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DISPLAYED EQUATIONS FOR GALOIS
REPRESENTATIONS

EIKE LAU

Abstract. The Galois representation associated to a p-divisible group over a

normal complete noetherian local ring with perfect residue field is described in

terms of its Dieudonné display. As a consequence, the Kisin module associated

to a commutative finite flat p-group scheme via Dieudonné displays is related

to its Galois representation in the expected way.

Introduction

Let R be a normal complete noetherian local ring with perfect residue

field k of positive characteristic p and with fraction field K of characteristic

zero. For a p-divisible group G over R, the Tate module Tp(G) is a free

Zp-module of finite rank with a continuous action of the absolute Galois

group GK . We want to describe the Tate module in terms of the Dieudonné

display P = (P, Q, F, F1) associated to G in [Zi2, La3], and relate this to

other descriptions of the Tate module when R is a discrete valuation ring.

Let us recall the notion of a Dieudonné display. The Zink ring W(R) is

a certain subring of the ring of Witt vectors W (R) which is stable under

the Frobenius endomorphism f of W (R). The components of P are W(R)-

modules Q⊆ P where P is finite free and P/Q is a free R-module, and

f -linear maps F : P → P and F1 :Q→ P such that F1(Q) generates P and

F1(v(u0a)x) = aF (x) for x ∈ P and a ∈W(R). Here v is the Verschiebung

of W (R), and u0 ∈W (R) is the unit defined by u0 = 1 if p> 3 and by

v(u0) = 2− [2] if p= 2. The twist by u0 is necessary since v does not stabilize

W(R) when p= 2.

To state the main result we need the following scalar extension of P. Let

R̂nr be the completion of the strict Henselization of R, let K̃ be an algebraic

closure of the fraction field K̂nr of R̂nr, and let R̃⊂ K̃ be the integral closure

of R̂nr. We define
W(R̃) = lim−→

E

W(RE)
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where E runs through the finite extensions of K̂nr in K̃ and where RE =

R̃ ∩ E. Let R̃∧ and Ŵ(R̃) be the p-adic completions of R̃ and W(R̃). We

define

P̂R̃ = Ŵ(R̃)⊗W(R) P

and

Q̂R̃ = Ker(P̂R̃→ R̃∧ ⊗R P/Q).

Let K̄ be the algebraic closure of K in K̃ and let G̃K be the group of

automorphisms of K̃ whose restriction to K̄K̂nr is induced by an element

of GK . The natural map G̃K →GK is surjective, and bijective when R is

one-dimensional since then K̃ = K̄K̂nr. The following is the main result of

this note; see Proposition 4.1.

Theorem A. There is an exact sequence of G̃K-modules

0−→ Tp(G)−→ Q̂R̃
F1−1−−−→ P̂R̃ −→ 0.

Here F1 is a natural extension of F1 :Q→ P . If G is connected, a similar

description of Tp(G) in terms of the nilpotent display of G is part of Zink’s

theory of displays. In this case k need not be perfect; see [Me2, Proposition

4.4]. The proof is recalled in Proposition 2.1 below.

The one-dimensional case

Assume now in addition that R is a discrete valuation ring. Then

Theorem A can be related to the descriptions of Tp(G) in terms of p-adic

Hodge theory and in terms of Breuil–Kisin modules as follows.

Relation with the crystalline period homomorphism

Let Mcris be the value of the covariant Dieudonné crystal of G over

Acris(R̄). It carries a filtration and a Frobenius, and by [Fa] there is a period

homomorphism

Tp(G)→ Fil1MF=p
cris

which is bijective if p> 3, and injective with cokernel annihilated by p

if p= 2. The v-stabilized Zink ring W+(R) = W(R)[v(1)] studied in [La3]

induces an extension Ŵ+(R̃) of the ring Ŵ(R̃) defined above, which is the

trivial extension when p> 3. The universal property of Acris(R̄) gives a ring

homomorphism

κcris :Acris(R̄)→ Ŵ+(R̃).
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88 E. LAU

Using the crystalline description of Dieudonné displays of [La3], one obtains

an Acris(R̄)-linear map

τ :Mcris→ Ŵ+(R̃)⊗Ŵ(R̃) P̂R̃

compatible with Frobenius and filtration. We will show that τ induces

the identity on Tp(G), viewed as a submodule of Fil1Mcris by the period

homomorphism and as a submodule of Q̂R̃ ⊆ P̂R̃ by Theorem A; see

Proposition 6.2.

Relation with Breuil–Kisin modules

Let π ∈R generate the maximal ideal. Let S =W (k)[[t]] and let
σ : S→S extend the Frobenius automorphism of W (k) by t 7→ tp; see below
for the case of more general Frobenius lifts. We consider pairs M = (M, φ)
where M is an S-module of finite type and where φ :M →M (σ) = S⊗σ,S
M is an S-linear map with cokernel annihilated by the minimal polynomial
of π over W (k). Following [VZ], M is called a Breuil window if M is free
over S, and M is called a Breuil module if M is a p-power torsion S-module
of projective dimension at most one. These notions are dual to the classical
Breuil–Kisin modules.

It is known that p-divisible groups over R are equivalent to Breuil
windows. This was conjectured by Breuil [Br] and proved by Kisin [Ki1, Ki2]
if p> 3, and for connected groups if p= 2. The general case is proved in [La3]
by showing that Breuil windows are equivalent to Dieudonné displays. (This
equivalence holds when R is regular of arbitrary dimension, with appropriate
definition of S. For p> 3 this equivalence is already proved in [VZ] for
some regular rings, including all discrete valuation rings.) As a corollary,
commutative finite flat p-group schemes over R are equivalent to Breuil
modules. Other proofs for p= 2, more closely related to Kisin’s methods,
were obtained independently by Kim [K] and Liu [Li].

Let K∞ be the extension of K generated by a chosen system of successive
pth roots of π. For a p-divisible group G over R let T (G) be its Tate module,
and for a commutative finite flat p-group scheme G over R let T (G) =G(K̄).
The results of Kisin, Liu, and Kim include a description of T (G) as a GK∞-
module in terms of the Breuil window or module (M, φ) corresponding to
G. In the covariant theory used here it takes the form of an isomorphism of
GK∞-modules T (G)∼= T nr(M) where

T nr(M) = {x ∈Mnr | φ(x) = 1⊗ x in Snr ⊗σ,Snr Mnr}

with Mnr = Snr ⊗S M ; the ring Snr is recalled in Section 7.
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To complete the approach via Dieudonné displays, we will show how

the isomorphism T (G)∼= T nr(M) can be deduced from Theorem A; see

Corollary 8.6. It suffices to consider the case where G is a p-divisible group.

The equivalence between Breuil windows and Dieudonné displays over R is

induced by a ring homomorphism κ : S→W(R), which extends to a ring

homomorphism κnr : Snr→ Ŵ(R̃). Using Theorem A, this allows to define

a homomorphism of GK∞-modules

τ : T nr(M)→ T (G),

and we show in Proposition 8.5 that τ is bijective. The verification is easy

if G is étale, and the general case follows quite formally using a duality

argument.

Other lifts of Frobenius

The equivalence between Breuil windows and p-divisible groups requires

only a Frobenius lift σ : S→S which stabilizes the ideal tS such that p2

divides the linear term of the power series σ(t). In this case, let K∞ be the

extension of K generated by a system π(n) ∈ K̄ of successive σ(t)-roots of

π, which means that π(0) = π and σ(t)(π(n+1)) = π(n). Then we obtain an

isomorphism of GK∞-modules T (G)∼= T nr(M) as before; here the ring Snr

depends on σ as well.

§1. Notation

All rings are commutative and unitary unless the contrary is stated. For

the convenience of the reader we recall the notion of frames, windows, and

displays.

A frame F = (S, I, R, σ, σ1) in the sense of [La2] consists of a pair of rings

S and R= S/I with I + pS ⊆ Rad(S), a ring endomorphism σ : S→ S that

lifts the Frobenius of S/pS, and a σ-linear map σ1 : I → S with σ1(I)S = S.

We assume that S is a local ring. Then an F -window P = (P, Q, F, F1)

consists of a finite free S-module P , a submodule Q⊆ P with IP ⊆Q
such that P/Q is free over R, and a pair of σ-linear maps F : P → P and

F1 :Q→ P with F1(ax) = σ1(a)F (x) for a ∈ I and x ∈ P , such that F1(Q)

generates P . Then there is a unique S-linear map V ] : P → S ⊗σ,S P = P (σ)

with V ](F1(x)) = 1⊗ x for x ∈Q. A sequence 0→P →P ′→P ′′→ 0 of

F -windows will be called exact if the resulting sequences of P ’s and of Q’s

are exact.
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90 E. LAU

A frame homomorphism α : F →F ′ = (S′, I ′, R′, σ′, σ′1) is a ring homo-

morphism α : S→ S′ with α(I)⊆ I ′ such that σ′α= ασ and σ′1α= u · ασ1

for a unit u ∈ S′, which then is unique. If u= 1 then α is called strict. There

is a base change functor

α∗ : (F -windows)→ (F ′-windows)

where α∗(P) = (P ′, Q′, F ′, F ′1) is determined by P ′ = S′ ⊗S P and P ′/Q′ =

(P/Q)⊗R R′ with F ′(1⊗ x) = 1⊗ F (x) for x ∈ P and F ′1(1⊗ x) = u⊗
F1(x) for x ∈Q.

For a not necessarily unitary ring R let W (R) be the ring of p-typical

Witt vectors. If R is p-adic and unitary, we have a frame

W (R) = (W (R), IR, R, f, f1)

where IR is the image of the Verschiebung v :W (R)→W (R), where f is

the Frobenius, and f1 is the inverse of v. Windows over W (R) are the

displays over R of [Zi1]. A display is called V -nilpotent if the map V ]

becomes nilpotent over R/pR. A homomorphism R→R′ gives a strict

frame homomorphism W (R)→W (R′), and we write P 7→P ⊗R R′ for the

resulting base change of displays.

If N is a nilpotent nonunitary ring, Ŵ (N)⊆W (N) denotes the subgroup

of all Witt vectors with only finitely many nonzero coefficients. If A is a

local Artin ring with perfect residue field k =A/m of characteristic p, there

is a unique ring homomorphism s :W (k)→W (A) that lifts the projection

W (A)→W (k), and the Zink ring W(A) = Ŵ (m)⊕ s(W (k)) is a subring of

W (A). There is a frame DA = (W(A), I(A), A, f, f1) with an injective frame

homomorphism DA→WA, which is strict when p> 3; see [La3, Section 2.C].

Windows over DA are called Dieudonné displays over A.

§2. The case of connected p-divisible groups

Let R be a normal complete noetherian local ring with (not necessarily

perfect) residue field k of positive characteristic p, with fraction field K of

characteristic zero, and with maximal ideal m. In this section, we recall how

the Tate module of a connected p-divisible group over R is expressed in

terms of its nilpotent display.

We fix an algebraic closure K̄ of K and write GK = Gal(K̄/K). Let R̄⊂
K̄ be the integral closure of R, and for a finite extension E/K in K̄ let

RE = R̄ ∩ E. Then RE is finite over R, and RE is a complete noetherian
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local ring. Thus R̄ is a local ring. Let m̄⊂ R̄ and mE ⊂RE be the maximal

ideals. We write

Ŵ (mE) = lim←−
n

Ŵ (mE/m
n
E); Ŵ (m̄) = lim−→

E

Ŵ (mE).

Let W̄ (m̄) be the p-adic completion of Ŵ (m̄) and let m̄∧ be the p-adic

completion of m̄. The natural map W̄ (m̄)→ m̄∧ is surjective. For a display

P = (P, Q, F, F1) over R let

P̄m̄ = W̄ (m̄)⊗W (R) P ; Q̄m̄ = Ker(P̄m̄→ m̄∧ ⊗R P/Q).

We call P nilpotent if the reduction P ⊗R k is V -nilpotent in the usual

sense, or equivalently if P ⊗R R/mn
R is V -nilpotent for all n; cf. [Zi1,

Definition 13]. The functor BT of [Zi1] induces an equivalence of categories

between nilpotent displays over R and connected p-divisible groups over

R; this follows from [Zi1, Theorem 9] applied to the rings R/mn
R, using

that V -nilpotent displays and p-divisible groups over R are equivalent to

compatible systems of such objects over R/mn
R for all n. A variant of the

following result is stated in [Me2, Proposition 4.4].

Proposition 2.1. (Zink) Let P be a nilpotent display over R and let

G= BT(P) be the associated connected p-divisible group over R. There is

a natural exact sequence of GK-modules

0−→ Tp(G)−→ Q̄m̄
F1−1−−−→ P̄m̄ −→ 0.

Here Tp(G) = Hom(Qp/Zp, G(K̄)) is the Tate module of G, and GK acts

on P̄m̄ and Q̄m̄ by its natural action on W̄ (m̄).

The proof of Proposition 2.1 uses the following standard facts.

Lemma 2.2. Let A be an abelian group.

(i) If A has no p-torsion then Ext1(Qp/Zp, A) = lim←−A/p
nA.

(ii) If pA=A then Ext1(Qp/Zp, A) is zero.

Proof. The group Hom(Qp/Zp, A) is isomorphic to lim←−Hom(Z/pnZ, A)

with transition maps induced by p : Z/pnZ→ Z/pn+1Z. If the abelian

group A is injective, the projective system Hom(Z/pnZ, A) has surjective

transition maps and thus its lim←−
1 vanishes. Hence there is a Grothendieck

spectral sequence for the functor A 7→Hom(Z/pn, A)n from abelian groups
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92 E. LAU

to projective systems of abelian groups, composed with the functor lim←−,

(2.1) lim←−
i(Extj(Z/pn, A))⇒ Exti+j(Qp/Zp, A).

The projective system of groups Ext1(Z/pnZ, A) is isomorphic to the system

A/pnA with transition maps induced by idA. Thus the exact sequence of

low degree terms (see for example, [We, Theorem 5.8.3]) associated to (2.1)

gives an exact sequence

0→ lim←−
1 Hom(Z/pnZ, A)→ Ext1(Qp/Zp, A)→ lim←−A/p

nA→ 0.

If A has no p-torsion then Hom(Z/pnZ, A) = 0, and (i) follows. If pA=A

then the projective system Hom(Z/pnZ, A) has surjective transition maps,

thus its lim←−
1 is zero, moreover A/pnA= 0. This proves (ii).

For a p-divisible group G over R and for E as above we write

Ĝ(RE) = lim←−
n

G(RE/m
n
E); Ĝ(R̄) = lim−→

E

Ĝ(RE).

Lemma 2.3. Multiplication by p is surjective on Ĝ(R̄).

Proof. Let x ∈ Ĝ(RE) be given. The inverse image of x under the

multiplication map p :G→G is a compatible system of G[p]-torsors Yn
over RE/m

n
E . Let Yn = SpecAn and A= lim←−An. Then Y = SpecA is a G[p]-

torsor over RE . For some finite extension F of E the set Y (F ) = Y (RF ) is

nonempty, and x becomes divisible by p in Ĝ(RF ).

Lemma 2.4. There is an isomorphism G(K̄)[pr]∼= Ĝ(R̄)[pr] of GK-

modules.

Proof. Let Gr =G[pr]. Then Ĝ(RE)[pr] = lim←−nGr(RE/m
n
E)∼=Gr(RE)

since RE is complete. Hence Ĝ(R̄)[pr]∼=Gr(R̄) =Gr(K̄) =G(K̄)[pr].

Proof of Proposition 2.1. For a finite Galois extension E/K in K̄ we

write

P̂E,n = Ŵ (mE/m
n
E)⊗W (R) P

and define Q̂E,n by the exact sequence of GK-modules

0→ Q̂E,n→ P̂E,n→mE/m
n
E ⊗R P/Q→ 0.
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The definition of the functor BT in [Zi1, Theorem 81] gives an exact sequence

of GK-modules

0−→ Q̂E,n
F1−1−−−→ P̂E,n −→G(RE/m

n
E)−→ 0;

note that in [Zi1] a formal group G is viewed as a functor G′ on

nilpotent algebras, and G(RE/m
n
E) =G′(mE/m

n
E) under this identification.

The modules Q̂E,n form a projective system with respect to n with surjective

transition maps. Indeed, using a normal decomposition of P as in the

paragraph before [Zi1, Theorem 81], this is reduced to the assertion that

Ŵ (mE/m
n+1
E )→ Ŵ (mE/m

n
E) is surjective, which is clear. Thus taking

lim−→E
lim←−n of the preceding two sequences gives exact sequences of GK-

modules

(2.2) 0→ Q̂m̄→ P̂m̄→ m̄⊗R P/Q→ 0

and

(2.3) 0−→ Q̂m̄
F1−1−−−→ P̂m̄ −→ Ĝ(R̄)−→ 0

with Q̂m̄ = lim−→E
lim←−nQ̂E,n and P̂m̄ = Ŵ (m̄)⊗W (R) P . Since m̄⊗R P/Q has

no p-torsion, the p-adic completion of (2.2) remains exact, moreover the

p-adic completion of the second and third terms are P̄m̄ and m̄∧ ⊗R P/Q.

Thus the p-adic completion of Q̂m̄ is Q̄m̄. Moreover P̂m̄ has no p-torsion since

Ŵ (m̄) is contained in the Q-algebra W (K̄). Using Lemmas 2.3 and 2.2, the

Ext-sequence of Qp/Zp with (2.3) reduces to the short exact sequence

0−→Hom(Qp/Zp, Ĝ(R̄))−→ Q̄m̄
F1−1−−−→ P̄m̄ −→ 0.

Lemma 2.4 gives an isomorphism Hom(Qp/Zp, Ĝ(R̄))∼= Tp(G) of GK-

modules.

§3. Module of invariants

Before we proceed we introduce a formal definition. Let F =

(S, I, R, σ, σ1) be a frame in the sense of [La2] such that S is a Zp-algebra

and σ is Zp-linear; see Section 1. For an F -window P = (P, Q, F, F1) we

consider the module of invariants

T (P) = {x ∈Q | F1(x) = x};

this is a Zp-module. Let us record some of its formal properties.
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Functoriality in F

Let α : F →F ′ = (S′, I ′, R′, σ′, σ′1) be a u-homomorphism of frames; see

Section 1. Assume that a unit c ∈ S′ with cσ′(c)−1 = u is given. For an

F -window P as above, one verifies that the S-linear map P → S′ ⊗S P ,

x 7→ c⊗ x induces a Zp-linear map

(3.1) τ(P) = τc(P) : T (P)→ T (α∗P).

Duality

A bilinear form of F -windows γ : P ×P ′→P ′′ is a bilinear map of S-

modules γ : P × P ′→ P ′′ that restricts to Q×Q′→Q′′ such that for x ∈Q
and x′ ∈Q′ we have

(3.2) γ(F1(x), F ′1(x′)) = F ′′1 (γ(x, x′));

see [La2, Section 2]. It induces a bilinear map of Zp-modules T (P)×
T (P ′)→ T (P ′′) and a Zp-linear map T (P)→Hom(P ′,P ′′). Let us

denote the F -window (S, I, σ, σ1) by F again. For each F -window P there

is a well-defined dual F -window Pt = (P t, Qt, F t, F t1) with a perfect bilin-

ear form P ×Pt→F ; see [La2, Section 2]. Explicitly, P t = HomS(P, S)

and Qt = {g ∈ P t | g(Q)⊆ I}; the maps F t1 and F t are determined by (3.2)

and the window axioms. The resulting homomorphism

(3.3) T (P)→Hom(Pt,F )

is bijective, which can be verified as follows: We have F t = (S, S, σ−1, σ) for

some σ-linear map σ−1,1 thus T (P)∼= Hom(F t,P), which identifies (3.3)

with the duality isomorphism Hom(F t,P)∼= Hom(Pt,F ).

Functoriality of duality

Let α : F →F ′ be a u-homomorphism of frames, and let c be as above.

For a bilinear form of F -windows γ : P ×P ′→P ′′, the base change of γ

multiplied by c−1 is a bilinear form of F ′-windows α∗P × α∗P ′→ α∗P ′′,

which we denote by α∗(γ); see [La2, Lemma 2.14] and its proof. By passing

1Actually σ−1 = θσ for θ as in [La2, Lemma 2.2].

https://doi.org/10.1017/nmj.2018.3 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.3


DISPLAYED EQUATIONS FOR GALOIS REPRESENTATIONS 95

to the modules of invariants we obtain a commutative diagram

T (P)× T (P ′)
γ

//

τ(P)×τ(P′)
��

T (P ′′)

τ(P′′)
��

T (α∗P)× T (α∗P ′)
α∗(γ)

// T (α∗P ′′).

This will be applied to the bilinear form P ×Pt→F .

§4. The case of perfect residue fields

Let R, K, k,m be as in Section 2, and assume in addition that the residue

field k is perfect. As in [La3, Sections 2.C and 2.G] we consider the frame

DR = lim←−
n

DR/mn = (W(R), IR, R, f, f1).

Windows over DR, called Dieudonné displays over R, are equivalent to p-

divisible groups G over R by [Zi2] if p> 3 and by [La3, Theorem A] in

general. The Tate module Tp(G) can be expressed in terms of the Dieudonné

display of G by a variant of Proposition 2.1 as follows.

Let Rnr be the strict Henselization of R. This is a normal local domain,

which is excellent by [Gre, Corollary 5.6] or [Se], and thus its completion

R̂nr is a normal complete noetherian local ring; see EGA IV, (7.8.3.1). Let

Knr ⊂ K̂nr be the fraction fields of the rings Rnr ⊂ R̂nr, let K̃ be an algebraic

closure of K̂nr, and let R̃ be the integral closure of R̂nr in K̃. For each finite

extension E/K̂nr in K̃ the ring RE = R̃ ∩ E is finite over R̂nr, and RE is a

normal complete noetherian local ring. We define a frame

DR̃ = lim−→
E

DRE
= (W(R̃), IR̃, R̃, f, f1)

where the direct limit is taken componentwise. Here W(R̃) is a local ring

since all W(RE) are local with local homomorphisms in between. Since R̃

has no p-torsion, the componentwise p-adic completion of DR̃ is a frame

D̂R̃ = (Ŵ(R̃), ÎR̃, R̃
∧, f, f1).

There are natural strict frame homomorphisms DR→DR̃→ D̂R̃.

Let K̄ be the algebraic closure of K in K̃ and let GK = Gal(K̄/K). The

tensor product K̄ ⊗Knr K̂nr is a subfield of K̃. Indeed, this ring is algebraic
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96 E. LAU

over K̂nr, and it is a localization of K̄ ⊗Rnr R̂nr, which is an integral domain

by [Ra, Chapitre XI, Théorème 3]. If R is one-dimensional, then K̄ ⊗Knr

K̂nr = K̃ because for every R, the étale coverings of the complements of the

maximal ideals in SpecRnr and Spec R̂nr coincide by [Ar, Part II, Theorem

2.1] or by [El, Théorème 5]. Let G̃K be the group of automorphisms of K̃

whose restriction to K̄K̂nr is induced by an element of GK . This group

acts naturally on DR̃ and on D̂R̃. By the above, the projection G̃K →GK is

surjective, and bijective if R is one-dimensional.

Proposition 4.1. Let G be a p-divisible group over R and let P =

ΦR(G) be the Dieudonné display over R associated to G in [La3]. Let P̂R̃ =

(P̂R̃, Q̂R̃, F, F1) be the base change of P to D̂R̃. There is a natural exact

sequence of G̃K-modules

0−→ Tp(G)−→ Q̂R̃
F1−1−−−→ P̂R̃ −→ 0.

In particular, we have an isomorphism of GK-modules

perG : Tp(G)
∼−→ T (P̂R̃)

which we call the period isomorphism in display theory.

Proof of Proposition 4.1. For a finite extension E/K̂nr in K̃ let mE be

the maximal ideal of RE . For a p-divisible group G over R we set

Ĝ(RE) = lim←−
n

G(RE/m
n
E); Ĝ(R̃) = lim−→

E

Ĝ(RE).

The group G̃K acts on the system Ĝ(RE) for varying E and thus on Ĝ(R̃).

The latter can be described using [La3, Section 9] as follows.

Following [La3, Definition 9.1] let Jn = JR/mn be the category of all

R/mn-algebras A such that the nilradical NA is bounded nilpotent and

such that A/NA is a union of finite-dimensional k-algebras. Let Pn be the

base change of P to R/mn, and for A ∈ Jn let PA = (PA, QA, F, F1) be the

base change of P to A. As in [La3, (9–2)] we define a complex of presheaves

Z ′(Pn) on J op
n whose value on A is the complex of abelian groups

[QA
F1−1−−−→ PA]⊗ [Z→ Z[1/p]]

in degrees −1, 0, 1. By [La3, Proposition 9.4], Z ′(Pn) is a complex of

pro-étale sheaves on J op
n , which is acyclic outside degree zero, and the
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middle cohomology sheaf H0(Z ′(P)) is represented by a well-defined p-

divisible group BT(P) over R. By [La3, Proposition 9.7] there is a canonical

isomorphism G∼= BT(P).

The ring RE,n =RE/m
n
E is a local Artin ring with residue field k̄, and thus

it lies in Jn. Every pro-étale covering of SpecRE,n has a section since every

étale covering of SpecRE,n has a nonempty finite set of sections, and the

projective limit of a projective system of nonempty finite sets is nonempty

by [SP, Tag 086J]. Hence evaluating pro-étale sheaves at RE,n is an exact

functor. It follows that the complex of abelian groups

CE,n = [QRE,n

F1−1−−−→ PRE,n
]⊗ [Z→ Z[1/p]]

in degrees −1, 0, 1 is acyclic outside degree zero, and there is a canonical

isomorphism G(RE,n)∼=H0(CE,n). For varying n and E these are preserved

by the action of G̃K . Let

CE = lim←−
n

CE,n; C = lim−→
E

CE ,

where E runs through the finite extensions of K̂nr in K̃. The group G̃K
acts on the complex C. Since the groups G(RE,n) and the components of

CE,n form surjective systems with respect to n, the complex C is acyclic

outside degree zero, and we have an isomorphism of G̃K-modules Ĝ(R̃)∼=
H0(C). We will verify the following chain of isomorphisms ∼= and quasi-

isomorphisms ' of complexes of G̃K-modules, where Hom, R Hom, and Ext1

are taken in the category of abelian groups using a projective resolution of

Qp/Zp, in particular Ext1 is taken componentwise with respect to the second

argument.

Tp(G) ∼=
(1)

Hom(Qp/Zp, Ĝ(R̃)) '
(2)
R Hom(Qp/Zp, Ĝ(R̃))

'
(3)

R Hom(Qp/Zp, C) '
(4)

Ext1(Qp/Zp, C[−1]) ∼=
(5)

[Q̂R̃
F1−1−−−→ P̂R̃]

This will prove the proposition.

The torsion subgroups of G(K̄) and of Ĝ(R̃) coincide by Lemma 2.4

applied over R̂nr, and (1) follows. Multiplication by p is surjective on Ĝ(R̃)

by Lemma 2.3 applied over R̂nr, thus Lemma 2.2 gives Ext1(Qp/Zp, Ĝ(R̃)) =

0, which proves (2). Since the cohomology of C is Ĝ(R̃) in degree zero and

zero otherwise, we obtain (3). To prove (4) we choose an exact sequence of
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abelian groups 0→ F1→ F0→Qp/Zp→ 0 with free Fi. This gives an exact

sequence of complexes of G̃K-modules

0→Hom(Qp/Zp, C)→Hom(F0, C)
u−→Hom(F1, C)→ Ext1(Qp/Zp, C)→ 0.

We claim that Hom(Qp/Zp, C) is zero. Then the complex

Ext1(Qp/Zp, C)[−1] is quasi-isomorphic to the cone of u, which

represents R Hom(Qp/Zp, C), and (4) follows. Let (PR̃, QR̃, F, F1) be

the base change of P to DR̃ and let Pk̄ =W (k̄)⊗W(R) P . We have

QRE,n
[1/p] = PRE,n

[1/p] = Pk̄[1/p] because the cokernel of the inclusion

QRE,n
→ PRE,n

is an RE,n-module and thus p-power torsion, and the

kernel of the surjective map PRE,n
→ Pk̄ is p-power torsion by [Zi3, Lemma

2.2]. Thus the complex C can be identified with the cone of the map of

complexes

[QR̃
F1−1−−−→ PR̃]−→ [Pk̄[1/p]

F1−1−−−→ Pk̄[1/p]].

Since R̃ is a domain of characteristic zero, the ring W (R̃) has no p-torsion.

Since W(R̃) is a subring of W (R̃) the projective W(R̃)-module PR̃ and its

submodule QR̃ have no p-torsion. Clearly Pk̄[1/p] has no p-torsion. Hence

Hom(Qp/Zp, C) is zero, and (4) is proved. The p-adic completions of PR̃
and QR̃ are P̂R̃ and Q̂R̃, while the p-adic completion of Pk̄[1/p] is zero.

Thus Lemma 2.2 gives (5).

Remark 4.2. Let G0 = Qp/Zp. The isomorphisms perG for all G can be

altered by multiplication with a common p-adic unit. This allows to assume

that perG0
is the identity of Zp in the following sense. Clearly Tp(G0) =

Zp. The Dieudonné display of µp∞ is DR = (W(R), IR, f, f1), and thus the

Dieudonné display of G0 is the dual D t
R = (W(R),W(R), pu0f, f); cf. [La3,

Section 2.C]. Then T (D̂ t
R̃

) = Ŵ(R̃)f=1 = Zp by Lemma 4.3 below, and perG0

can be viewed as a Zp-linear automorphism of Zp.
We note that the construction in the proof of Proposition 4.1 actually

defines perG only up to multiplication by a common p-adic unit because it

uses the isomorphism BT(P)∼=G provided by [La3, Proposition 9.7], which

relies on [La3, Lemma 8.2], and that takes as an input the choice of such an

isomorphism for G0.

Lemma 4.3. Let S be a p-adic torsion free ring with a Frobenius lift

σ : S→ S. If Spec(S/pS) is connected, for example if S is a local ring, then

Sσ=1 = Zp.
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Proof. It suffices to show that (S/pn)σ=1 = Z/pn. The case n= 1 holds

because the polynomial Xp −X =
∏
a∈Fp

(X − a) is separable. The general

case follows by induction using the exact sequences 0→ S/p−→
pn

S/pn+1→
S/pn→ 0.

§5. A variant for the prime 2

We keep the notation and assumptions of Section 4 and assume that

p= 2. One can ask what the preceding constructions give when W and

D are replaced by their v-stabilized variants W+ and D+ defined in

[La3, Sections 1.D, 2.E]. This will be used in Section 6. We recall that

W(R)⊂W+(R)⊂W (R) where the ring W+(R) is stable under v, and we

have a frame

D+
R = lim←−D+

R/mn = (W+(R), I+R, R, f, f1)

where f1 is the inverse of v. As earlier we put

D+
R̃

= lim−→
E

D+
RE

= (W+(R̃), I+
R̃
, R̃, f, f1)

where E runs through the finite extensions of K̂nr in K̃ as in Section 4, and

we denote the componentwise 2-adic completion of D+
R̃

by

D̂+
R̃

= (Ŵ+(R̃), Î+
R̃
, R̃∧, f, f1).

For a 2-divisible group G over R let Gm and Gu be the multiplicative

and unipotent parts of G and define G+ as a pushout of fppf sheaves in the

following diagram.

(5.1)

0 // Gm //

2
��

G //

��

Gu // 0

0 // Gm // G+ // Gu // 0

The rows of (5.1) are exact, so G+ is a 2-divisible group by [Me1, Chapter I,

(2.4.3)]. On the level of Tate modules (5.1) gives a commutative diagram
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with exact rows

(5.2)

0 // T2(Gm) //

2
��

T2(G) //

��

T2(Gu) // 0

0 // T2(Gm) // T2(G+) // T2(Gu) // 0,

which shows that T2(G+) is the pushout in the left hand square as a Galois

module.

Proposition 5.1. Let G be a 2-divisible group over R with associated

Dieudonné display P = ΦR(G). Let P̂+
R̃

= (P̂+
R̃
, Q̂+

R̃
, F, F+

1 ) be the base

change of P to D̂+
R̃

. There is a natural exact sequence of G̃K-modules

0−→ T2(G+)−→ Q̂+
R̃

F+
1 −1
−−−−→ P̂+

R̃
−→ 0.

In particular, we have an isomorphism of GK-modules

per+
G : T2(G+)

∼−→ T (P̂+
R̃

).

Proof. Let P̄k̄ = k̄ ⊗W(R) P . We will construct the following commutative

diagram with exact rows, where F̄ is induced by F .

(5.3)

0 // Q̂R̃
//

F1−1

��

Q̂+
R̃

//

F+
1 −1

��

P̄k̄
//

F̄−1

��

0

0 // P̂R̃
// P̂+

R̃
// P̄k̄

// 0.

Assume that (5.3) is constructed and functorial in G. Since P̄k̄ = k̄ ⊗W(R)

P is the reduction mod 2 of the covariant Dieudonné module of Gk̄, the

Frobenius-linear endomorphism F̄ is nilpotent if G is unipotent, and is given

by an invertible matrix if G is of multiplicative type. Thus F̄ − 1 is surjective

with kernel an F2-vector space of dimension equal to the height of Gm. Hence

Proposition 4.1 implies that F+
1 − 1 is surjective and gives an exact sequence

0→ T2(G)→ T (P̂+
R̃

)→Ker(F̄ − 1)→ 0.
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The ring W (R̃) and its subring W+(R̃) are torsion free, which carries

over to the 2-adic completion, hence T (P̂+
R̃

) is torsion free. It follows

that T (P̂+
R̃

) = T2(G) if G is unipotent, and multiplication by 2 gives an

isomorphism T (P̂+
R̃

)→ T2(G) if G is multiplicative type. Hence there is

a pushout diagram (5.2) with T (P̂+
R̃

) in place of T2(G+), which gives an

isomorphism between these modules as required.

Let us construct (5.3). [La3, Lemma 1.10] implies that the inclusion map

W(RE/m
n
E)→W+(RE/m

n
E) is bijective when 2 ∈mn

E , and its cokernel is

k̄ · v(1) as a W(RE)-module when 2 6∈mn
E . It follows that the natural map

ι : Ŵ(R̃)→ Ŵ+(R̃) is injective with cokernel

(5.4) Ŵ+(R̃)/Ŵ(R̃) = Î+
R̃
/ÎR̃ = k̄ · v(1).

Moreover ι is a u0-homomorphism of frames D̂R̃→ D̂+
R̃

where the unit

u0 ∈W+(Z2) is defined by v(u0) = 2− [2]; see [La3, Section 2.E]. Since u0

maps to 1 in W (F2) there is a unique unit c0 of W+(Z2) which maps to 1

in W (F2) such that c0f(c−1
0 ) = u0, namely c0 = u0f(u0)f2(u0) · · · ; see the

proof of [La2, Proposition 8.7].

We extend the operator f1 of D̂R̃ to D̂+
R̃

by f1 = u−1
0 f1. Then f1 induces

an f -linear endomorphism f̄1 of k̄ · v(1). We claim that f̄1(v(1)) = v(1). It

suffices to prove this formula in W+(Z2)/W(Z2)∼= F2, and thus it suffices to

show that f1(v(1)) 6∈W(Z2). But W(Z2) is stable under x 7→ v(x) = v(u0x),

and the element v(f1(v(1))) = v(1) does not lie in W(Z2). This proves the

claim.

Similarly, we extend the operator F1 of P̂R̃ to P̂+
R̃

by F1 = u−1
0 F+

1 .

Then we have c0(F1 − 1) = (F+
1 − 1)c0 as homomorphisms Q̂+

R̃
→ P̂+

R̃
, and

it suffices to construct the desired diagram with F1 in place of F+
1 . Now

(5.4) implies that Q̂+
R̃
/Q̂R̃ = P̂+

R̃
/P̂R̃ = P̄k̄ · v(1), which gives the exact rows.

Clearly the left hand square of (5.3) commutes. The relation F1(ax) =

f1(a)F (x) for x ∈ P̂+
R̃

and a ∈ Î+
R̃

applied with a= v(1), together with

f̄1(v(1)) = v(1), shows that the right hand square of (5.3) commutes.

Remark 5.2. The period isomorphisms perG and per+
G are related by

per+
G ◦ i= τc0 ◦ perG where i : T2(G)→ T2(G+) is the inclusion map and τc0 :

T (P̂R̃)→ T (P̂+
R̃

) is the homomorphism defined in (3.1).
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§6. The relation with Acris

Let R be a complete discrete valuation ring with perfect residue field k of

characteristic p and fraction field K of characteristic zero. In this case the

ring R̃∧ is equal to R̄∧, the p-adic completion of the integral closure of R in

K̄. Let Acris =Acris(R̄), this is the p-adic completion of the divided power

envelope of the kernel of the canonical homomorphism θ :Ainf → R̄∧, where

Ainf =W (R), and where R is the projective limit of R̄/pR̄ under Frobenius.

We have a frame

Acris = (Acris, Fil1Acris, R̄
∧, σ, σ1)

with σ1 = p−1σ. 2

For a p-divisible group G over R let D(G) be its covariant Dieudonné

crystal. The free Acris-module M = D(GR̄∧)Acris carries a filtration Fil1M

and a σ-linear endomorphism F . The operator F1 = p−1F is well defined

on Fil1M , and we get an Acris-window M= (M, Fil1M, F, F1); see [Ki1,

Lemma A.2] or [La3, Proposition 3.17]. The window associated to Qp/Zp in

this way is Atcris = (Acris, Acris, pσ, σ).

Following [Fa, Section 6] one defines a period homomorphism

perG,cris : Tp(G)→ T (M)

as follows. An element of Tp(G) corresponds to a homomorphism Qp/Zp→G

over R̄∧, and the resulting map of Acris-windows Atcris→M corresponds to

an element of T (M).3 By [Fa, Theorem 7], perG,cris is bijective when p> 3,

and injective with cokernel annihilated by p when p= 2. More precisely, for

p= 2 the cokernel of perG,cris is zero if G is unipotent by [Ki2, Proposition

1.1.10], but the cokernel is an F2-vector space of dimension equal to the

height of G if G is of multiplicative type; this can be verified for the

multiplicative group G= µp∞ and then follows from the fact that Fontaine’s

element t ∈Acris satisfies tp−1 ∈ pAcris; see [Fo2, (2.3.4)]. As in the proof of

Proposition 5.1 it follows that for p= 2, the homomorphism perG,cris extends

to an isomorphism Tp(G
+)∼= T (M) with G+ as in Section 5.

2The frame axioms require that σ1(Fil1Acris) generates Acris. But ξ = p− [p] lies in

Fil1Acris, and σ1(ξ) = 1− [p]p/p is a unit because [p] lies in the divided power ideal

Fil1Acris + pAcris.
3Actually [Fa] uses the contravariant Dieudonné crystal, which gives rise to the dual

window Mt and the dual homomorphism Mt→Acris. In the following this makes no
difference since Hom(Mt,Acris)∼= Hom(At

cris,M)∼= T (M); see (3.3).
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We want to relate this with the period isomorphisms of Sections 4 and 5.

For the sake of uniformity, for p> 3 we write W+ = W etc. Then Ŵ+(R̃)→
R̄∧ is a divided power thickening of p-adic rings for every p.

Lemma 6.1. There are unique homomorphisms κinf and κcris of thick-

enings of R̄∧ as below. They commute with Frobenius, and the diagram

commutes.

Ainf

��

κinf
// Ŵ(R̃)

��

Acris

κcris
// Ŵ+(R̃)

Proof. Briefly said, the universal property of Acris gives κcris, and

the lemma explicates its construction. Namely, each x in the kernel of

Ŵ+(R̃)/pn→ R̄∧/p satisfies xp
n

= 0 due to the divided powers on this ideal.

Since the cokernel of the inclusion Ŵ(R̃)→ Ŵ+(R̃) is the k̄-vector space

with basis v(1) by (5.4), the kernel of Ŵ(R̃)/pn→ Ŵ+(R̃)/pn is the k̄-

vector space with basis pnv(1). Since v(1)2 = pv(1) this kernel has square

zero. Thus for each x in the kernel of Ŵ(R̃)/pn→ R̄∧/p we have xp
n+1

= 0,

and the universality of the Witt vectors (see for example [La3, Lemma 1.4])

gives a unique homomorphism κinf of extensions of R̄∧/p. The universality

also implies that κinf commutes with the Frobenius and with the projections

to R̄∧. Since Ŵ+(R̃)→ R̄∧ is a divided power extension of p-adic rings, κinf

extends uniquely to a homomorphism κcris, and κcris commutes with the

Frobenius because this holds for κinf .

Since Ŵ+(R̃) has no p-torsion it follows that κcris is a G̃K-equivariant

strict frame homomorphism

κcris :Acris→ D̂+
R̃
.

For G and M as above let P = ΦR(G) be the Dieudonné display

associated to G and let Φ+
R(G) be its base change under the inclusion

ι : DR→D+
R , which is the identity when p> 3. The D+

R -window Φ+
R(G) can

be defined by evaluating the crystal D(G) at W+(R); see [La3, Theorem

3.19] if p> 3 and [La3, Proposition 3.24 & Theorem 4.9] if p= 2. By the

functoriality of D(G) we get an isomorphism P̂+
R̃
∼= κcris ∗(M) of D̂+

R̃
-
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windows, which induces a homomorphism of GK-modules

τ : T (M)→ T (P̂+
R̃

)

as defined in (3.1) with c= 1.

Proposition 6.2. The following diagram of GK-modules commutes,

and τ is an isomorphism.

Tp(G)
perG,cris

//

perG
��

T (M)

τ
��

T (P̂R̃)
τc0

// T (P̂+
R̃

).

Proof of Proposition 6.2. The composition τc0 ◦ perG extends to an

isomorphism Tp(G
+)∼= T (P̂+

R̃
) by Proposition 5.1 and Remark 5.2. Thus

if the diagram commutes, by the properties of perG,cris recalled above it

follows that τ is an isomorphism. Let us prove that the diagram commutes.

We start with the case G= Qp/Zp. Then Tp(G) = Zp. By Remark 4.2,

the associated windows can be identified as P = (W(R),W(R), pu0f, f)

and P+ = (W+(R),W+(R), pf, f) and M= (Acris, Acris, pσ, σ). The three

modules T (M) =Aσ=1
cris and T (P̂R̃) = Ŵ(R̃)f=1 and T (P̂+

R̃
) = Ŵ+(R̃)f=1

are then all identified with Zp; see Lemma 4.3. Under these identifications,

the three arrows τ and perG,cris and perG are the identity of Zp; see

Remark 4.2. The base change ι∗(P) is equal to (W+(R),W+(R), pu0f, u0f),

and the implicit isomorphism ι∗(P)∼= P+ is necessarily given by multipli-

cation with the unique unit c ∈W+(Zp) with cu0 = f(c) which maps to 1 in

W (Fp), namely c= c−1
0 . Thus under the chosen identifications, τc0 = c0c

−1
0

is the identity as well, and the diagram commutes for Qp/Zp.
Let now G be arbitrary. Since the map τc0 ◦ perG = per+

G is injective with

cokernel annihilated by p, the composition γ = p · (per+
G)−1 ◦ τ ◦ perG,cris is

a well-defined functorial endomorphism of TpG. We have to show that γ = p.

By [Ta, Corollary 1], γ comes from an endomorphism γG of G; moreover γG
is functorial in G and compatible with normal finite extensions of the base

ring R inside K̄. The endomorphisms γG induce a functorial endomorphism

γH of each commutative finite flat p-group scheme H over a normal finite

extension R′ of R inside K̄ because H can be embedded into a p-divisible

group G by Raynaud [BBM, Theorem 3.1.1], and the quotient G/H is a
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p-divisible group, so γG induces γH ; cf. the proof of [Ki1, Theorem 2.3.5]

or [La3, Proposition 8.1]. Assume that H is annihilated by pr and let H0 =

Z/prZ. There is a normal finite extension R′′ of R′ inside K̄ such that

H(K̄) =H(R′′) = HomR′′(H0, H). Since γH0 = p it follows that γH = p, and

thus γG = p for all G.

§7. The ring Snr

Let us recall the ring Snr of [Ki1], which is denoted by A+
S in [Fo1]. One

starts with a two-dimensional complete regular local ring S of characteristic

zero with perfect residue field k of characteristic p equipped with a Frobenius

lift σ : S→S.

There is a unique ring homomorphism ∆ : S→W (S) with wn ◦∆ = σn

where wn is the nth Witt polynomial, and then ∆ ◦ σ = f ◦∆; see [Laz,

Chapter VII, Proposition 4.12]. The composition S→W (S)→W (k) is

surjective, which implies that p 6∈m2
S. Let t ∈mS \m2

S map to zero in W (k).

Then S =W (k)[[t]] and t generates the kernel of S→W (k), in particular

σ(t) ∈ tS.

Let OE be the p-adic completion of S[t−1] and let E = k((t)) be its

residue field. Fix a maximal unramified extension OEnr of OE and let OÊnr
be its p-adic completion. Let Esep be the residue field of OEnr , let Ē be

an algebraic closure of Esep, let OE = S/pS = k[[t]], and let OĒ ⊂ Ē be its

integral closure. The Frobenius lift σ on S extends uniquely to OÊnr and

induces a homomorphism

(7.1) OÊnr
∆−→W (OÊnr)→W (Ē)

with ∆ as above. (7.1) is injective since both sides are discrete valuation

rings with prime element p, and the reduction modulo p is injective. One

defines Snr =OÊnr ∩W (OĒ) inside W (Ē). This ring is stable under σ, and

Snr = lim←−Snr
n with Snr

n = (OEnr/pnOEnr) ∩Wn(OĒ) inside Wn(Ē). By [Fo1,

B 1.8.3] we have Snr
n = Snr/pnSnr, in particular Snr is p-adically complete.

§8. Breuil–Kisin modules

Let R be a complete discrete valuation ring with perfect residue field

k of characteristic p and fraction field K of characteristic zero. We recall

briefly the classification of commutative finite flat p-group schemes over R

following [La3]; see the introduction for a brief discussion of the history of

this result.
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Let S =W (k)[[t]] and let σ : S→S be a Frobenius lift that stabilizes

the ideal tS. We choose a presentation R= S/ES where E has constant

term p. Let π ∈R be the image of t, so π generates the maximal ideal of R.

For an S-module M let M (σ) = S⊗σ,S M . We consider pairs (M, φ)

where M is an S-module of finite type and where φ :M →M (σ) is an S-

linear map with cokernel annihilated by E. Following the [VZ] terminology,

(M, φ) is called a Breuil window (respectively a Breuil module) relative to

S→R if the S-module M is free (respectively annihilated by a power of p

and of projective dimension at most one).

We have a frame in the sense of [La2]

B = (S, ES, R, σ, σ1)

with σ1(Ex) = σ(x) for x ∈S. Windows P = (P, Q, F, F1) over B are

equivalent to Breuil windows relative to S→R by the functor P 7→ (Q, φ)

where φ :Q→Q(σ) is the composition of the inclusion Q→ P with the

inverse of the isomorphism Q(σ) ∼= P defined by a⊗ x 7→ aF1(x); the inverse

functor maps (Q, φ) to (P, Q, F, F1) with P =Q(σ) such that the inclusion

Q→ P is φ and F1 :Q→ P is x 7→ 1⊗ x, which also gives F (x) = F1(Ex);

see [La2, Lemma 8.2].

As in [La3, Section 6] let κ be the ring homomorphism

κ : S
∆−→W (S)→W (R).

Its image lies in W(R) if and only if the endomorphism of tS/t2S induced

by σ is divisible by p2. In this case, κ : S→W(R) is a u-homomorphism

of frames B→DR for the unit u = f1(κ(E)) of W(R), and κ induces an

equivalence between B-windows and DR-windows, which are equivalent to

p-divisible groups over R. As a consequence, Breuil modules relative to

S→R are equivalent to commutative finite flat p-group schemes over R;

see [La3, Corollary 6.8].

Since u maps to 1 under W(R)→W (k), there is a unique invertible

element c ∈W(R) which maps to 1 in W (k) with cσ(c−1) = u. It is given

by c = uσ(u)σ2(u) · · · ; see the proof of [La2, Proposition 8.7].

8.1 Modules of invariants

For a Breuil module or Breuil window (M, φ) relative to S→R we write

Mnr = Snr ⊗S M and Mnr
E =OÊnr ⊗S M and define

T nr(M, φ) = {x ∈Mnr | φ(x) = 1⊗ x in Snr ⊗σ,Snr Mnr},
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T nr
E (M, φ) = {x ∈Mnr

E | φ(x) = 1⊗ x in OÊnr ⊗σ,OÊnr M
nr
E }.

For reference we record the following consequence of some results of [Fo1].

Lemma 8.1. The Zp-module T nr
E (M, φ) is finitely generated, and the

natural map

(8.1) OÊnr ⊗Zp T
nr
E (M, φ)→Mnr

E

is bijective. The natural map

(8.2) T nr(M, φ)→ T nr
E (M, φ)

is bijective as well.

Proof. The homomorphism φ :Mnr
E → (Mnr

E )(σ) is bijective. If ψ :Mnr
E →

Mnr
E is the σ-linear map whose linearization is the inverse of φ, then

T nr
E (M, φ) is equal to {x ∈Mnr

E | ψ(x) = x}, and [Fo1, A 1.2.6] gives the

first part of the lemma.

It remains to show that (8.2) is bijective. Assume first that (M, φ) is

a Breuil window, let M∗ = HomS(M,S), and let ψ :M∗→M∗ be the σ-

linear map whose linearization is the dual of φ. Then (M∗, ψ) is a Kisin

module as considered in [Ki1, (2.1.3)], and T nr(M, φ) can be identified with

the module of S-linear maps λ :M∗→Snr with σλ= λψ, and similarly for

T nr
E (M, φ). Thus (8.2) is bijective by [Ki1, Corollary 2.1.4], which builds

on [Fo1, B 1.8.4].

Assume now that (M, φ) is a Breuil module. Using that M is annihilated

by a power of p and of projective dimension 6 1 and that C =OÊnr/S
nr has

no p-torsion, we see that TorS1 (C, M) is zero. It follows that Mnr→Mnr
E

is injective, and thus (8.2) is injective. One can find a Breuil window

(M ′, φ′) and a surjective map (M ′, φ′)→ (M, φ); see (b) in the proof of [La2,

Theorem 8.5]. Then T nr(M ′, φ′)∼= T nr
E (M ′, φ′)→ T nr

E (M, φ) is surjective,

and thus (8.2) is surjective.

8.2 The choice of K∞
Let m̄∧ be the maximal ideal of R̄∧. The power series σ(t) defines a map

σ(t) : m̄∧→ m̄∧. This map is surjective, and the inverse images of algebraic

elements are algebraic by the Weierstrass preparation theorem. Choose a

system of elements (π(n))n>0 of K̄ with π(0) = π and σ(t)(π(n+1)) = π(n),

and let K∞ be the extension of K generated by all π(n). The system (π(n))
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corresponds to an element π ∈R= lim←− R̄/pR̄, the limit taken with respect

to Frobenius.

We embed OE = k[[t]] into R by t 7→ π, and identify Esep and Ē with sub-

fields of FracR; thus W (Ē)⊂W (FracR). Then Snr =OÊnr ∩W (R), and

the unique ring homomorphism θ :W (R)→ R̄∧ which lifts the projection

W (R)→ R̄/pR̄ induces a homomorphism

prnr : Snr→ R̄∧.

Let us verify that its restriction to S is the given projection S→R.

Lemma 8.2. We have prnr(t) = π.

Proof. The lemma is easy if σ(t) = tp since then ∆(t) = [t] in W (S),

which maps to [π] in W (R), and θ([π]) = π in this case. In general let ∆(t) =

(g0, g1, . . .) with gi ∈S; these power series are determined by the relations

gp
n

0 + pgp
n−1

1 + · · ·+ pngn = σn(t)

for n> 0. Let x= (x0, x1, . . .) ∈W (R) be the image of t, thus xi = gi(π).

Write xi = (xi,0, xi,1, . . .) with xi,n = gi(π)n ∈ R̄/pR̄. If x̃i,n ∈ R̄∧ lifts xi,n
we have

prnr(t) = θ(x) = lim
n→∞

((x̃0,n)p
n

+ p(x̃1,n)p
n−1

+ · · ·+ pnx̃n,n).

If we choose x̃i,n = gi(π
(n)), the sum in the limit becomes σn(t)(π(n)) = π,

and the lemma is proved.

The natural action of GK∞ = Gal(K̄/K∞) on W (FracR) is trivial on OE ,
and therefore it stabilizes OÊnr and Snr with trivial action on S. Thus GK∞
acts on T nr(M, φ) for each Breuil window or Breuil module (M, φ).

8.3 From Snr to Zink rings

The composition of the inclusion Snr→W (R) chosen above with the

homomorphism κinf :W (R)→ Ŵ(R̃) from Lemma 6.1 is a ring homomor-

phism

κnr : Snr→ Ŵ(R̃)

that commutes with Frobenius and with the projections to R̄∧.

Lemma 8.3. If the image of κ : S→W (R) lies in W(R), then the

following diagram of rings commutes, where the vertical maps are the
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obvious inclusions.

S
κ

//

��

W(R)

ι
��

Snr κnr

// Ŵ(R̃)

Proof. The assumption κ(S)⊂W(R) is equivalent to ∆(S)⊂W(S);

see [La3, Proposition 6.2]. As in the proof of Lemma 8.2 we write ∆(t) =

(g0, g1, . . .) with gi ∈S. Note that g0 = t. We have to show that

κinf((g0(π), g1(π), . . .)) = ι((g0(π), g1(π), . . .))

in Ŵ(R̃). Again, if yi,n ∈ Ŵ(R̃) is a lift of xi,n = gi(π)n ∈ R̄/pR̄, the left

hand side of this equation is equal to

lim
n→∞

(
(y0,n)p

n
+ p(y1,n)p

n−1
+ · · ·+ pnyn,n

)
.

We will choose yi,n ∈W(R̃) (no p-adic completion) such that the sum in the

limit is equal to (g0(π), g1(π), . . .) in W(R̃); this will prove the lemma. In

the special case σ(t) = tp we have gi = 0 for i> 1, and we can take y0,n =

[π(n)] and yi,n = 0 for i> 1; then the calculation is trivial. In general, let

∆(gi) = (hi,0, hi,1, . . .) in W(S), so the power series hi,j are determined by

the equations

hp
m

i,0 + php
m−1

i,1 + · · ·+ pmhi,m = σm(gi) = gi(σ
m(t))

for m> 0, and put yi,n = (hi,0(π(n)), hi,1(π(n)), . . .) ∈W(R̃). Since the Witt

polynomials wm(X0, . . . , Xm) =Xpm

0 + · · ·+ pmXm for m> 0 define an

injective map W(R̃)⊂W (R̃)→ R̃∞, we have to show that for n, m> 0 the

following holds.

wm((y0,n)p
n

+ p(y1,n)p
n−1

+ · · ·+ pnyn,n) = wm((g0(π), g1(π), . . .))

The right hand side is equal to σm(t)(π). Since wm is a ring homomor-

phism and since wm(yi,n) = gi(σ
m(t)(π(n))), the left hand side is equal to

σn(t)(σm(t)(π(n))) = σn+m(t)(π(n)) = σm(t)(π) too.

We define a frame

Bnr = (Snr, ESnr,Snr/ESnr, σ, σ1)

with σ1(Ex) = σ(x) for x ∈Snr.
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Lemma 8.4. The element u′ = f1(κnr(E)) ∈ Ŵ(R̃) is a unit, and the

ring homomorphism κnr : Snr→ Ŵ(R̃) is a u′-homomorphism of frames

κnr : Bnr→ D̂R̃.

Proof. Clearly κnr commutes with the projections to R̄∧ and with the

Frobenius. Lemma 8.2 implies that prnr(E) = 0, thus κnr(E) ∈ ÎR̃. For x ∈
Snr we compute f1(κnr(Ex)) = f1(κnr(E)) · f(κnr(x)) = u′ · κnr(σ1(Ex)) as

required. It remains to show that u′ is a unit. The projection R̃→ k̄

induces a local homomorphism of local rings Ŵ(R̃)→W (k̄) that commutes

with f and f1. The composition S→Snr→ Ŵ(R̃)→W (k̄) commutes with

Frobenius and is thus equal to the homomorphism t 7→ 0. Thus E maps to

p in W (k̄), so u′ maps to f1(p) = v−1(p) = 1 in W (k̄), and it follows that u′

is a unit.

From now on we assume that the image of κ lies in W(R), so that

Lemma 8.3 applies. Then u′ is the image of u ∈W(R), and we get a commu-

tative square of frames where the horizontal arrows are u-homomorphisms

and the vertical arrows are strict:

B
κ

//

��

DR

��

Bnr κnr

// D̂R̃

Here GK acts on D̂R̃ and GK∞ acts on Bnr, and κnr is GK∞-equivariant.

8.4 Identification of modules of invariants

Now we can state the main result of this section. Let (M, φ) be a Breuil

window relative to S→R with associated B-window P, and let Pnr be

the base change of P to Bnr. By definition we have T nr(M, φ) = T (Pnr)

as GK∞-modules. Let PD be the base change of P to DR and let P̂R̃ be

the common base change of Pnr and PD to D̂R̃. As in (3.1), multiplication

by c induces a GK∞-invariant homomorphism

τ(Pnr) : T (Pnr)→ T (P̂R̃).

We recall that the GK-module T (P̂R̃) is canonically isomorphic to the Tate

module of the p-divisible group associated to (M, φ); see Proposition 4.1.

Proposition 8.5. The homomorphism τ(Pnr) is bijective.

https://doi.org/10.1017/nmj.2018.3 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.3


DISPLAYED EQUATIONS FOR GALOIS REPRESENTATIONS 111

Proof. Let h be the S-rank of M . The source and target of τ(Pnr)

are free Zp-modules of rank h which are exact functors of P. Indeed, for

T (Pnr) = T nr(M, φ) this follows from Lemma 8.1, and it holds for T (P̂R̃)

by Proposition 4.1, using that the height of a p-divisible group is equal to

the rank of its Dieudonné display; this can be verified over perfect fields,

and then the Dieudonné display is the classical Dieudonné module.

Consider first the case where the p-divisible group associated to P
is étale, which means that P = (P, Q, F, F1) has P =Q, and F1 :Q→ P

is a σ-linear isomorphism. Then (P, F1) is an étale σ-module over S.

Since Snr is p-adically complete with Snr/p=OEsep , a Zp-basis of T (Pnr)

is an Snr-basis of P nr. Using Lemma 4.3 it follows that a Zp-basis of

T (P̂R̃) is a Ŵ(R̃)-basis of P̂R̃ = Ŵ(R̃)⊗Snr P nr. Thus the homomorphism of

Zp-modules τ(Pnr) becomes an isomorphism over Ŵ(R̃). Since Zp→ Ŵ(R̃)

is a local homomorphism it follows that τ(Pnr) is bijective.

Consider next the case P = B, which corresponds to the p-divisible group

µp∞ . Assume that the proposition does not hold for B, i.e., that τ(Bnr)

is divisible by p. For a perfect extension k′ of k let S′ =W (k′)[[t]] and

R′ = S′/ES′, and let B′ be the corresponding analogue of the frame B;

note that the Frobenius lift σ of S extends uniquely to S′. The natural

homomorphism T (Bnr)→ T (B′ nr) is bijective because it becomes bijective

over OÊ ′ nr by Lemma 8.1. The natural homomorphism T (D̂R̃)→ T (D̂R̃′) is

bijective since the equivalence between p-divisible groups and Dieudonné

displays is compatible with arbitrary base change by [La3, Lemma 9.6].

Hence the homomorphism τ(Bnr) can be identified with τ(B′ nr), so k can

be replaced by k′, which allows to assume that k is uncountable. Let P0

be the étale B-window that corresponds to Qp/Zp. We consider extensions

of B-windows 0→B→P1→P0→ 0, which correspond to extensions in

Ext1
R(Qp/Zp, µp∞). Since τ(Pnr

0 ) is bijective and τ(Bnr) is divisible by p,

the image of τ(Pnr
1 ) provides a splitting of the reduction modulo p of the

exact sequence of GK∞-modules

0→ T (D̂R̃)→ T ((P̂1)R̃)→ T ((P̂0)R̃)→ 0.

Hence the composite homomorphism

(8.3) Ext1
R(Qp/Zp, µp∞)→ Ext1

Fp[GK ](Z/pZ, µp)→ Ext1
Fp[GK∞ ](Z/pZ, µp)

is zero. The first group in (8.3) can be identified with the set of defor-

mations of Qp/Zp ⊕ µp∞ from k to R. The second group is isomorphic
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to Ext1
K(Z, µp), which is isomorphic to the Galois cohomology group

H1(GK , µp)∼=K∗/(K∗)p. As in [La1, Lemma 7.2] it follows that the first

arrow in (8.3) can be identified with the natural map 1 + mR→K∗/(K∗)p,

whose image is uncountable since k is uncountable. Since for a finite

extension K ′/K the homomorphism H1(K, µp)→H1(K ′, µp) has finite

kernel by the inflation-restriction exact sequence, the kernel of the second

map in (8.3) is countable. Thus the composition (8.3) cannot be zero, and

the proposition is proved for P = B.

Finally let P be arbitrary. Duality gives the following commutative

diagram; see the end of Section 3.

(8.4)

T (Pnr)× T (Pt nr) //

τ(Pnr)×τ(Pt nr)
��

T (Bnr)

τ(Bnr)
��

T (P̂R̃)× T (P̂t
R̃

) // T (D̂R̃)

The upper line of (8.4) is a bilinear form of free Zp-modules of rank h,

whose scalar extension under Zp→OÊnr is perfect since (8.2) and (8.1)

are bijective. Since this is a local homomorphism the upper line of (8.4) is

perfect. Proposition 4.1 implies that the lower line of (8.4) is a bilinear form

of free Zp-modules of rank h. We have seen that τ(Bnr) is bijective. These

properties imply that τ(Pnr) is bijective.

For a p-divisible group or commutative finite flat p-group scheme G over

R let (M(G), φ) be the associated Breuil window or Breuil module. In the

first case let T (G) be the Tate module of G, and in the second case let

T (G) =G(K̄).

Corollary 8.6. There is an isomorphism of GK∞-modules T (G)∼=
T nr(M(G), φ).

Proof. For p-divisible groups this is immediate from Propositions 4.1

and 8.5. The finite case follows from the p-divisible case as in the proof

of [La3, Corollary 6.8]. More precisely, a finite G can be written as the kernel

of an isogeny of p-divisible groups G0→G1, which gives exact sequences

0→ T (G0)→ T (G1)→ T (G)→ 0 and 0→M(G0)→M(G1)→M(G)→ 0,

and the latter gives an exact sequence 0→ T nr(M(G0))→ T nr(M(G1))→
T nr(M(G))→ 0. The resulting isomorphism T (G)∼= T nr(M(G)) is indepen-

dent of the resolution G0→G1 of G.
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