (1). On the other hand, the balls Q(r]j, r) cover Q(£, t) by maximality and thus

Ar n Q(C, 0 c ^ r n Di£, 0 <= U O(r?/; r) c U Q(fjy, 2r).
/ = • 7 = 1

Since N <Cn(t/r)n, the above combined with (1) implies

, 0) " " ' " ? a(G(t,, 2r))"

The right side of the above is dominated by Cn | | |T|||C + o(l) where o(l) is independent of
£. This, together with (4), shows (3).

We are now ready to prove the main result of this section.

THEOREM 3.5. Let q>: B —* D be a holomorphic function. Then

Proof. For simplicity write r = T,,. Recall that Ir is bounded. Let R ://2(fi)-»L2(a)
be the isometry defined by Rf=f* and let W:L2(T)—>L2(O) be the isometry defined by
Wg =g°cp*. Then Lemma 3.2 is simply

R°Cv = W°lx. (1)

Now let W*:L 2 (CT)-»L 2 (T) be the adjoint of W defined by the requirement

\f.Wgdo=\ W*f.gdr.

It is easy to find from 1.(1) that W*°W is the identity on L2(r). Also note that W* is
norm-decreasing. Hence, for a compact operator K:H2(D)—> H\B), we obtain from (1)

\\CV-K\\ = WWoi^-RoKW > ||4 _ W*oRoK\\ > |||/r|||.

Upon taking infimum over all K, we find |||C,p||| > |||/t|||. By using the Cauchy transform
C:L2{o)^>H2{B) (see [13, Section 6.3]) one can prove

in a similar way for any compact operator K:H2(D)—*L2(T) and thus |||/r||| ^ |||CV|||.
Consequently, |||CV|||2= | | | /T| | | 2= |||T|||C by Proposition 3.4.

COROLLARY 3.6. For a holomorphic function cp:B—*D, Cv is compact if and only if

IWII
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4. Two special cases. The explicit value of the norm or essential norm of Cv has
been known only for very special classes of inducing functions cp. See [5], [10] and [16]. In
this section we calculate the precise essential norms of composition operators induced by
two special classes of functions.

The first one involves inner functions. Recall that a holomorphic function cp:B-+D
is called inner if \q>*\ = 1 [a] a.e.. The norm of a composition operator Cv induced by an
inner function q> on D was calculated by Nordgren ([10, Theorem 1]):

Recently Shapiro ([16, Theorem 2.5]) has proved that such a composition operator has
the same essential norm as above by using his remarkable essential norm formula ([16,
Theorem 2.3]) for arbitrary composition operators on H2(D). It is an interesting fact that
the (essential) norm formula for Cv induced by an inner function q> is independent of
dimensions. This is contained in Theorem 4.2. Our derivation is independent. We first
prove a lemma.

LEMMA 4.1. Suppose x is a measure on B and let xr (0 < r < 1) be its restriction to the
annulus B\(l - r)B. Then

|||/J|=lim||/Tr||.
rS.0

Proof. Put L = IX and Lr = lXr. Let K:H2(B)^>L2(r) be an arbitrary compact
operator and let Nr: L

2(r)—» L2(T) be the multiplication by the characteristic function of
B\(l - r)B. Then, since \\Nr\\ < 1, we have

\\L - K\\ > \\Nr°L -N,oK\\ a \\Nr»L\\ - \\N,oK\\ = \\L,\\ - \\N,°K\\.

The sequence Nr is uniformly bounded and converges to 0 pointwise on L\x) as
r \ 0 . It is therefore equicontinuous and converges to 0 uniformly on compact subsets of
L2(T) by Ascoli's theorem. In particular, this happens on K(<&) where <I> is the closed unit
ball of H\B). This means lim \\Nr° K\\ = 0. It follows that \\L - K\\ > lim ||Lr|| and thus

r\,0 rS.0

|||L||| >lim ||Lr||. For the other direction, see 3.4(2).

THEOREM 4.2. Suppose cp is an inner function on B. For 0 < t < 1, let x\> = (1 - t)b +
tq> where b is a unimodular number such that b |<p(0)| = cp(O). Then

n r n 2 - l l i r HP- 1 1

Proof. Let P(z,e'8) be the Poisson kernel on D. Since <p is an inner function, we
have ([10], [12])

dx<p(d) = P(a,eie)^ (a = cp(0)).

The pullback measure x = xv is therefore a Carleson measure on D such that

f f2jl dO
fdx=\ foh(eie)P(a,eie)- (1)

JD JO £X
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for every Borel function / ^ 0 on D where h(z) = (1 -t)b + tz for z e D. Hence the
theorem is a special case of the following result by Theorem 3.5.

We continue using the notation defined in the proof above.

THEOREM 4.3. Put xy = x and let xr (0 < r < 1) be the restriction of x to the annulus
D\(l - r)D. Then

Note: This shows that the equality can happen in Proposition 3.4 in a nontrivial way.

Proof. Write Lr-lTr. By Cowen's norm formula ([5, Theorem 3]) we have
IIQH2 = t'\ Hence it is clear from 4.2(1) that

On the other hand, considering test functions on D, we have

J
r2jl JQ

\Pa(h(eie))\2 Xr(eie)P(a, e">) — (a e D) (2)
0 2.31

where %r denotes the characteristic function of the set of points e'e such that \h(ei0)\ > r.
For a = sb ( 0 < s < l ) a straightforward calculation shows

VJ*™-T=7hiryhii'^-
Inserting the above into (2), we find

Take the limits s-> 1 on the right ride of the above and use 2.(1) to obtain

\\Lr\\
2>rxxr{b)P(a,b) = ^ - ^ - (3)

Thus, by (1), (3) and Lemma 4.1,

It remains to compute |||Tr|||c. Note that

and that
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Here Q6 - Q{b, 6) for <5 >0. Also note that lim 6~l \Q6\ = n~x where \Q6\ denotes the

normalized arclength of Q6. It follows from these observations and 4.2.(1) that

The second equality of the above holds by continuity of P(a, •) at b. This completes the
proof because |||T|||C = |||T,.|||C by definition.

We now turn to the so-called orthogonal functions. We shall use the notation

Ev = {£eS:(p*(t) exists and is unimodular}.

4.4. ORTHOGONAL FUNCTIONS. Let us say that a holomorphic function q>:B—>D is
orthogonal if the sequence 1, q>, q>2,. . . forms an orthogonal set in H2{B). It is clear that
the rotation-invariance of TV implies the orthogonality of q>. It is less clear that the
converse is also true: the orthogonality of q> implies the rotation-invariance of rv. This
follows from the fact that if q> is orthogonal, then

f h(e'ez)dTv(z)=\ h(z)dTv(z)

holds for 6 real and functions h of the form h(z) = zkz' (&,/>0) which span a dense
subset of L^r.p). It is easy to see that if cp is an inner function on B with q>(0) = 0, then q>
is orthogonal. Also, every nonconstant (holomorphic) homogeneous polynomial q>: B—»
D is orthogonal. There are others: for n > 2 one may construct orthogonal functions by
using the integral formula

\fdo=(n~l)\ (l-\z\2)'-ldVk(z)\ f(z,VT:rW Qdotf) (1)
JS \ * I JBk JS,

where k + l = n, f eLl(o), and Vk denotes the normalized volume measure on Bk. If
k = n — 1, then (1) is Proposition 1.4.7 of [13]. This general form can be shown by the
"same" proof. Also, the orthogonality is invariant under compositions with measure
preserving maps ([14, Chapter 14], [18]). Moreover, the author has been informed that
Jose Fernandez has constructed orthogonal functions cp, on D and hence on B, for which
0<o(Eq>)<l.

LEMMA 4.5. If r is a rotation-invariant measure on B, then |||T|||C s T(5).

Proof. Since T is rotation-invariant, we have, for ex = (1,0,. .. , 0) e S,

T(Q(e,,0) = T(Q(f,0) (£eS , f>0) . (1)

Let A, = B\{\ - t)B (0 < / < 1). Then Q(£, t) <= A, and thus, by (1) and Fubini's theorem,

T(Q(e,,0) = f T(Q(£,0)do{£) = [ o(E(z,t))dr(z) (2)
Js JA,

where E(z,t) = {£eS:|l - <z, £)l <'}• Note that E(z,t)cQ(z/\z\,t) and thus
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o(E(z,t)) < o(Q(eu 0) for every zeA,. Thus, by (2),

x{Q(eut))<x{A,)o{Q{eut)).

This implies | | |r | | | c< lim x{At) = x(C\A,) = x(S).

LEMMA 4.6. Suppose x is a measure on B such that | | T | | C < ° ° . Let fi and A be its
restrictions to B and S, respectively.

(ii) If x is rotation -invariant, then \\\Ir\\\ = T(5) .

Proof. By considering test functions as before, one can easily obtain |||/T|||2 =
from 2.(1). Suppose |||/x|||c = 0 and let M B : L 2 ( T ) — » L 2 ( T ) be the multiplication by the
characteristic function of B. Then one easily obtains |||AfB°/T||| = |||/M|||. Thus, by
Proposition 3.4, MB°IX is compact and hence |||/T||| < ||/T - M B ° / r | | = ||/A|| so that (i)
holds by Proposition 3.1.

Now assume x is rotation-invariant. Then n and A are also rotation-invariant. Thus
|||ju|||c = O by Lemma 4.5 and dX = X{S)da by the uniqueness of the rotation-invariant
probability measure on 5. Accordingly, |||/T|||2 = ||2>A||«, = X(S) = T(5) by (i).

Note that xv(T) = o(E(p). Thus, combining Theorem 3.5 and Lemma 4.6, we obtain

THEOREM 4.7. If q> is an orthogonal function on B, then |||C,J||2 = o{Eq>).

For n & 2 there is a sufficient condition which implies o(Ev) = 0 for holomorphic
functions cp:B^>D. For references concerning this topic, see [14, Section 15.3]. For
example, if q> is continuously differentiable up to the boundary, then o(Ev) = 0. Such a
function therefore induces a compact composition operator whenever it is orthogonal by
Theorem 4.7. In particular, every homogeneous polynomial that maps B onto D induces a
compact composition operator. This composition operator, however, is not always a
Hilbert-Schmidt operator as the following example shows. Note that Cv is a Hilbert-
Schmidt operator if and only if (1 - \q)\2)~l e L\o).

EXAMPLE 4.8. Let q>: B2—> D be an orthogonal function, with q>(B2) = D, taking one
of the following forms:

(iii) (p{z\, z2) = bz"'z2
2.

Note that o(Ev) = 0 and thus Cv is compact by Theorem 4.7. For such a function q>, we
have xv «m (m denotes the area measure on D) and

dxv 2\(l-dim£ V2r
dm

where c = c(<p) > 0 and dim refers to the topological dimension. See [2] and [3]. Since Ev

contains a circle, dim £ ? > 1 and therefore

do2 f dxv(z) _ x

L-M2 JDl-|z|2

In other words, Cv is not a Hilbert-Schmidt operator.
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5. Remarks. Note that the a priori boundedness of C,, plays an essential role in
the argument used in Section 3, especially in the proof of Lemma 3.2. The situation is
different in higher dimensional cases. The densely defined composition operator C<j> of
H\Bk) into H2(Bn) induced by a general holomorphic map <fr:Bn—>Bk is not necessarily
bounded; see for example [8]. Nevertheless, it is not hard to see that the analogue of 1.(2)
still remains true:

\\C»\\2=\\ITJ\2=\\T<t,\\c

where r o = an[(<I>*)~1] (* denotes the radial limit) is the pullback meaure of <& as before.
Now, once the boundedness of Co is known, one can easily prove an analogue of Lemma
3.2. The rest of the proof of the following theorem remains the same:

THEOREM 5.1. Suppose a holomorphic map <&:£„—»Z?* induces a bounded composi-
tion operator C«:H2{Bk)^ H\Bn). Then | | | C J 2 = p j l ^ M e -

The following consequence of Theorem 5.1 appears in [8] in case k = n.

COROLLARY 5.2. Let C* be the composition operator induced by a holomorphic map
<&: Bn —* Bk. Then d , is compact if and only if \\\ T^,\\\C = 0.

Using the above corollary, we give a class of holomorphic maps that induces compact
composition operators.

EXAMPLE 5.3. Let <I>: Bn+m—*Bm be a holomorphic map of the form:

<D(z, w) = q>{z)w (\z\2 + \w\2 < l , z e C " , w e Cm)

where <p:Bn-»C is a (possibly unbounded) holomorphic function. Then, by 4.4.(1),

f fdz9={ dn{z)\ f(cp(z)Vl^\zTH)dom(0 (1)
JBm JBn Jsm

where / e L ' (T*) and dn(z) = (" + ™ *Vl - Izl2)"1"1 dVn(z). Let £ o be the set of

points r]eSn+m such that |<5*(JJ)| = 1 as before. Then T<j,(5m) = on+m(E^,). Now, by
applying (1) to the characteristic function of Sm, we obtain on+m(E^,) = fi(E) where
E = {zeBn:\cp(z)\2(l- |z|2) = l}. Note that E is the zero set of the nontrivial real-
analytic function |<p(z)|2 (1 - |z|2) - 1 on Bn and thus \x{E) = 0. It is clear from (1) that r*
is rotation-invariant. In summary: T* is a rotation-invariant measure on Bm. Thus, by
Lemma 4.5, |||T,fc|||c = 0. In conclusion: <I> induces a compact composition operator
C*:H2(Bm)^H2(Bn+m) by Corollary 5.2.

REMARK 5.4. Let a>-\ and define dpa(z) = (1 - \z\2)adV(z) (recall V = Vn

denotes the normalized volume measure on B). The a-weighted Bergman space A2
a(B) is

the closed subspace of L2([ia) consisting of holomorphic functions. For a measure ;U on B
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define

U = sup-

and

|||ju|||(r = limsup sup

There is an analogue of the Carleson measure theorem in this context ([4], [6], [17]; also
[9]): P J | 2 = IIMIU where J^ denotes the densely defined inclusion operator of A2

a(B) into
L (fi). Thus, if Co a denotes the densely defined composition operator of A2

a(Bk) into
induced by a holomorphic map <&:£„-»• fi^ and if ^ = /^[O"1], then one easily

obtains as before

l|C«i(r||
2=P,JI2asll/**ll«-

Also, an easy modification of the proof of Proposition 3.4 shows |||/J||2

therefore one has the following analogue of Theorem 5.1:

for bounded operators C^a. In fact the above is much easier to prove because the
boundary functions are not involved. Note that Cj>jff is a priori bounded for k = 1.
However, C^a is not bounded for general k; such an example can be found in [9].
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