DISPLAYED EQUATIONS FOR GALOIS REPRESENTATIONS

EIKE LAU

Abstract. The Galois representation associated to a *p*-divisible group over a normal complete noetherian local ring with perfect residue field is described in terms of its Dieudonné display. As a consequence, the Kisin module associated to a commutative finite flat *p*-group scheme via Dieudonné displays is related to its Galois representation in the expected way.

Introduction

Let R be a normal complete noetherian local ring with perfect residue field k of positive characteristic p and with fraction field K of characteristic zero. For a p-divisible group G over R, the Tate module $T_p(G)$ is a free \mathbb{Z}_p -module of finite rank with a continuous action of the absolute Galois group \mathcal{G}_K . We want to describe the Tate module in terms of the Dieudonné display $\mathscr{P} = (P, Q, F, F_1)$ associated to G in [Zi2, La3], and relate this to other descriptions of the Tate module when R is a discrete valuation ring.

Let us recall the notion of a Dieudonné display. The Zink ring W(R) is a certain subring of the ring of Witt vectors W(R) which is stable under the Frobenius endomorphism f of W(R). The components of \mathscr{P} are W(R)modules $Q \subseteq P$ where P is finite free and P/Q is a free R-module, and f-linear maps $F: P \to P$ and $F_1: Q \to P$ such that $F_1(Q)$ generates P and $F_1(v(u_0a)x) = aF(x)$ for $x \in P$ and $a \in W(R)$. Here v is the Verschiebung of W(R), and $u_0 \in W(R)$ is the unit defined by $u_0 = 1$ if $p \ge 3$ and by $v(u_0) = 2 - [2]$ if p = 2. The twist by u_0 is necessary since v does not stabilize W(R) when p = 2.

To state the main result we need the following scalar extension of \mathscr{P} . Let \hat{R}^{nr} be the completion of the strict Henselization of R, let \tilde{K} be an algebraic closure of the fraction field \hat{K}^{nr} of \hat{R}^{nr} , and let $\tilde{R} \subset \tilde{K}$ be the integral closure of \hat{R}^{nr} . We define

$$\mathbb{W}(\tilde{R}) = \varinjlim_{E} \mathbb{W}(R_E)$$

Received February 1, 2015. Revised September 5, 2015. Accepted November 2, 2017. 2010 Mathematics subject classification. 14L05, 14F30.

^{© 2018} Foundation Nagoya Mathematical Journal

where E runs through the finite extensions of \hat{K}^{nr} in \tilde{K} and where $R_E = \tilde{R} \cap E$. Let \tilde{R}^{\wedge} and $\hat{\mathbb{W}}(\tilde{R})$ be the *p*-adic completions of \tilde{R} and $\mathbb{W}(\tilde{R})$. We define

$$\hat{P}_{\tilde{R}} = \hat{\mathbb{W}}(\tilde{R}) \otimes_{\mathbb{W}(R)} P$$

and

$$\hat{Q}_{\tilde{R}} = \operatorname{Ker}(\hat{P}_{\tilde{R}} \to \tilde{R}^{\wedge} \otimes_{R} P/Q).$$

Let \bar{K} be the algebraic closure of K in \tilde{K} and let $\tilde{\mathcal{G}}_K$ be the group of automorphisms of \tilde{K} whose restriction to $\bar{K}\hat{K}^{\mathrm{nr}}$ is induced by an element of \mathcal{G}_K . The natural map $\tilde{\mathcal{G}}_K \to \mathcal{G}_K$ is surjective, and bijective when R is one-dimensional since then $\tilde{K} = \bar{K}\hat{K}^{\mathrm{nr}}$. The following is the main result of this note; see Proposition 4.1.

THEOREM A. There is an exact sequence of $\tilde{\mathcal{G}}_K$ -modules

$$0 \longrightarrow T_p(G) \longrightarrow \hat{Q}_{\tilde{R}} \xrightarrow{F_1 - 1} \hat{P}_{\tilde{R}} \longrightarrow 0.$$

Here F_1 is a natural extension of $F_1: Q \to P$. If G is connected, a similar description of $T_p(G)$ in terms of the nilpotent display of G is part of Zink's theory of displays. In this case k need not be perfect; see [Me2, Proposition 4.4]. The proof is recalled in Proposition 2.1 below.

The one-dimensional case

Assume now in addition that R is a discrete valuation ring. Then Theorem A can be related to the descriptions of $T_p(G)$ in terms of p-adic Hodge theory and in terms of Breuil–Kisin modules as follows.

Relation with the crystalline period homomorphism

Let M_{cris} be the value of the covariant Dieudonné crystal of G over $A_{\text{cris}}(\bar{R})$. It carries a filtration and a Frobenius, and by [Fa] there is a period homomorphism

$$T_p(G) \to \operatorname{Fil}^1 M_{\operatorname{cris}}^{F=p}$$

which is bijective if $p \ge 3$, and injective with cokernel annihilated by p if p = 2. The *v*-stabilized Zink ring $\mathbb{W}^+(R) = \mathbb{W}(R)[v(1)]$ studied in [La3] induces an extension $\hat{\mathbb{W}}^+(\tilde{R})$ of the ring $\hat{\mathbb{W}}(\tilde{R})$ defined above, which is the trivial extension when $p \ge 3$. The universal property of $A_{\text{cris}}(\bar{R})$ gives a ring homomorphism

$$\varkappa_{\operatorname{cris}}: A_{\operatorname{cris}}(\bar{R}) \to \widehat{\mathbb{W}}^+(\tilde{R}).$$

Using the crystalline description of Dieudonné displays of [La3], one obtains an $A_{\text{cris}}(\bar{R})$ -linear map

$$\tau: M_{\operatorname{cris}} \to \widehat{\mathbb{W}}^+(\widetilde{R}) \otimes_{\widehat{\mathbb{W}}(\widetilde{R})} \hat{P}_{\widetilde{R}}$$

compatible with Frobenius and filtration. We will show that τ induces the identity on $T_p(G)$, viewed as a submodule of Fil¹ M_{cris} by the period homomorphism and as a submodule of $\hat{Q}_{\tilde{R}} \subseteq \hat{P}_{\tilde{R}}$ by Theorem A; see Proposition 6.2.

Relation with Breuil-Kisin modules

Let $\pi \in R$ generate the maximal ideal. Let $\mathfrak{S} = W(k)[[t]]$ and let $\sigma : \mathfrak{S} \to \mathfrak{S}$ extend the Frobenius automorphism of W(k) by $t \mapsto t^p$; see below for the case of more general Frobenius lifts. We consider pairs $M = (M, \phi)$ where M is an \mathfrak{S} -module of finite type and where $\phi : M \to M^{(\sigma)} = \mathfrak{S} \otimes_{\sigma,\mathfrak{S}} M$ is an \mathfrak{S} -linear map with cokernel annihilated by the minimal polynomial of π over W(k). Following [VZ], M is called a Breuil window if M is free over \mathfrak{S} , and M is called a Breuil module if M is a p-power torsion \mathfrak{S} -module of projective dimension at most one. These notions are dual to the classical Breuil–Kisin modules.

It is known that p-divisible groups over R are equivalent to Breuil windows. This was conjectured by Breuil [Br] and proved by Kisin [Ki1, Ki2] if $p \ge 3$, and for connected groups if p = 2. The general case is proved in [La3] by showing that Breuil windows are equivalent to Dieudonné displays. (This equivalence holds when R is regular of arbitrary dimension, with appropriate definition of \mathfrak{S} . For $p \ge 3$ this equivalence is already proved in [VZ] for some regular rings, including all discrete valuation rings.) As a corollary, commutative finite flat p-group schemes over R are equivalent to Breuil modules. Other proofs for p = 2, more closely related to Kisin's methods, were obtained independently by Kim [K] and Liu [Li].

Let K_{∞} be the extension of K generated by a chosen system of successive pth roots of π . For a p-divisible group G over R let T(G) be its Tate module, and for a commutative finite flat p-group scheme G over R let $T(G) = G(\bar{K})$. The results of Kisin, Liu, and Kim include a description of T(G) as a $\mathcal{G}_{K_{\infty}}$ -module in terms of the Breuil window or module (M, ϕ) corresponding to G. In the covariant theory used here it takes the form of an isomorphism of $\mathcal{G}_{K_{\infty}}$ -modules $T(G) \cong T^{\mathrm{nr}}(M)$ where

$$T^{\mathrm{nr}}(M) = \{ x \in M^{\mathrm{nr}} \mid \phi(x) = 1 \otimes x \text{ in } \mathfrak{S}^{\mathrm{nr}} \otimes_{\sigma, \mathfrak{S}^{\mathrm{nr}}} M^{\mathrm{nr}} \}$$

with $M^{\mathrm{nr}} = \mathfrak{S}^{\mathrm{nr}} \otimes_{\mathfrak{S}} M$; the ring $\mathfrak{S}^{\mathrm{nr}}$ is recalled in Section 7.

To complete the approach via Dieudonné displays, we will show how the isomorphism $T(G) \cong T^{nr}(M)$ can be deduced from Theorem A; see Corollary 8.6. It suffices to consider the case where G is a p-divisible group. The equivalence between Breuil windows and Dieudonné displays over R is induced by a ring homomorphism $\varkappa : \mathfrak{S} \to W(R)$, which extends to a ring homomorphism $\varkappa^{nr} : \mathfrak{S}^{nr} \to \hat{W}(\tilde{R})$. Using Theorem A, this allows to define a homomorphism of $\mathcal{G}_{K_{\infty}}$ -modules

$$\tau: T^{\mathrm{nr}}(M) \to T(G),$$

and we show in Proposition 8.5 that τ is bijective. The verification is easy if G is étale, and the general case follows quite formally using a duality argument.

Other lifts of Frobenius

The equivalence between Breuil windows and *p*-divisible groups requires only a Frobenius lift $\sigma : \mathfrak{S} \to \mathfrak{S}$ which stabilizes the ideal $t\mathfrak{S}$ such that p^2 divides the linear term of the power series $\sigma(t)$. In this case, let K_{∞} be the extension of K generated by a system $\pi^{(n)} \in \overline{K}$ of successive $\sigma(t)$ -roots of π , which means that $\pi^{(0)} = \pi$ and $\sigma(t)(\pi^{(n+1)}) = \pi^{(n)}$. Then we obtain an isomorphism of $\mathcal{G}_{K_{\infty}}$ -modules $T(G) \cong T^{\mathrm{nr}}(M)$ as before; here the ring $\mathfrak{S}^{\mathrm{nr}}$ depends on σ as well.

§1. Notation

All rings are commutative and unitary unless the contrary is stated. For the convenience of the reader we recall the notion of frames, windows, and displays.

A frame $\mathscr{F} = (S, I, R, \sigma, \sigma_1)$ in the sense of [La2] consists of a pair of rings S and R = S/I with $I + pS \subseteq \operatorname{Rad}(S)$, a ring endomorphism $\sigma : S \to S$ that lifts the Frobenius of S/pS, and a σ -linear map $\sigma_1 : I \to S$ with $\sigma_1(I)S = S$.

We assume that S is a local ring. Then an \mathscr{F} -window $\mathscr{P} = (P, Q, F, F_1)$ consists of a finite free S-module P, a submodule $Q \subseteq P$ with $IP \subseteq Q$ such that P/Q is free over R, and a pair of σ -linear maps $F: P \to P$ and $F_1: Q \to P$ with $F_1(ax) = \sigma_1(a)F(x)$ for $a \in I$ and $x \in P$, such that $F_1(Q)$ generates P. Then there is a unique S-linear map $V^{\sharp}: P \to S \otimes_{\sigma,S} P = P^{(\sigma)}$ with $V^{\sharp}(F_1(x)) = 1 \otimes x$ for $x \in Q$. A sequence $0 \to \mathscr{P} \to \mathscr{P}' \to \mathscr{P}'' \to 0$ of \mathscr{F} -windows will be called exact if the resulting sequences of P's and of Q's are exact. A frame homomorphism $\alpha : \mathscr{F} \to \mathscr{F}' = (S', I', R', \sigma', \sigma'_1)$ is a ring homomorphism $\alpha : S \to S'$ with $\alpha(I) \subseteq I'$ such that $\sigma' \alpha = \alpha \sigma$ and $\sigma'_1 \alpha = u \cdot \alpha \sigma_1$ for a unit $u \in S'$, which then is unique. If u = 1 then α is called strict. There is a base change functor

$$\alpha_* : (\mathscr{F}\text{-windows}) \to (\mathscr{F}'\text{-windows})$$

where $\alpha_*(\mathscr{P}) = (P', Q', F', F'_1)$ is determined by $P' = S' \otimes_S P$ and $P'/Q' = (P/Q) \otimes_R R'$ with $F'(1 \otimes x) = 1 \otimes F(x)$ for $x \in P$ and $F'_1(1 \otimes x) = u \otimes F_1(x)$ for $x \in Q$.

For a not necessarily unitary ring R let W(R) be the ring of p-typical Witt vectors. If R is p-adic and unitary, we have a frame

$$\mathscr{W}(R) = (W(R), I_R, R, f, f_1)$$

where I_R is the image of the Verschiebung $v: W(R) \to W(R)$, where f is the Frobenius, and f_1 is the inverse of v. Windows over $\mathscr{W}(R)$ are the displays over R of [Zi1]. A display is called V-nilpotent if the map V^{\sharp} becomes nilpotent over R/pR. A homomorphism $R \to R'$ gives a strict frame homomorphism $\mathscr{W}(R) \to \mathscr{W}(R')$, and we write $\mathscr{P} \mapsto \mathscr{P} \otimes_R R'$ for the resulting base change of displays.

If N is a nilpotent nonunitary ring, $\hat{W}(N) \subseteq W(N)$ denotes the subgroup of all Witt vectors with only finitely many nonzero coefficients. If A is a local Artin ring with perfect residue field $k = A/\mathfrak{m}$ of characteristic p, there is a unique ring homomorphism $s: W(k) \to W(A)$ that lifts the projection $W(A) \to W(k)$, and the Zink ring $\mathbb{W}(A) = \hat{W}(\mathfrak{m}) \oplus s(W(k))$ is a subring of W(A). There is a frame $\mathscr{D}_A = (\mathbb{W}(A), \mathbb{I}(A), A, f, \mathbb{f}_1)$ with an injective frame homomorphism $\mathscr{D}_A \to \mathscr{W}_A$, which is strict when $p \ge 3$; see [La3, Section 2.C]. Windows over \mathscr{D}_A are called Dieudonné displays over A.

§2. The case of connected *p*-divisible groups

Let R be a normal complete noetherian local ring with (not necessarily perfect) residue field k of positive characteristic p, with fraction field K of characteristic zero, and with maximal ideal \mathfrak{m} . In this section, we recall how the Tate module of a connected p-divisible group over R is expressed in terms of its nilpotent display.

We fix an algebraic closure \bar{K} of K and write $\mathcal{G}_K = \operatorname{Gal}(\bar{K}/K)$. Let $\bar{R} \subset \bar{K}$ be the integral closure of R, and for a finite extension E/K in \bar{K} let $R_E = \bar{R} \cap E$. Then R_E is finite over R, and R_E is a complete noetherian

local ring. Thus \overline{R} is a local ring. Let $\overline{\mathfrak{m}} \subset \overline{R}$ and $\mathfrak{m}_E \subset R_E$ be the maximal ideals. We write

$$\hat{W}(\mathfrak{m}_E) = \varprojlim_n \hat{W}(\mathfrak{m}_E/\mathfrak{m}_E^n); \qquad \hat{W}(\bar{\mathfrak{m}}) = \varinjlim_E \hat{W}(\mathfrak{m}_E).$$

Let $\overline{W}(\overline{\mathfrak{m}})$ be the *p*-adic completion of $\widehat{W}(\overline{\mathfrak{m}})$ and let $\overline{\mathfrak{m}}^{\wedge}$ be the *p*-adic completion of $\overline{\mathfrak{m}}$. The natural map $\overline{W}(\overline{\mathfrak{m}}) \to \overline{\mathfrak{m}}^{\wedge}$ is surjective. For a display $\mathscr{P} = (P, Q, F, F_1)$ over R let

$$\bar{P}_{\bar{\mathfrak{m}}} = \bar{W}(\bar{\mathfrak{m}}) \otimes_{W(R)} P; \qquad \bar{Q}_{\bar{\mathfrak{m}}} = \operatorname{Ker}(\bar{P}_{\bar{\mathfrak{m}}} \to \bar{\mathfrak{m}}^{\wedge} \otimes_{R} P/Q).$$

We call \mathscr{P} nilpotent if the reduction $\mathscr{P} \otimes_R k$ is V-nilpotent in the usual sense, or equivalently if $\mathscr{P} \otimes_R R/\mathfrak{m}_R^n$ is V-nilpotent for all n; cf. [Zi1, Definition 13]. The functor BT of [Zi1] induces an equivalence of categories between nilpotent displays over R and connected p-divisible groups over R; this follows from [Zi1, Theorem 9] applied to the rings R/\mathfrak{m}_R^n , using that V-nilpotent displays and p-divisible groups over R are equivalent to compatible systems of such objects over R/\mathfrak{m}_R^n for all n. A variant of the following result is stated in [Me2, Proposition 4.4].

PROPOSITION 2.1. (Zink) Let \mathscr{P} be a nilpotent display over R and let $G = BT(\mathscr{P})$ be the associated connected p-divisible group over R. There is a natural exact sequence of \mathcal{G}_K -modules

$$0 \longrightarrow T_p(G) \longrightarrow \bar{Q}_{\bar{\mathfrak{m}}} \xrightarrow{F_1 - 1} \bar{P}_{\bar{\mathfrak{m}}} \longrightarrow 0.$$

Here $T_p(G) = \text{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, G(\bar{K}))$ is the Tate module of G, and \mathcal{G}_K acts on $\bar{P}_{\bar{\mathfrak{m}}}$ and $\bar{Q}_{\bar{\mathfrak{m}}}$ by its natural action on $\bar{W}(\bar{\mathfrak{m}})$.

The proof of Proposition 2.1 uses the following standard facts.

LEMMA 2.2. Let A be an abelian group.

- (i) If A has no p-torsion then $\operatorname{Ext}^1(\mathbb{Q}_p/\mathbb{Z}_p, A) = \varprojlim A/p^n A$.
- (ii) If pA = A then $\text{Ext}^1(\mathbb{Q}_p/\mathbb{Z}_p, A)$ is zero.

Proof. The group $\operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, A)$ is isomorphic to $\varprojlim \operatorname{Hom}(\mathbb{Z}/p^n\mathbb{Z}, A)$ with transition maps induced by $p: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^{n+1}\mathbb{Z}$. If the abelian group A is injective, the projective system $\operatorname{Hom}(\mathbb{Z}/p^n\mathbb{Z}, A)$ has surjective transition maps and thus its \varprojlim^1 vanishes. Hence there is a Grothendieck spectral sequence for the functor $A \mapsto \operatorname{Hom}(\mathbb{Z}/p^n, A)_n$ from abelian groups

E. LAU

to projective systems of abelian groups, composed with the functor lim,

(2.1)
$$\underline{\lim}^{i}(\operatorname{Ext}^{j}(\mathbb{Z}/p^{n},A)) \Rightarrow \operatorname{Ext}^{i+j}(\mathbb{Q}_{p}/\mathbb{Z}_{p},A).$$

The projective system of groups $\operatorname{Ext}^1(\mathbb{Z}/p^n\mathbb{Z}, A)$ is isomorphic to the system A/p^nA with transition maps induced by id_A . Thus the exact sequence of low degree terms (see for example, [We, Theorem 5.8.3]) associated to (2.1) gives an exact sequence

$$0 \to \varprojlim^{1} \operatorname{Hom}(\mathbb{Z}/p^{n}\mathbb{Z}, A) \to \operatorname{Ext}^{1}(\mathbb{Q}_{p}/\mathbb{Z}_{p}, A) \to \varprojlim^{n} A/p^{n}A \to 0.$$

If A has no p-torsion then $\operatorname{Hom}(\mathbb{Z}/p^n\mathbb{Z}, A) = 0$, and (i) follows. If pA = A then the projective system $\operatorname{Hom}(\mathbb{Z}/p^n\mathbb{Z}, A)$ has surjective transition maps, thus its $\underline{\lim}^n$ is zero, moreover $A/p^nA = 0$. This proves (ii).

For a p-divisible group G over R and for E as above we write

$$\hat{G}(R_E) = \varprojlim_n G(R_E/\mathfrak{m}_E^n); \qquad \hat{G}(\bar{R}) = \varinjlim_E \hat{G}(R_E).$$

LEMMA 2.3. Multiplication by p is surjective on $\hat{G}(\bar{R})$.

Proof. Let $x \in \hat{G}(R_E)$ be given. The inverse image of x under the multiplication map $p: G \to G$ is a compatible system of G[p]-torsors Y_n over R_E/\mathfrak{m}_E^n . Let $Y_n = \operatorname{Spec} A_n$ and $A = \varprojlim A_n$. Then $Y = \operatorname{Spec} A$ is a G[p]-torsor over R_E . For some finite extension F of E the set $Y(F) = Y(R_F)$ is nonempty, and x becomes divisible by p in $\hat{G}(R_F)$.

LEMMA 2.4. There is an isomorphism $G(\bar{K})[p^r] \cong \hat{G}(\bar{R})[p^r]$ of \mathcal{G}_K -modules.

Proof. Let $G_r = G[p^r]$. Then $\hat{G}(R_E)[p^r] = \varprojlim_n G_r(R_E/\mathfrak{m}_E^n) \cong G_r(R_E)$ since R_E is complete. Hence $\hat{G}(\bar{R})[p^r] \cong G_r(\bar{R}) = G_r(\bar{K}) = G(\bar{K})[p^r]$.

Proof of Proposition 2.1. For a finite Galois extension E/K in \bar{K} we write

$$\tilde{P}_{E,n} = \tilde{W}(\mathfrak{m}_E/\mathfrak{m}_E^n) \otimes_{W(R)} P$$

and define $\hat{Q}_{E,n}$ by the exact sequence of \mathcal{G}_K -modules

$$0 \to \hat{Q}_{E,n} \to \hat{P}_{E,n} \to \mathfrak{m}_E/\mathfrak{m}_E^n \otimes_R P/Q \to 0.$$

The definition of the functor BT in [Zi1, Theorem 81] gives an exact sequence of \mathcal{G}_K -modules

$$0 \longrightarrow \hat{Q}_{E,n} \xrightarrow{F_1 - 1} \hat{P}_{E,n} \longrightarrow G(R_E/\mathfrak{m}_E^n) \longrightarrow 0;$$

note that in [Zi1] a formal group G is viewed as a functor G' on nilpotent algebras, and $G(R_E/\mathfrak{m}_E^n) = G'(\mathfrak{m}_E/\mathfrak{m}_E^n)$ under this identification. The modules $\hat{Q}_{E,n}$ form a projective system with respect to n with surjective transition maps. Indeed, using a normal decomposition of \mathscr{P} as in the paragraph before [Zi1, Theorem 81], this is reduced to the assertion that $\hat{W}(\mathfrak{m}_E/\mathfrak{m}_E^{n+1}) \to \hat{W}(\mathfrak{m}_E/\mathfrak{m}_E^n)$ is surjective, which is clear. Thus taking $\varinjlim_E \varinjlim_n$ of the preceding two sequences gives exact sequences of \mathcal{G}_{K} modules

(2.2)
$$0 \to \hat{Q}_{\bar{\mathfrak{m}}} \to \hat{P}_{\bar{\mathfrak{m}}} \to \bar{\mathfrak{m}} \otimes_R P/Q \to 0$$

and

(2.3)
$$0 \longrightarrow \hat{Q}_{\bar{\mathfrak{m}}} \xrightarrow{F_1 - 1} \hat{P}_{\bar{\mathfrak{m}}} \longrightarrow \hat{G}(\bar{R}) \longrightarrow 0$$

with $\hat{Q}_{\bar{\mathfrak{m}}} = \varinjlim_E \varprojlim_n \hat{Q}_{E,n}$ and $\hat{P}_{\bar{\mathfrak{m}}} = \hat{W}(\bar{\mathfrak{m}}) \otimes_{W(R)} P$. Since $\bar{\mathfrak{m}} \otimes_R P/Q$ has no *p*-torsion, the *p*-adic completion of (2.2) remains exact, moreover the *p*-adic completion of the second and third terms are $\bar{P}_{\bar{\mathfrak{m}}}$ and $\bar{\mathfrak{m}}^{\wedge} \otimes_R P/Q$. Thus the *p*-adic completion of $\hat{Q}_{\bar{\mathfrak{m}}}$ is $\bar{Q}_{\bar{\mathfrak{m}}}$. Moreover $\hat{P}_{\bar{\mathfrak{m}}}$ has no *p*-torsion since $\hat{W}(\bar{\mathfrak{m}})$ is contained in the Q-algebra $W(\bar{K})$. Using Lemmas 2.3 and 2.2, the Ext-sequence of $\mathbb{Q}_p/\mathbb{Z}_p$ with (2.3) reduces to the short exact sequence

$$0 \longrightarrow \operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \hat{G}(\bar{R})) \longrightarrow \bar{Q}_{\bar{\mathfrak{m}}} \xrightarrow{F_1 - 1} \bar{P}_{\bar{\mathfrak{m}}} \longrightarrow 0$$

Lemma 2.4 gives an isomorphism $\operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \hat{G}(\bar{R})) \cong T_p(G)$ of \mathcal{G}_{K} modules.

§3. Module of invariants

Before we proceed we introduce a formal definition. Let $\mathscr{F} = (S, I, R, \sigma, \sigma_1)$ be a frame in the sense of [La2] such that S is a \mathbb{Z}_p -algebra and σ is \mathbb{Z}_p -linear; see Section 1. For an \mathscr{F} -window $\mathscr{P} = (P, Q, F, F_1)$ we consider the module of invariants

$$T(\mathscr{P}) = \{ x \in Q \mid F_1(x) = x \};$$

this is a \mathbb{Z}_p -module. Let us record some of its formal properties.

Functoriality in \mathcal{F}

Let $\alpha: \mathscr{F} \to \mathscr{F}' = (S', I', R', \sigma', \sigma'_1)$ be a *u*-homomorphism of frames; see Section 1. Assume that a unit $c \in S'$ with $c\sigma'(c)^{-1} = u$ is given. For an \mathscr{F} -window \mathscr{P} as above, one verifies that the S-linear map $P \to S' \otimes_S P$, $x \mapsto c \otimes x$ induces a \mathbb{Z}_p -linear map

(3.1)
$$\tau(\mathscr{P}) = \tau_c(\mathscr{P}) : T(\mathscr{P}) \to T(\alpha_*\mathscr{P}).$$

Duality

A bilinear form of \mathscr{F} -windows $\gamma : \mathscr{P} \times \mathscr{P}' \to \mathscr{P}''$ is a bilinear map of S-modules $\gamma : P \times P' \to P''$ that restricts to $Q \times Q' \to Q''$ such that for $x \in Q$ and $x' \in Q'$ we have

(3.2)
$$\gamma(F_1(x), F_1'(x')) = F_1''(\gamma(x, x'));$$

see [La2, Section 2]. It induces a bilinear map of \mathbb{Z}_p -modules $T(\mathscr{P}) \times T(\mathscr{P}') \to T(\mathscr{P}'')$ and a \mathbb{Z}_p -linear map $T(\mathscr{P}) \to \operatorname{Hom}(\mathscr{P}', \mathscr{P}'')$. Let us denote the \mathscr{F} -window (S, I, σ, σ_1) by \mathscr{F} again. For each \mathscr{F} -window \mathscr{P} there is a well-defined dual \mathscr{F} -window $\mathscr{P}^t = (P^t, Q^t, F^t, F_1^t)$ with a perfect bilinear form $\mathscr{P} \times \mathscr{P}^t \to \mathscr{F}$; see [La2, Section 2]. Explicitly, $P^t = \operatorname{Hom}_S(P, S)$ and $Q^t = \{g \in P^t \mid g(Q) \subseteq I\}$; the maps F_1^t and F^t are determined by (3.2) and the window axioms. The resulting homomorphism

$$(3.3) T(\mathscr{P}) \to \operatorname{Hom}(\mathscr{P}^t, \mathscr{F})$$

is bijective, which can be verified as follows: We have $\mathscr{F}^t = (S, S, \sigma_{-1}, \sigma)$ for some σ -linear map σ_{-1} ,¹ thus $T(\mathscr{P}) \cong \operatorname{Hom}(\mathscr{F}^t, \mathscr{P})$, which identifies (3.3) with the duality isomorphism $\operatorname{Hom}(\mathscr{F}^t, \mathscr{P}) \cong \operatorname{Hom}(\mathscr{P}^t, \mathscr{F})$.

Functoriality of duality

Let $\alpha : \mathscr{F} \to \mathscr{F}'$ be a *u*-homomorphism of frames, and let *c* be as above. For a bilinear form of \mathscr{F} -windows $\gamma : \mathscr{P} \times \mathscr{P}' \to \mathscr{P}''$, the base change of γ multiplied by c^{-1} is a bilinear form of \mathscr{F}' -windows $\alpha_* \mathscr{P} \times \alpha_* \mathscr{P}' \to \alpha_* \mathscr{P}''$, which we denote by $\alpha_*(\gamma)$; see [La2, Lemma 2.14] and its proof. By passing

¹Actually $\sigma_{-1} = \theta \sigma$ for θ as in [La2, Lemma 2.2].

to the modules of invariants we obtain a commutative diagram

This will be applied to the bilinear form $\mathscr{P} \times \mathscr{P}^t \to \mathscr{F}$.

§4. The case of perfect residue fields

Let R, K, k, \mathfrak{m} be as in Section 2, and assume in addition that the residue field k is perfect. As in [La3, Sections 2.C and 2.G] we consider the frame

$$\mathscr{D}_R = \varprojlim_n \mathscr{D}_{R/\mathfrak{m}^n} = (\mathbb{W}(R), \mathbb{I}_R, R, f, \mathbb{f}_1).$$

Windows over \mathscr{D}_R , called Dieudonné displays over R, are equivalent to pdivisible groups G over R by [Zi2] if $p \ge 3$ and by [La3, Theorem A] in general. The Tate module $T_p(G)$ can be expressed in terms of the Dieudonné display of G by a variant of Proposition 2.1 as follows.

Let R^{nr} be the strict Henselization of R. This is a normal local domain, which is excellent by [Gre, Corollary 5.6] or [Se], and thus its completion \hat{R}^{nr} is a normal complete noetherian local ring; see EGA IV, (7.8.3.1). Let $K^{nr} \subset \hat{K}^{nr}$ be the fraction fields of the rings $R^{nr} \subset \hat{R}^{nr}$, let \tilde{K} be an algebraic closure of \hat{K}^{nr} , and let \tilde{R} be the integral closure of \hat{R}^{nr} in \tilde{K} . For each finite extension E/\hat{K}^{nr} in \tilde{K} the ring $R_E = \tilde{R} \cap E$ is finite over \hat{R}^{nr} , and R_E is a normal complete noetherian local ring. We define a frame

$$\mathscr{D}_{\tilde{R}} = \varinjlim_{E} \mathscr{D}_{R_{E}} = (\mathbb{W}(\tilde{R}), \mathbb{I}_{\tilde{R}}, \tilde{R}, f, \mathbb{f}_{1})$$

where the direct limit is taken componentwise. Here $\mathbb{W}(\tilde{R})$ is a local ring since all $\mathbb{W}(R_E)$ are local with local homomorphisms in between. Since \tilde{R} has no *p*-torsion, the componentwise *p*-adic completion of $\mathscr{D}_{\tilde{R}}$ is a frame

$$\hat{\mathscr{D}}_{\tilde{R}} = (\hat{\mathbb{W}}(\tilde{R}), \hat{\mathbb{I}}_{\tilde{R}}, \tilde{R}^{\wedge}, f, \mathbb{f}_1).$$

There are natural strict frame homomorphisms $\mathscr{D}_R \to \mathscr{D}_{\tilde{R}} \to \hat{\mathscr{D}}_{\tilde{R}}$.

Let \bar{K} be the algebraic closure of K in \tilde{K} and let $\mathcal{G}_{K} = \operatorname{Gal}(\bar{K}/K)$. The tensor product $\bar{K} \otimes_{K^{\operatorname{nr}}} \hat{K}^{\operatorname{nr}}$ is a subfield of \tilde{K} . Indeed, this ring is algebraic

over \hat{K}^{nr} , and it is a localization of $\bar{K} \otimes_{R^{nr}} \hat{R}^{nr}$, which is an integral domain by [Ra, Chapitre XI, Théorème 3]. If R is one-dimensional, then $\bar{K} \otimes_{K^{nr}}$ $\hat{K}^{nr} = \tilde{K}$ because for every R, the étale coverings of the complements of the maximal ideals in Spec R^{nr} and Spec \hat{R}^{nr} coincide by [Ar, Part II, Theorem 2.1] or by [El, Théorème 5]. Let $\tilde{\mathcal{G}}_K$ be the group of automorphisms of \tilde{K} whose restriction to $\bar{K}\hat{K}^{nr}$ is induced by an element of \mathcal{G}_K . This group acts naturally on $\mathscr{D}_{\tilde{R}}$ and on $\hat{\mathscr{D}}_{\tilde{R}}$. By the above, the projection $\tilde{\mathcal{G}}_K \to \mathcal{G}_K$ is surjective, and bijective if R is one-dimensional.

PROPOSITION 4.1. Let G be a p-divisible group over R and let $\mathscr{P} = \Phi_R(G)$ be the Dieudonné display over R associated to G in [La3]. Let $\hat{\mathscr{P}}_{\tilde{R}} = (\hat{P}_{\tilde{R}}, \hat{Q}_{\tilde{R}}, F, F_1)$ be the base change of \mathscr{P} to $\hat{\mathscr{D}}_{\tilde{R}}$. There is a natural exact sequence of $\tilde{\mathcal{G}}_K$ -modules

$$0 \longrightarrow T_p(G) \longrightarrow \hat{Q}_{\tilde{R}} \xrightarrow{F_1 - 1} \hat{P}_{\tilde{R}} \longrightarrow 0.$$

In particular, we have an isomorphism of \mathcal{G}_K -modules

$$\operatorname{per}_G: T_p(G) \xrightarrow{\sim} T(\hat{\mathscr{P}}_{\tilde{R}})$$

which we call the period isomorphism in display theory.

Proof of Proposition 4.1. For a finite extension E/\hat{K}^{nr} in \tilde{K} let \mathfrak{m}_E be the maximal ideal of R_E . For a *p*-divisible group G over R we set

$$\hat{G}(R_E) = \varprojlim_n G(R_E/\mathfrak{m}_E^n); \qquad \hat{G}(\tilde{R}) = \varinjlim_E \hat{G}(R_E).$$

The group $\tilde{\mathcal{G}}_K$ acts on the system $\hat{G}(R_E)$ for varying E and thus on $\hat{G}(\tilde{R})$. The latter can be described using [La3, Section 9] as follows.

Following [La3, Definition 9.1] let $\mathcal{J}_n = \mathcal{J}_{R/\mathfrak{m}^n}$ be the category of all R/\mathfrak{m}^n -algebras A such that the nilradical \mathcal{N}_A is bounded nilpotent and such that A/\mathcal{N}_A is a union of finite-dimensional k-algebras. Let \mathscr{P}_n be the base change of \mathscr{P} to R/\mathfrak{m}^n , and for $A \in \mathcal{J}_n$ let $\mathscr{P}_A = (P_A, Q_A, F, F_1)$ be the base change of \mathscr{P} to A. As in [La3, (9–2)] we define a complex of presheaves $Z'(\mathscr{P}_n)$ on $\mathcal{J}_n^{\text{op}}$ whose value on A is the complex of abelian groups

$$[Q_A \xrightarrow{F_1 - 1} P_A] \otimes [\mathbb{Z} \to \mathbb{Z}[1/p]]$$

in degrees -1, 0, 1. By [La3, Proposition 9.4], $Z'(\mathscr{P}_n)$ is a complex of pro-étale sheaves on $\mathcal{J}_n^{\text{op}}$, which is acyclic outside degree zero, and the

middle cohomology sheaf $H^0(Z'(\mathscr{P}))$ is represented by a well-defined *p*divisible group BT(\mathscr{P}) over *R*. By [La3, Proposition 9.7] there is a canonical isomorphism $G \cong BT(\mathscr{P})$.

The ring $R_{E,n} = R_E/\mathfrak{m}_E^n$ is a local Artin ring with residue field \bar{k} , and thus it lies in \mathcal{J}_n . Every pro-étale covering of Spec $R_{E,n}$ has a section since every étale covering of Spec $R_{E,n}$ has a nonempty finite set of sections, and the projective limit of a projective system of nonempty finite sets is nonempty by [SP, Tag 086J]. Hence evaluating pro-étale sheaves at $R_{E,n}$ is an exact functor. It follows that the complex of abelian groups

$$C_{E,n} = [Q_{R_{E,n}} \xrightarrow{F_1 - 1} P_{R_{E,n}}] \otimes [\mathbb{Z} \to \mathbb{Z}[1/p]]$$

in degrees -1, 0, 1 is acyclic outside degree zero, and there is a canonical isomorphism $G(R_{E,n}) \cong H^0(C_{E,n})$. For varying n and E these are preserved by the action of $\tilde{\mathcal{G}}_K$. Let

$$C_E = \varprojlim_n C_{E,n}; \qquad C = \varinjlim_E C_E,$$

where E runs through the finite extensions of \hat{K}^{nr} in \tilde{K} . The group $\tilde{\mathcal{G}}_K$ acts on the complex C. Since the groups $G(R_{E,n})$ and the components of $C_{E,n}$ form surjective systems with respect to n, the complex C is acyclic outside degree zero, and we have an isomorphism of $\tilde{\mathcal{G}}_K$ -modules $\hat{G}(\tilde{R}) \cong$ $H^0(C)$. We will verify the following chain of isomorphisms \cong and quasiisomorphisms \simeq of complexes of $\tilde{\mathcal{G}}_K$ -modules, where Hom, R Hom, and Ext¹ are taken in the category of abelian groups using a projective resolution of $\mathbb{Q}_p/\mathbb{Z}_p$, in particular Ext¹ is taken componentwise with respect to the second argument.

$$T_p(G) \cong \operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \hat{G}(\tilde{R})) \cong R \operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \hat{G}(\tilde{R}))$$
$$\cong (3) R \operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, C) \cong \operatorname{Ext}^1(\mathbb{Q}_p/\mathbb{Z}_p, C[-1]) \cong [\hat{Q}_{\tilde{R}} \xrightarrow{F_1 - 1} \hat{P}_{\tilde{R}}]$$

This will prove the proposition.

The torsion subgroups of $G(\bar{K})$ and of $\hat{G}(\tilde{R})$ coincide by Lemma 2.4 applied over \hat{R}^{nr} , and (1) follows. Multiplication by p is surjective on $\hat{G}(\tilde{R})$ by Lemma 2.3 applied over \hat{R}^{nr} , thus Lemma 2.2 gives $\text{Ext}^1(\mathbb{Q}_p/\mathbb{Z}_p, \hat{G}(\tilde{R})) =$ 0, which proves (2). Since the cohomology of C is $\hat{G}(\tilde{R})$ in degree zero and zero otherwise, we obtain (3). To prove (4) we choose an exact sequence of abelian groups $0 \to F_1 \to F_0 \to \mathbb{Q}_p/\mathbb{Z}_p \to 0$ with free F_i . This gives an exact sequence of complexes of $\tilde{\mathcal{G}}_K$ -modules

 $0 \to \operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, C) \to \operatorname{Hom}(F_0, C) \xrightarrow{u} \operatorname{Hom}(F_1, C) \to \operatorname{Ext}^1(\mathbb{Q}_p/\mathbb{Z}_p, C) \to 0.$

We claim that $\operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, C)$ is zero. Then the complex $\operatorname{Ext}^1(\mathbb{Q}_p/\mathbb{Z}_p, C)[-1]$ is quasi-isomorphic to the cone of u, which represents $R \operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, C)$, and (4) follows. Let $(P_{\tilde{R}}, Q_{\tilde{R}}, F, F_1)$ be the base change of \mathscr{P} to $\mathscr{D}_{\tilde{R}}$ and let $P_{\bar{k}} = W(\bar{k}) \otimes_{W(R)} P$. We have $Q_{R_{E,n}}[1/p] = P_{R_{E,n}}[1/p] = P_{\bar{k}}[1/p]$ because the cokernel of the inclusion $Q_{R_{E,n}} \to P_{R_{E,n}}$ is an $R_{E,n}$ -module and thus p-power torsion, and the kernel of the surjective map $P_{R_{E,n}} \to P_{\bar{k}}$ is p-power torsion by [Zi3, Lemma 2.2]. Thus the complex C can be identified with the cone of the map of complexes

$$[Q_{\tilde{R}} \xrightarrow{F_1 - 1} P_{\tilde{R}}] \longrightarrow [P_{\bar{k}}[1/p] \xrightarrow{F_1 - 1} P_{\bar{k}}[1/p]].$$

Since \tilde{R} is a domain of characteristic zero, the ring $W(\tilde{R})$ has no *p*-torsion. Since $W(\tilde{R})$ is a subring of $W(\tilde{R})$ the projective $W(\tilde{R})$ -module $P_{\tilde{R}}$ and its submodule $Q_{\tilde{R}}$ have no *p*-torsion. Clearly $P_{\tilde{k}}[1/p]$ has no *p*-torsion. Hence $\operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, C)$ is zero, and (4) is proved. The *p*-adic completions of $P_{\tilde{R}}$ and $Q_{\tilde{R}}$ are $\hat{P}_{\tilde{R}}$ and $\hat{Q}_{\tilde{R}}$, while the *p*-adic completion of $P_{\tilde{k}}[1/p]$ is zero. Thus Lemma 2.2 gives (5).

REMARK 4.2. Let $G_0 = \mathbb{Q}_p/\mathbb{Z}_p$. The isomorphisms per_G for all G can be altered by multiplication with a common p-adic unit. This allows to assume that per_{G_0} is the identity of \mathbb{Z}_p in the following sense. Clearly $T_p(G_0) = \mathbb{Z}_p$. The Dieudonné display of $\mu_{p^{\infty}}$ is $\mathscr{D}_R = (\mathbb{W}(R), \mathbb{I}_R, f, \mathbb{f}_1)$, and thus the Dieudonné display of G_0 is the dual $\mathscr{D}_R^t = (\mathbb{W}(R), \mathbb{W}(R), pu_0 f, f)$; cf. [La3, Section 2.C]. Then $T(\hat{\mathscr{D}}_{\tilde{R}}^t) = \hat{\mathbb{W}}(\tilde{R})^{f=1} = \mathbb{Z}_p$ by Lemma 4.3 below, and per_{G_0} can be viewed as a \mathbb{Z}_p -linear automorphism of \mathbb{Z}_p .

We note that the construction in the proof of Proposition 4.1 actually defines per_G only up to multiplication by a common *p*-adic unit because it uses the isomorphism $BT(\mathscr{P}) \cong G$ provided by [La3, Proposition 9.7], which relies on [La3, Lemma 8.2], and that takes as an input the choice of such an isomorphism for G_0 .

LEMMA 4.3. Let S be a p-adic torsion free ring with a Frobenius lift $\sigma: S \to S$. If $\operatorname{Spec}(S/pS)$ is connected, for example if S is a local ring, then $S^{\sigma=1} = \mathbb{Z}_p$.

Proof. It suffices to show that $(S/p^n)^{\sigma=1} = \mathbb{Z}/p^n$. The case n = 1 holds because the polynomial $X^p - X = \prod_{a \in \mathbb{F}_p} (X - a)$ is separable. The general case follows by induction using the exact sequences $0 \to S/p \xrightarrow{p^n} S/p^{n+1} \to S/p^n \to 0$.

§5. A variant for the prime 2

We keep the notation and assumptions of Section 4 and assume that p = 2. One can ask what the preceding constructions give when \mathbb{W} and \mathscr{D} are replaced by their v-stabilized variants \mathbb{W}^+ and \mathscr{D}^+ defined in [La3, Sections 1.D, 2.E]. This will be used in Section 6. We recall that $\mathbb{W}(R) \subset \mathbb{W}^+(R) \subset W(R)$ where the ring $\mathbb{W}^+(R)$ is stable under v, and we have a frame

$$\mathscr{D}_{R}^{+} = \varprojlim \mathscr{D}_{R/\mathfrak{m}^{n}}^{+} = (\mathbb{W}^{+}(R), \mathbb{I}_{R}^{+}, R, f, f_{1})$$

where f_1 is the inverse of v. As earlier we put

$$\mathscr{D}_{\tilde{R}}^{+} = \varinjlim_{E} \mathscr{D}_{R_{E}}^{+} = (\mathbb{W}^{+}(\tilde{R}), \mathbb{I}_{\tilde{R}}^{+}, \tilde{R}, f, f_{1})$$

where E runs through the finite extensions of \hat{K}^{nr} in \tilde{K} as in Section 4, and we denote the componentwise 2-adic completion of $\mathscr{D}^+_{\tilde{R}}$ by

$$\hat{\mathscr{D}}_{\tilde{R}}^{+} = (\hat{\mathbb{W}}^{+}(\tilde{R}), \hat{\mathbb{I}}_{\tilde{R}}^{+}, \tilde{R}^{\wedge}, f, f_{1}).$$

For a 2-divisible group G over R let G^m and G^u be the multiplicative and unipotent parts of G and define G^+ as a pushout of fppf sheaves in the following diagram.

The rows of (5.1) are exact, so G^+ is a 2-divisible group by [Me1, Chapter I, (2.4.3)]. On the level of Tate modules (5.1) gives a commutative diagram

with exact rows

which shows that $T_2(G^+)$ is the pushout in the left hand square as a Galois module.

PROPOSITION 5.1. Let G be a 2-divisible group over R with associated Dieudonné display $\mathscr{P} = \Phi_R(G)$. Let $\hat{\mathscr{P}}_{\tilde{R}}^+ = (\hat{P}_{\tilde{R}}^+, \hat{Q}_{\tilde{R}}^+, F, F_1^+)$ be the base change of \mathscr{P} to $\hat{\mathscr{Q}}_{\tilde{R}}^+$. There is a natural exact sequence of $\tilde{\mathcal{G}}_K$ -modules

$$0 \longrightarrow T_2(G^+) \longrightarrow \hat{Q}^+_{\tilde{R}} \xrightarrow{F_1^+ - 1} \hat{P}^+_{\tilde{R}} \longrightarrow 0.$$

In particular, we have an isomorphism of \mathcal{G}_K -modules

$$\operatorname{per}_G^+: T_2(G^+) \xrightarrow{\sim} T(\hat{\mathscr{P}}_{\tilde{R}}^+).$$

Proof. Let $\bar{P}_{\bar{k}} = \bar{k} \otimes_{W(R)} P$. We will construct the following commutative diagram with exact rows, where \bar{F} is induced by F.

Assume that (5.3) is constructed and functorial in G. Since $\bar{P}_{\bar{k}} = \bar{k} \otimes_{W(R)} P$ is the reduction mod 2 of the covariant Dieudonné module of $G_{\bar{k}}$, the Frobenius-linear endomorphism \bar{F} is nilpotent if G is unipotent, and is given by an invertible matrix if G is of multiplicative type. Thus $\bar{F} - 1$ is surjective with kernel an \mathbb{F}_2 -vector space of dimension equal to the height of G^m . Hence Proposition 4.1 implies that $F_1^+ - 1$ is surjective and gives an exact sequence

$$0 \to T_2(G) \to T(\hat{\mathscr{P}}^+_{\tilde{R}}) \to \operatorname{Ker}(\bar{F}-1) \to 0.$$

The ring $W(\tilde{R})$ and its subring $\mathbb{W}^+(\tilde{R})$ are torsion free, which carries over to the 2-adic completion, hence $T(\hat{\mathscr{P}}^+_{\tilde{R}})$ is torsion free. It follows that $T(\hat{\mathscr{P}}^+_{\tilde{R}}) = T_2(G)$ if G is unipotent, and multiplication by 2 gives an isomorphism $T(\hat{\mathscr{P}}^+_{\tilde{R}}) \to T_2(G)$ if G is multiplicative type. Hence there is a pushout diagram (5.2) with $T(\hat{\mathscr{P}}^+_{\tilde{R}})$ in place of $T_2(G^+)$, which gives an isomorphism between these modules as required.

Let us construct (5.3). [La3, Lemma 1.10] implies that the inclusion map $\mathbb{W}(R_E/\mathfrak{m}_E^n) \to \mathbb{W}^+(R_E/\mathfrak{m}_E^n)$ is bijective when $2 \in \mathfrak{m}_E^n$, and its cokernel is $\bar{k} \cdot v(1)$ as a $\mathbb{W}(R_E)$ -module when $2 \notin \mathfrak{m}_E^n$. It follows that the natural map $\iota : \hat{\mathbb{W}}(\tilde{R}) \to \hat{\mathbb{W}}^+(\tilde{R})$ is injective with cokernel

(5.4)
$$\hat{\mathbb{W}}^+(\tilde{R})/\hat{\mathbb{W}}(\tilde{R}) = \hat{\mathbb{I}}^+_{\tilde{R}}/\hat{\mathbb{I}}_{\tilde{R}} = \bar{k} \cdot v(1).$$

Moreover ι is a u_0 -homomorphism of frames $\hat{\mathscr{D}}_{\tilde{R}} \to \hat{\mathscr{D}}_{\tilde{R}}^+$ where the unit $u_0 \in \mathbb{W}^+(\mathbb{Z}_2)$ is defined by $v(u_0) = 2 - [2]$; see [La3, Section 2.E]. Since u_0 maps to 1 in $W(\mathbb{F}_2)$ there is a unique unit c_0 of $\mathbb{W}^+(\mathbb{Z}_2)$ which maps to 1 in $W(\mathbb{F}_2)$ such that $c_0 f(c_0^{-1}) = u_0$, namely $c_0 = u_0 f(u_0) f^2(u_0) \cdots$; see the proof of [La2, Proposition 8.7].

We extend the operator \mathbb{f}_1 of $\hat{\mathscr{D}}_{\tilde{R}}$ to $\hat{\mathscr{D}}_{\tilde{R}}^+$ by $\mathbb{f}_1 = u_0^{-1} f_1$. Then \mathbb{f}_1 induces an *f*-linear endomorphism $\overline{\mathbb{f}}_1$ of $\bar{k} \cdot v(1)$. We claim that $\overline{\mathbb{f}}_1(v(1)) = v(1)$. It suffices to prove this formula in $\mathbb{W}^+(\mathbb{Z}_2)/\mathbb{W}(\mathbb{Z}_2) \cong \mathbb{F}_2$, and thus it suffices to show that $\mathbb{f}_1(v(1)) \notin \mathbb{W}(\mathbb{Z}_2)$. But $\mathbb{W}(\mathbb{Z}_2)$ is stable under $x \mapsto v(x) = v(u_0 x)$, and the element $v(\mathbb{f}_1(v(1))) = v(1)$ does not lie in $\mathbb{W}(\mathbb{Z}_2)$. This proves the claim.

Similarly, we extend the operator F_1 of $\hat{\mathscr{P}}_{\tilde{R}}$ to $\hat{\mathscr{P}}_{\tilde{R}}^+$ by $F_1 = u_0^{-1}F_1^+$. Then we have $c_0(F_1 - 1) = (F_1^+ - 1)c_0$ as homomorphisms $\hat{Q}_{\tilde{R}}^+ \to \hat{P}_{\tilde{R}}^+$, and it suffices to construct the desired diagram with F_1 in place of F_1^+ . Now (5.4) implies that $\hat{Q}_{\tilde{R}}^+/\hat{Q}_{\tilde{R}} = \hat{P}_{\tilde{R}}^+/\hat{P}_{\tilde{R}} = \bar{P}_{\tilde{k}} \cdot v(1)$, which gives the exact rows. Clearly the left hand square of (5.3) commutes. The relation $F_1(ax) =$ $f_1(a)F(x)$ for $x \in \hat{P}_{\tilde{R}}^+$ and $a \in \hat{\mathbb{I}}_{\tilde{R}}^+$ applied with a = v(1), together with $\bar{\mathbb{f}}_1(v(1)) = v(1)$, shows that the right hand square of (5.3) commutes.

REMARK 5.2. The period isomorphisms per_G^- and per_G^+ are related by $\operatorname{per}_G^+ \circ i = \tau_{c_0} \circ \operatorname{per}_G$ where $i: T_2(G) \to T_2(G^+)$ is the inclusion map and $\tau_{c_0}: T(\hat{\mathscr{P}}_{\tilde{R}}) \to T(\hat{\mathscr{P}}_{\tilde{R}}^+)$ is the homomorphism defined in (3.1).

E. LAU

§6. The relation with $A_{\rm cris}$

Let R be a complete discrete valuation ring with perfect residue field k of characteristic p and fraction field K of characteristic zero. In this case the ring \tilde{R}^{\wedge} is equal to \bar{R}^{\wedge} , the p-adic completion of the integral closure of R in \bar{K} . Let $A_{\text{cris}} = A_{\text{cris}}(\bar{R})$, this is the p-adic completion of the divided power envelope of the kernel of the canonical homomorphism $\theta : A_{\inf} \to \bar{R}^{\wedge}$, where $A_{\inf} = W(\mathcal{R})$, and where \mathcal{R} is the projective limit of $\bar{R}/p\bar{R}$ under Frobenius. We have a frame

$$\mathcal{A}_{\mathrm{cris}} = (A_{\mathrm{cris}}, \mathrm{Fil}^1 A_{\mathrm{cris}}, \bar{R}^\wedge, \sigma, \sigma_1)$$

with $\sigma_1 = p^{-1}\sigma$.²

For a *p*-divisible group *G* over *R* let $\mathbb{D}(G)$ be its covariant Dieudonné crystal. The free A_{cris} -module $M = \mathbb{D}(G_{\bar{R}^{\wedge}})_{A_{\text{cris}}}$ carries a filtration Fil¹*M* and a σ -linear endomorphism *F*. The operator $F_1 = p^{-1}F$ is well defined on Fil¹*M*, and we get an $\mathcal{A}_{\text{cris}}$ -window $\mathcal{M} = (M, \text{Fil}^1 M, F, F_1)$; see [Ki1, Lemma A.2] or [La3, Proposition 3.17]. The window associated to $\mathbb{Q}_p/\mathbb{Z}_p$ in this way is $\mathcal{A}_{\text{cris}}^t = (A_{\text{cris}}, A_{\text{cris}}, p\sigma, \sigma)$.

Following [Fa, Section 6] one defines a period homomorphism

$$\operatorname{per}_{G,\operatorname{cris}}: T_p(G) \to T(\mathcal{M})$$

as follows. An element of $T_p(G)$ corresponds to a homomorphism $\mathbb{Q}_p/\mathbb{Z}_p \to G$ over \overline{R}^{\wedge} , and the resulting map of \mathcal{A}_{cris} -windows $\mathcal{A}_{cris}^t \to \mathcal{M}$ corresponds to an element of $T(\mathcal{M})$.³ By [Fa, Theorem 7], $\operatorname{per}_{G,cris}$ is bijective when $p \ge 3$, and injective with cokernel annihilated by p when p = 2. More precisely, for p = 2 the cokernel of $\operatorname{per}_{G,cris}$ is zero if G is unipotent by [Ki2, Proposition 1.1.10], but the cokernel is an \mathbb{F}_2 -vector space of dimension equal to the height of G if G is of multiplicative type; this can be verified for the multiplicative group $G = \mu_{p^{\infty}}$ and then follows from the fact that Fontaine's element $t \in A_{cris}$ satisfies $t^{p-1} \in pA_{cris}$; see [Fo2, (2.3.4)]. As in the proof of Proposition 5.1 it follows that for p = 2, the homomorphism $\operatorname{per}_{G,cris}$ extends to an isomorphism $T_p(G^+) \cong T(\mathcal{M})$ with G^+ as in Section 5.

²The frame axioms require that $\sigma_1(\text{Fil}^1 A_{\text{cris}})$ generates A_{cris} . But $\xi = p - [\underline{p}]$ lies in $\text{Fil}^1 A_{\text{cris}}$, and $\sigma_1(\xi) = 1 - [\underline{p}]^p / p$ is a unit because $[\underline{p}]$ lies in the divided power ideal $\text{Fil}^1 A_{\text{cris}} + p A_{\text{cris}}$.

³Actually [Fa] uses the contravariant Dieudonné crystal, which gives rise to the dual window \mathcal{M}^t and the dual homomorphism $\mathcal{M}^t \to \mathcal{A}_{cris}$. In the following this makes no difference since $\operatorname{Hom}(\mathcal{M}^t, \mathcal{A}_{cris}) \cong \operatorname{Hom}(\mathcal{A}^t_{cris}, \mathcal{M}) \cong T(\mathcal{M})$; see (3.3).

We want to relate this with the period isomorphisms of Sections 4 and 5. For the sake of uniformity, for $p \ge 3$ we write $\mathbb{W}^+ = \mathbb{W}$ etc. Then $\hat{\mathbb{W}}^+(\tilde{R}) \rightarrow \bar{R}^{\wedge}$ is a divided power thickening of *p*-adic rings for every *p*.

LEMMA 6.1. There are unique homomorphisms \varkappa_{inf} and \varkappa_{cris} of thickenings of \bar{R}^{\wedge} as below. They commute with Frobenius, and the diagram commutes.

Proof. Briefly said, the universal property of A_{cris} gives \varkappa_{cris} , and the lemma explicates its construction. Namely, each x in the kernel of $\hat{\mathbb{W}}^+(\tilde{R})/p^n \to \bar{R}^\wedge/p$ satisfies $x^{p^n} = 0$ due to the divided powers on this ideal. Since the cokernel of the inclusion $\hat{\mathbb{W}}(\tilde{R}) \to \hat{\mathbb{W}}^+(\tilde{R})$ is the \bar{k} -vector space with basis v(1) by (5.4), the kernel of $\hat{\mathbb{W}}(\tilde{R})/p^n \to \hat{\mathbb{W}}^+(\tilde{R})/p^n$ is the \bar{k} vector space with basis $p^n v(1)$. Since $v(1)^2 = pv(1)$ this kernel has square zero. Thus for each x in the kernel of $\hat{\mathbb{W}}(\tilde{R})/p^n \to \bar{R}^\wedge/p$ we have $x^{p^{n+1}} = 0$, and the universality of the Witt vectors (see for example [La3, Lemma 1.4]) gives a unique homomorphism \varkappa_{inf} of extensions of \bar{R}^\wedge/p . The universality also implies that \varkappa_{inf} commutes with the Frobenius and with the projections to \bar{R}^\wedge . Since $\hat{\mathbb{W}}^+(\tilde{R}) \to \bar{R}^\wedge$ is a divided power extension of p-adic rings, \varkappa_{inf} extends uniquely to a homomorphism \varkappa_{cris} , and \varkappa_{cris} commutes with the Frobenius because this holds for \varkappa_{inf} .

Since $\hat{\mathbb{W}}^+(\tilde{R})$ has no *p*-torsion it follows that \varkappa_{cris} is a $\tilde{\mathcal{G}}_K$ -equivariant strict frame homomorphism

$$\varkappa_{\mathrm{cris}}: \mathcal{A}_{\mathrm{cris}} \to \hat{\mathscr{D}}_{\tilde{R}}^+.$$

For G and \mathcal{M} as above let $\mathscr{P} = \Phi_R(G)$ be the Dieudonné display associated to G and let $\Phi_R^+(G)$ be its base change under the inclusion $\iota : \mathscr{D}_R \to \mathscr{D}_R^+$, which is the identity when $p \ge 3$. The \mathscr{D}_R^+ -window $\Phi_R^+(G)$ can be defined by evaluating the crystal $\mathbb{D}(G)$ at $\mathbb{W}^+(R)$; see [La3, Theorem 3.19] if $p \ge 3$ and [La3, Proposition 3.24 & Theorem 4.9] if p = 2. By the functoriality of $\mathbb{D}(G)$ we get an isomorphism $\hat{\mathscr{P}}_{\tilde{R}}^+ \cong \varkappa_{\operatorname{cris}*}(\mathcal{M})$ of $\hat{\mathscr{D}}_{\tilde{R}}^+$.

windows, which induces a homomorphism of \mathcal{G}_K -modules

$$\tau: T(\mathcal{M}) \to T(\hat{\mathscr{P}}^+_{\tilde{R}})$$

as defined in (3.1) with c = 1.

PROPOSITION 6.2. The following diagram of \mathcal{G}_{K} -modules commutes, and τ is an isomorphism.

Proof of Proposition 6.2. The composition $\tau_{c_0} \circ \text{per}_G$ extends to an isomorphism $T_p(G^+) \cong T(\hat{\mathscr{P}}^+_{\tilde{R}})$ by Proposition 5.1 and Remark 5.2. Thus if the diagram commutes, by the properties of $per_{G,cris}$ recalled above it follows that τ is an isomorphism. Let us prove that the diagram commutes.

We start with the case $G = \mathbb{Q}_p/\mathbb{Z}_p$. Then $T_p(G) = \mathbb{Z}_p$. By Remark 4.2, the associated windows can be identified as $\mathscr{P} = (\mathbb{W}(R), \mathbb{W}(R), pu_0 f, f)$ and $\mathscr{P}^+ = (\mathbb{W}^+(R), \mathbb{W}^+(R), pf, f)$ and $\mathcal{M} = (A_{\text{cris}}, A_{\text{cris}}, p\sigma, \sigma)$. The three modules $T(\mathcal{M}) = A_{\text{cris}}^{\sigma=1}$ and $T(\hat{\mathscr{P}}_{\tilde{R}}) = \hat{\mathbb{W}}(\tilde{R})^{f=1}$ and $T(\hat{\mathscr{P}}_{\tilde{R}}^+) = \hat{\mathbb{W}}^+(\tilde{R})^{f=1}$ are then all identified with \mathbb{Z}_p ; see Lemma 4.3. Under these identifications, the three arrows τ and $\operatorname{per}_{G,\operatorname{cris}}$ and per_{G} are the identity of \mathbb{Z}_p ; see Remark 4.2. The base change $\iota_*(\mathscr{P})$ is equal to $(\mathbb{W}^+(R), \mathbb{W}^+(R), pu_0 f, u_0 f)$, and the implicit isomorphism $\iota_*(\mathscr{P}) \cong \mathscr{P}^+$ is necessarily given by multiplication with the unique unit $c \in \mathbb{W}^+(\mathbb{Z}_p)$ with $cu_0 = f(c)$ which maps to 1 in $W(\mathbb{F}_p)$, namely $c = c_0^{-1}$. Thus under the chosen identifications, $\tau_{c_0} = c_0 c_0^{-1}$ is the identity as well, and the diagram commutes for $\mathbb{Q}_p/\mathbb{Z}_p$.

Let now G be arbitrary. Since the map $\tau_{c_0} \circ \text{per}_G = \text{per}_G^+$ is injective with cokernel annihilated by p, the composition $\gamma = p \cdot (\text{per}_G^+)^{-1} \circ \tau \circ \text{per}_{G,\text{cris}}$ is a well-defined functorial endomorphism of T_pG . We have to show that $\gamma = p$. By [Ta, Corollary 1], γ comes from an endomorphism γ_G of G; moreover γ_G is functorial in G and compatible with normal finite extensions of the base ring R inside \bar{K} . The endomorphisms γ_G induce a functorial endomorphism γ_H of each commutative finite flat p-group scheme H over a normal finite extension R' of R inside \overline{K} because H can be embedded into a p-divisible group G by Raynaud [BBM, Theorem 3.1.1], and the quotient G/H is a

p-divisible group, so γ_G induces γ_H ; cf. the proof of [Ki1, Theorem 2.3.5] or [La3, Proposition 8.1]. Assume that H is annihilated by p^r and let $H_0 = \mathbb{Z}/p^r\mathbb{Z}$. There is a normal finite extension R'' of R' inside \bar{K} such that $H(\bar{K}) = H(R'') = \operatorname{Hom}_{R''}(H_0, H)$. Since $\gamma_{H_0} = p$ it follows that $\gamma_H = p$, and thus $\gamma_G = p$ for all G.

§7. The ring \mathfrak{S}^{nr}

Let us recall the ring \mathfrak{S}^{nr} of [Ki1], which is denoted by A_S^+ in [Fo1]. One starts with a two-dimensional complete regular local ring \mathfrak{S} of characteristic zero with perfect residue field k of characteristic p equipped with a Frobenius lift $\sigma : \mathfrak{S} \to \mathfrak{S}$.

There is a unique ring homomorphism $\Delta : \mathfrak{S} \to W(\mathfrak{S})$ with $w_n \circ \Delta = \sigma^n$ where w_n is the *n*th Witt polynomial, and then $\Delta \circ \sigma = f \circ \Delta$; see [Laz, Chapter VII, Proposition 4.12]. The composition $\mathfrak{S} \to W(\mathfrak{S}) \to W(k)$ is surjective, which implies that $p \notin \mathfrak{m}_{\mathfrak{S}}^2$. Let $t \in \mathfrak{m}_{\mathfrak{S}} \setminus \mathfrak{m}_{\mathfrak{S}}^2$ map to zero in W(k). Then $\mathfrak{S} = W(k)[[t]]$ and t generates the kernel of $\mathfrak{S} \to W(k)$, in particular $\sigma(t) \in t\mathfrak{S}$.

Let $\mathcal{O}_{\mathcal{E}}$ be the *p*-adic completion of $\mathfrak{S}[t^{-1}]$ and let $\mathbb{E} = k((t))$ be its residue field. Fix a maximal unramified extension $\mathcal{O}_{\mathcal{E}^{nr}}$ of $\mathcal{O}_{\mathcal{E}}$ and let $\mathcal{O}_{\widehat{\mathcal{E}}^{nr}}$ be its *p*-adic completion. Let \mathbb{E}^{sep} be the residue field of $\mathcal{O}_{\mathcal{E}^{nr}}$, let $\overline{\mathbb{E}}$ be an algebraic closure of \mathbb{E}^{sep} , let $\mathcal{O}_{\mathbb{E}} = \mathfrak{S}/p\mathfrak{S} = k[[t]]$, and let $\mathcal{O}_{\overline{\mathbb{E}}} \subset \overline{\mathbb{E}}$ be its integral closure. The Frobenius lift σ on \mathfrak{S} extends uniquely to $\mathcal{O}_{\widehat{\mathcal{E}}^{nr}}$ and induces a homomorphism

(7.1)
$$\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}} \xrightarrow{\Delta} W(\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}}) \to W(\bar{\mathbb{E}})$$

with Δ as above. (7.1) is injective since both sides are discrete valuation rings with prime element p, and the reduction modulo p is injective. One defines $\mathfrak{S}^{\mathrm{nr}} = \mathcal{O}_{\widehat{\mathcal{E}}^{\mathrm{nr}}} \cap W(\mathcal{O}_{\overline{\mathbb{E}}})$ inside $W(\overline{\mathbb{E}})$. This ring is stable under σ , and $\mathfrak{S}^{\mathrm{nr}} = \varprojlim \mathfrak{S}_n^{\mathrm{nr}}$ with $\mathfrak{S}_n^{\mathrm{nr}} = (\mathcal{O}_{\mathcal{E}^{\mathrm{nr}}}/p^n \mathcal{O}_{\mathcal{E}^{\mathrm{nr}}}) \cap W_n(\mathcal{O}_{\overline{\mathbb{E}}})$ inside $W_n(\overline{\mathbb{E}})$. By [Fo1, B 1.8.3] we have $\mathfrak{S}_n^{\mathrm{nr}} = \mathfrak{S}^{\mathrm{nr}}/p^n \mathfrak{S}^{\mathrm{nr}}$, in particular $\mathfrak{S}^{\mathrm{nr}}$ is p-adically complete.

§8. Breuil–Kisin modules

Let R be a complete discrete valuation ring with perfect residue field k of characteristic p and fraction field K of characteristic zero. We recall briefly the classification of commutative finite flat p-group schemes over R following [La3]; see the introduction for a brief discussion of the history of this result.

E. LAU

Let $\mathfrak{S} = W(k)[[t]]$ and let $\sigma : \mathfrak{S} \to \mathfrak{S}$ be a Frobenius lift that stabilizes the ideal $t\mathfrak{S}$. We choose a presentation $R = \mathfrak{S}/E\mathfrak{S}$ where E has constant term p. Let $\pi \in R$ be the image of t, so π generates the maximal ideal of R.

For an \mathfrak{S} -module M let $M^{(\sigma)} = \mathfrak{S} \otimes_{\sigma,\mathfrak{S}} M$. We consider pairs (M, ϕ) where M is an \mathfrak{S} -module of finite type and where $\phi: M \to M^{(\sigma)}$ is an \mathfrak{S} linear map with cokernel annihilated by E. Following the [VZ] terminology, (M, ϕ) is called a Breuil window (respectively a Breuil module) relative to $\mathfrak{S} \to R$ if the \mathfrak{S} -module M is free (respectively annihilated by a power of pand of projective dimension at most one).

We have a frame in the sense of [La2]

$$\mathscr{B} = (\mathfrak{S}, E\mathfrak{S}, R, \sigma, \sigma_1)$$

with $\sigma_1(Ex) = \sigma(x)$ for $x \in \mathfrak{S}$. Windows $\mathscr{P} = (P, Q, F, F_1)$ over \mathscr{B} are equivalent to Breuil windows relative to $\mathfrak{S} \to R$ by the functor $\mathscr{P} \mapsto (Q, \phi)$ where $\phi: Q \to Q^{(\sigma)}$ is the composition of the inclusion $Q \to P$ with the inverse of the isomorphism $Q^{(\sigma)} \cong P$ defined by $a \otimes x \mapsto aF_1(x)$; the inverse functor maps (Q, ϕ) to (P, Q, F, F_1) with $P = Q^{(\sigma)}$ such that the inclusion $Q \to P$ is ϕ and $F_1: Q \to P$ is $x \mapsto 1 \otimes x$, which also gives $F(x) = F_1(Ex)$; see [La2, Lemma 8.2].

As in [La3, Section 6] let \varkappa be the ring homomorphism

$$\varkappa: \mathfrak{S} \xrightarrow{\Delta} W(\mathfrak{S}) \to W(R).$$

Its image lies in $\mathbb{W}(R)$ if and only if the endomorphism of $t\mathfrak{S}/t^2\mathfrak{S}$ induced by σ is divisible by p^2 . In this case, $\varkappa : \mathfrak{S} \to \mathbb{W}(R)$ is a u-homomorphism of frames $\mathscr{B} \to \mathscr{D}_R$ for the unit $\mathfrak{u} = \mathfrak{f}_1(\varkappa(E))$ of $\mathbb{W}(R)$, and \varkappa induces an equivalence between \mathscr{B} -windows and \mathscr{D}_R -windows, which are equivalent to p-divisible groups over R. As a consequence, Breuil modules relative to $\mathfrak{S} \to R$ are equivalent to commutative finite flat p-group schemes over R; see [La3, Corollary 6.8].

Since u maps to 1 under $W(R) \to W(k)$, there is a unique invertible element $c \in W(R)$ which maps to 1 in W(k) with $c\sigma(c^{-1}) = u$. It is given by $c = u\sigma(u)\sigma^2(u)\cdots$; see the proof of [La2, Proposition 8.7].

8.1 Modules of invariants

For a Breuil module or Breuil window (M, ϕ) relative to $\mathfrak{S} \to R$ we write $M^{\mathrm{nr}} = \mathfrak{S}^{\mathrm{nr}} \otimes_{\mathfrak{S}} M$ and $M_{\mathcal{E}}^{\mathrm{nr}} = \mathcal{O}_{\widehat{\mathcal{F}^{\mathrm{nr}}}} \otimes_{\mathfrak{S}} M$ and define

$$T^{\mathrm{nr}}(M,\phi) = \{ x \in M^{\mathrm{nr}} \mid \phi(x) = 1 \otimes x \text{ in } \mathfrak{S}^{\mathrm{nr}} \otimes_{\sigma,\mathfrak{S}^{\mathrm{nr}}} M^{\mathrm{nr}} \},\$$

$$T^{\mathrm{nr}}_{\mathcal{E}}(M,\phi) = \{ x \in M^{\mathrm{nr}}_{\mathcal{E}} \mid \phi(x) = 1 \otimes x \text{ in } \mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}} \otimes_{\sigma,\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}}} M^{\mathrm{nr}}_{\mathcal{E}} \}.$$

For reference we record the following consequence of some results of [Fo1].

LEMMA 8.1. The \mathbb{Z}_p -module $T_{\mathcal{E}}^{nr}(M, \phi)$ is finitely generated, and the natural map

$$(8.1) \qquad \qquad \mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}} \otimes_{\mathbb{Z}_p} T^{\mathrm{nr}}_{\mathcal{E}}(M,\phi) \to M^{\mathrm{nr}}_{\mathcal{E}}$$

is bijective. The natural map

(8.2)
$$T^{\mathrm{nr}}(M,\phi) \to T_{\mathcal{E}}^{\mathrm{nr}}(M,\phi)$$

is bijective as well.

Proof. The homomorphism $\phi: M_{\mathcal{E}}^{\mathrm{nr}} \to (M_{\mathcal{E}}^{\mathrm{nr}})^{(\sigma)}$ is bijective. If $\psi: M_{\mathcal{E}}^{\mathrm{nr}} \to M_{\mathcal{E}}^{\mathrm{nr}}$ is the σ -linear map whose linearization is the inverse of ϕ , then $T_{\mathcal{E}}^{\mathrm{nr}}(M, \phi)$ is equal to $\{x \in M_{\mathcal{E}}^{\mathrm{nr}} \mid \psi(x) = x\}$, and [Fo1, A 1.2.6] gives the first part of the lemma.

It remains to show that (8.2) is bijective. Assume first that (M, ϕ) is a Breuil window, let $M^* = \operatorname{Hom}_{\mathfrak{S}}(M, \mathfrak{S})$, and let $\psi : M^* \to M^*$ be the σ linear map whose linearization is the dual of ϕ . Then (M^*, ψ) is a Kisin module as considered in [Ki1, (2.1.3)], and $T^{\operatorname{nr}}(M, \phi)$ can be identified with the module of \mathfrak{S} -linear maps $\lambda : M^* \to \mathfrak{S}^{\operatorname{nr}}$ with $\sigma \lambda = \lambda \psi$, and similarly for $T_{\mathcal{E}}^{\operatorname{nr}}(M, \phi)$. Thus (8.2) is bijective by [Ki1, Corollary 2.1.4], which builds on [Fo1, B 1.8.4].

Assume now that (M, ϕ) is a Breuil module. Using that M is annihilated by a power of p and of projective dimension ≤ 1 and that $C = \mathcal{O}_{\widehat{\mathcal{E}^{nr}}}/\mathfrak{S}^{nr}$ has no p-torsion, we see that $\operatorname{Tor}_{1}^{\mathfrak{S}}(C, M)$ is zero. It follows that $M^{\operatorname{nr}} \to M_{\mathcal{E}}^{\operatorname{nr}}$ is injective, and thus (8.2) is injective. One can find a Breuil window (M', ϕ') and a surjective map $(M', \phi') \to (M, \phi)$; see (b) in the proof of [La2, Theorem 8.5]. Then $T^{\operatorname{nr}}(M', \phi') \cong T_{\mathcal{E}}^{\operatorname{nr}}(M', \phi') \to T_{\mathcal{E}}^{\operatorname{nr}}(M, \phi)$ is surjective, and thus (8.2) is surjective.

8.2 The choice of K_{∞}

Let $\bar{\mathfrak{m}}^{\wedge}$ be the maximal ideal of \bar{R}^{\wedge} . The power series $\sigma(t)$ defines a map $\sigma(t): \bar{\mathfrak{m}}^{\wedge} \to \bar{\mathfrak{m}}^{\wedge}$. This map is surjective, and the inverse images of algebraic elements are algebraic by the Weierstrass preparation theorem. Choose a system of elements $(\pi^{(n)})_{n\geq 0}$ of \bar{K} with $\pi^{(0)} = \pi$ and $\sigma(t)(\pi^{(n+1)}) = \pi^{(n)}$, and let K_{∞} be the extension of K generated by all $\pi^{(n)}$. The system $(\pi^{(n)})$

E. LAU

corresponds to an element $\underline{\pi} \in \mathcal{R} = \varprojlim \overline{R}/p\overline{R}$, the limit taken with respect to Frobenius.

We embed $\mathcal{O}_{\mathbb{E}} = k[[t]]$ into \mathcal{R} by $t \mapsto \underline{\pi}$, and identify \mathbb{E}^{sep} and $\overline{\mathbb{E}}$ with subfields of Frac \mathcal{R} ; thus $W(\overline{\mathbb{E}}) \subset W(\text{Frac }\mathcal{R})$. Then $\mathfrak{S}^{\text{nr}} = \mathcal{O}_{\widehat{\mathcal{E}}^{\text{nr}}} \cap W(\mathcal{R})$, and the unique ring homomorphism $\theta : W(\mathcal{R}) \to \overline{\mathbb{R}}^{\wedge}$ which lifts the projection $W(\mathcal{R}) \to \overline{\mathbb{R}}/p\overline{\mathbb{R}}$ induces a homomorphism

$$pr^{\mathrm{nr}}:\mathfrak{S}^{\mathrm{nr}}\to\bar{R}^\wedge.$$

Let us verify that its restriction to \mathfrak{S} is the given projection $\mathfrak{S} \to R$.

LEMMA 8.2. We have $pr^{nr}(t) = \pi$.

Proof. The lemma is easy if $\sigma(t) = t^p$ since then $\Delta(t) = [t]$ in $W(\mathfrak{S})$, which maps to $[\underline{\pi}]$ in $W(\mathcal{R})$, and $\theta([\underline{\pi}]) = \pi$ in this case. In general let $\Delta(t) = (g_0, g_1, \ldots)$ with $g_i \in \mathfrak{S}$; these power series are determined by the relations

$$g_0^{p^n} + pg_1^{p^{n-1}} + \dots + p^n g_n = \sigma^n(t)$$

for $n \ge 0$. Let $x = (x_0, x_1, \ldots) \in W(\mathcal{R})$ be the image of t, thus $x_i = g_i(\underline{\pi})$. Write $x_i = (x_{i,0}, x_{i,1}, \ldots)$ with $x_{i,n} = g_i(\underline{\pi})_n \in \overline{R}/p\overline{R}$. If $\tilde{x}_{i,n} \in \overline{R}^{\wedge}$ lifts $x_{i,n}$ we have

$$pr^{\rm nr}(t) = \theta(x) = \lim_{n \to \infty} ((\tilde{x}_{0,n})^{p^n} + p(\tilde{x}_{1,n})^{p^{n-1}} + \dots + p^n \tilde{x}_{n,n}).$$

If we choose $\tilde{x}_{i,n} = g_i(\pi^{(n)})$, the sum in the limit becomes $\sigma^n(t)(\pi^{(n)}) = \pi$, and the lemma is proved.

The natural action of $\mathcal{G}_{K_{\infty}} = \operatorname{Gal}(\overline{K}/K_{\infty})$ on $W(\operatorname{Frac} \mathcal{R})$ is trivial on $\mathcal{O}_{\mathcal{E}}$, and therefore it stabilizes $\mathcal{O}_{\hat{\mathcal{E}}^{\operatorname{nr}}}$ and $\mathfrak{S}^{\operatorname{nr}}$ with trivial action on \mathfrak{S} . Thus $\mathcal{G}_{K_{\infty}}$ acts on $T^{\operatorname{nr}}(M, \phi)$ for each Breuil window or Breuil module (M, ϕ) .

8.3 From \mathfrak{S}^{nr} to Zink rings

The composition of the inclusion $\mathfrak{S}^{\mathrm{nr}} \to W(\mathcal{R})$ chosen above with the homomorphism $\varkappa_{\inf} : W(\mathcal{R}) \to \hat{\mathbb{W}}(\tilde{R})$ from Lemma 6.1 is a ring homomorphism

$$\varkappa^{\mathrm{nr}}:\mathfrak{S}^{\mathrm{nr}}\to\hat{\mathbb{W}}(\tilde{R})$$

that commutes with Frobenius and with the projections to \bar{R}^{\wedge} .

LEMMA 8.3. If the image of $\varkappa : \mathfrak{S} \to W(R)$ lies in $\mathbb{W}(R)$, then the following diagram of rings commutes, where the vertical maps are the

obvious inclusions.

Proof. The assumption $\varkappa(\mathfrak{S}) \subset W(R)$ is equivalent to $\Delta(\mathfrak{S}) \subset W(\mathfrak{S})$; see [La3, Proposition 6.2]. As in the proof of Lemma 8.2 we write $\Delta(t) = (g_0, g_1, \ldots)$ with $g_i \in \mathfrak{S}$. Note that $g_0 = t$. We have to show that

$$\varkappa_{\inf}((g_0(\underline{\pi}), g_1(\underline{\pi}), \ldots)) = \iota((g_0(\pi), g_1(\pi), \ldots))$$

in $\hat{\mathbb{W}}(\tilde{R})$. Again, if $y_{i,n} \in \hat{\mathbb{W}}(\tilde{R})$ is a lift of $x_{i,n} = g_i(\underline{\pi})_n \in \overline{R}/p\overline{R}$, the left hand side of this equation is equal to

$$\lim_{n \to \infty} ((y_{0,n})^{p^n} + p(y_{1,n})^{p^{n-1}} + \dots + p^n y_{n,n}).$$

We will choose $y_{i,n} \in W(\tilde{R})$ (no *p*-adic completion) such that the sum in the limit is equal to $(g_0(\pi), g_1(\pi), \ldots)$ in $W(\tilde{R})$; this will prove the lemma. In the special case $\sigma(t) = t^p$ we have $g_i = 0$ for $i \ge 1$, and we can take $y_{0,n} = [\pi^{(n)}]$ and $y_{i,n} = 0$ for $i \ge 1$; then the calculation is trivial. In general, let $\Delta(g_i) = (h_{i,0}, h_{i,1}, \ldots)$ in $W(\mathfrak{S})$, so the power series $h_{i,j}$ are determined by the equations

$$h_{i,0}^{p^m} + ph_{i,1}^{p^{m-1}} + \dots + p^m h_{i,m} = \sigma^m(g_i) = g_i(\sigma^m(t))$$

for $m \ge 0$, and put $y_{i,n} = (h_{i,0}(\pi^{(n)}), h_{i,1}(\pi^{(n)}), \ldots) \in \mathbb{W}(\tilde{R})$. Since the Witt polynomials $w_m(X_0, \ldots, X_m) = X_0^{p^m} + \cdots + p^m X_m$ for $m \ge 0$ define an injective map $\mathbb{W}(\tilde{R}) \subset W(\tilde{R}) \to \tilde{R}^{\infty}$, we have to show that for $n, m \ge 0$ the following holds.

$$w_m((y_{0,n})^{p^n} + p(y_{1,n})^{p^{n-1}} + \dots + p^n y_{n,n}) = w_m((g_0(\pi), g_1(\pi), \dots))$$

The right hand side is equal to $\sigma^m(t)(\pi)$. Since w_m is a ring homomorphism and since $w_m(y_{i,n}) = g_i(\sigma^m(t)(\pi^{(n)}))$, the left hand side is equal to $\sigma^n(t)(\sigma^m(t)(\pi^{(n)})) = \sigma^{n+m}(t)(\pi^{(n)}) = \sigma^m(t)(\pi)$ too.

We define a frame

$$\mathscr{B}^{\mathrm{nr}} = (\mathfrak{S}^{\mathrm{nr}}, E\mathfrak{S}^{\mathrm{nr}}, \mathfrak{S}^{\mathrm{nr}}/E\mathfrak{S}^{\mathrm{nr}}, \sigma, \sigma_1)$$

with $\sigma_1(Ex) = \sigma(x)$ for $x \in \mathfrak{S}^{\mathrm{nr}}$.

LEMMA 8.4. The element $\mathbf{u}' = \mathbf{f}_1(\boldsymbol{\varkappa}^{\mathrm{nr}}(E)) \in \hat{\mathbb{W}}(\tilde{R})$ is a unit, and the ring homomorphism $\boldsymbol{\varkappa}^{\mathrm{nr}} : \mathfrak{S}^{\mathrm{nr}} \to \hat{\mathbb{W}}(\tilde{R})$ is a \mathbf{u}' -homomorphism of frames $\boldsymbol{\varkappa}^{\mathrm{nr}} : \mathscr{B}^{\mathrm{nr}} \to \hat{\mathcal{D}}_{\tilde{R}}$.

Proof. Clearly \varkappa^{nr} commutes with the projections to \bar{R}^{\wedge} and with the Frobenius. Lemma 8.2 implies that $pr^{\mathrm{nr}}(E) = 0$, thus $\varkappa^{\mathrm{nr}}(E) \in \hat{\mathbb{I}}_{\tilde{R}}$. For $x \in \mathfrak{S}^{\mathrm{nr}}$ we compute $\mathfrak{f}_1(\varkappa^{\mathrm{nr}}(Ex)) = \mathfrak{f}_1(\varkappa^{\mathrm{nr}}(E)) \cdot f(\varkappa^{\mathrm{nr}}(x)) = \mathfrak{u}' \cdot \varkappa^{\mathrm{nr}}(\sigma_1(Ex))$ as required. It remains to show that \mathfrak{u}' is a unit. The projection $\tilde{R} \to \bar{k}$ induces a local homomorphism of local rings $\hat{\mathbb{W}}(\tilde{R}) \to W(\bar{k})$ that commutes with f and \mathfrak{f}_1 . The composition $\mathfrak{S} \to \mathfrak{S}^{\mathrm{nr}} \to \hat{\mathbb{W}}(\tilde{R}) \to W(\bar{k})$ commutes with Frobenius and is thus equal to the homomorphism $t \mapsto 0$. Thus E maps to p in $W(\bar{k})$, so \mathfrak{u}' maps to $\mathfrak{f}_1(p) = v^{-1}(p) = 1$ in $W(\bar{k})$, and it follows that \mathfrak{u}' is a unit.

From now on we assume that the image of \varkappa lies in $\mathbb{W}(R)$, so that Lemma 8.3 applies. Then u' is the image of $u \in \mathbb{W}(R)$, and we get a commutative square of frames where the horizontal arrows are u-homomorphisms and the vertical arrows are strict:

Here \mathcal{G}_K acts on $\hat{\mathscr{D}}_{\tilde{R}}$ and $\mathcal{G}_{K_{\infty}}$ acts on $\mathscr{B}^{\mathrm{nr}}$, and \varkappa^{nr} is $\mathcal{G}_{K_{\infty}}$ -equivariant.

8.4 Identification of modules of invariants

Now we can state the main result of this section. Let (M, ϕ) be a Breuil window relative to $\mathfrak{S} \to R$ with associated \mathscr{B} -window \mathscr{P} , and let $\mathscr{P}^{\mathrm{nr}}$ be the base change of \mathscr{P} to $\mathscr{B}^{\mathrm{nr}}$. By definition we have $T^{\mathrm{nr}}(M, \phi) = T(\mathscr{P}^{\mathrm{nr}})$ as $\mathcal{G}_{K_{\infty}}$ -modules. Let $\mathscr{P}_{\mathscr{D}}$ be the base change of \mathscr{P} to \mathscr{D}_R and let $\hat{\mathscr{P}}_{\tilde{R}}$ be the common base change of $\mathscr{P}^{\mathrm{nr}}$ and $\mathscr{P}_{\mathscr{D}}$ to $\hat{\mathscr{D}}_{\tilde{R}}$. As in (3.1), multiplication by \mathfrak{c} induces a $\mathcal{G}_{K_{\infty}}$ -invariant homomorphism

$$\tau(\mathscr{P}^{\mathrm{nr}}): T(\mathscr{P}^{\mathrm{nr}}) \to T(\hat{\mathscr{P}}_{\tilde{R}}).$$

We recall that the \mathcal{G}_K -module $T(\hat{\mathscr{P}}_{\tilde{R}})$ is canonically isomorphic to the Tate module of the *p*-divisible group associated to (M, ϕ) ; see Proposition 4.1.

PROPOSITION 8.5. The homomorphism $\tau(\mathscr{P}^{nr})$ is bijective.

Proof. Let h be the \mathfrak{S} -rank of M. The source and target of $\tau(\mathscr{P}^{\mathrm{nr}})$ are free \mathbb{Z}_p -modules of rank h which are exact functors of \mathscr{P} . Indeed, for $T(\mathscr{P}^{\mathrm{nr}}) = T^{\mathrm{nr}}(M, \phi)$ this follows from Lemma 8.1, and it holds for $T(\mathscr{P}_{\tilde{R}})$ by Proposition 4.1, using that the height of a p-divisible group is equal to the rank of its Dieudonné display; this can be verified over perfect fields, and then the Dieudonné display is the classical Dieudonné module.

Consider first the case where the *p*-divisible group associated to \mathscr{P} is étale, which means that $\mathscr{P} = (P, Q, F, F_1)$ has P = Q, and $F_1 : Q \to P$ is a σ -linear isomorphism. Then (P, F_1) is an étale σ -module over \mathfrak{S} . Since $\mathfrak{S}^{\mathrm{nr}}$ is *p*-adically complete with $\mathfrak{S}^{\mathrm{nr}}/p = \mathcal{O}_{\mathbb{E}^{\mathrm{sep}}}$, a \mathbb{Z}_p -basis of $T(\mathscr{P}^{\mathrm{nr}})$ is an $\mathfrak{S}^{\mathrm{nr}}$ -basis of P^{nr} . Using Lemma 4.3 it follows that a \mathbb{Z}_p -basis of $T(\mathscr{P}^{\mathrm{nr}})$ is a $\widehat{\mathbb{W}}(\tilde{R})$ -basis of $\hat{P}_{\tilde{R}} = \widehat{\mathbb{W}}(\tilde{R}) \otimes_{\mathfrak{S}^{\mathrm{nr}}} P^{\mathrm{nr}}$. Thus the homomorphism of \mathbb{Z}_p -modules $\tau(\mathscr{P}^{\mathrm{nr}})$ becomes an isomorphism over $\widehat{\mathbb{W}}(\tilde{R})$. Since $\mathbb{Z}_p \to \widehat{\mathbb{W}}(\tilde{R})$ is a local homomorphism it follows that $\tau(\mathscr{P}^{\mathrm{nr}})$ is bijective.

Consider next the case $\mathscr{P} = \mathscr{B}$, which corresponds to the *p*-divisible group $\mu_{p^{\infty}}$. Assume that the proposition does not hold for \mathscr{B} , i.e., that $\tau(\mathscr{B}^{\mathrm{nr}})$ is divisible by p. For a perfect extension k' of k let $\mathfrak{S}' = W(k')[[t]]$ and $R' = \mathfrak{S}'/E\mathfrak{S}'$, and let \mathscr{B}' be the corresponding analogue of the frame \mathscr{B} ; note that the Frobenius lift σ of \mathfrak{S} extends uniquely to \mathfrak{S}' . The natural homomorphism $T(\mathscr{B}^{\mathrm{nr}}) \to T(\mathscr{B}'^{\,\mathrm{nr}})$ is bijective because it becomes bijective over $\mathcal{O}_{\widehat{\mathcal{E}}(nr)}$ by Lemma 8.1. The natural homomorphism $T(\hat{\mathscr{D}}_{\tilde{R}}) \to T(\hat{\mathscr{D}}_{\tilde{R}'})$ is bijective since the equivalence between *p*-divisible groups and Dieudonné displays is compatible with arbitrary base change by [La3, Lemma 9.6]. Hence the homomorphism $\tau(\mathscr{B}^{nr})$ can be identified with $\tau(\mathscr{B}'^{nr})$, so k can be replaced by k', which allows to assume that k is uncountable. Let \mathscr{P}_0 be the étale \mathscr{B} -window that corresponds to $\mathbb{Q}_p/\mathbb{Z}_p$. We consider extensions of \mathscr{B} -windows $0 \to \mathscr{B} \to \mathscr{P}_1 \to \mathscr{P}_0 \to 0$, which correspond to extensions in $\operatorname{Ext}^{1}_{R}(\mathbb{Q}_{p}/\mathbb{Z}_{p},\mu_{p^{\infty}})$. Since $\tau(\mathscr{P}_{0}^{\operatorname{nr}})$ is bijective and $\tau(\mathscr{B}^{\operatorname{nr}})$ is divisible by p, the image of $\tau(\mathscr{P}_1^{\mathrm{nr}})$ provides a splitting of the reduction modulo p of the exact sequence of $\mathcal{G}_{K_{\infty}}$ -modules

$$0 \to T(\hat{\mathscr{D}}_{\tilde{R}}) \to T((\hat{\mathscr{P}}_1)_{\tilde{R}}) \to T((\hat{\mathscr{P}}_0)_{\tilde{R}}) \to 0.$$

Hence the composite homomorphism

(8.3)
$$\operatorname{Ext}^{1}_{R}(\mathbb{Q}_{p}/\mathbb{Z}_{p},\mu_{p^{\infty}}) \to \operatorname{Ext}^{1}_{\mathbb{F}_{p}[\mathcal{G}_{K}]}(\mathbb{Z}/p\mathbb{Z},\mu_{p}) \to \operatorname{Ext}^{1}_{\mathbb{F}_{p}[\mathcal{G}_{K_{\infty}}]}(\mathbb{Z}/p\mathbb{Z},\mu_{p})$$

is zero. The first group in (8.3) can be identified with the set of deformations of $\mathbb{Q}_p/\mathbb{Z}_p \oplus \mu_{p^{\infty}}$ from k to R. The second group is isomorphic to $\operatorname{Ext}_{K}^{1}(\mathbb{Z}, \mu_{p})$, which is isomorphic to the Galois cohomology group $H^{1}(\mathcal{G}_{K}, \mu_{p}) \cong K^{*}/(K^{*})^{p}$. As in [La1, Lemma 7.2] it follows that the first arrow in (8.3) can be identified with the natural map $1 + \mathfrak{m}_{R} \to K^{*}/(K^{*})^{p}$, whose image is uncountable since k is uncountable. Since for a finite extension K'/K the homomorphism $H^{1}(K, \mu_{p}) \to H^{1}(K', \mu_{p})$ has finite kernel by the inflation-restriction exact sequence, the kernel of the second map in (8.3) is countable. Thus the composition (8.3) cannot be zero, and the proposition is proved for $\mathscr{P} = \mathscr{B}$.

Finally let \mathscr{P} be arbitrary. Duality gives the following commutative diagram; see the end of Section 3.

The upper line of (8.4) is a bilinear form of free \mathbb{Z}_p -modules of rank h, whose scalar extension under $\mathbb{Z}_p \to \mathcal{O}_{\widehat{\mathcal{E}^{nr}}}$ is perfect since (8.2) and (8.1)are bijective. Since this is a local homomorphism the upper line of (8.4) is perfect. Proposition 4.1 implies that the lower line of (8.4) is a bilinear form of free \mathbb{Z}_p -modules of rank h. We have seen that $\tau(\mathscr{B}^{nr})$ is bijective. These properties imply that $\tau(\mathscr{P}^{nr})$ is bijective.

For a *p*-divisible group or commutative finite flat *p*-group scheme *G* over R let $(M(G), \phi)$ be the associated Breuil window or Breuil module. In the first case let T(G) be the Tate module of *G*, and in the second case let $T(G) = G(\bar{K})$.

COROLLARY 8.6. There is an isomorphism of $\mathcal{G}_{K_{\infty}}$ -modules $T(G) \cong T^{\mathrm{nr}}(M(G), \phi)$.

Proof. For p-divisible groups this is immediate from Propositions 4.1 and 8.5. The finite case follows from the p-divisible case as in the proof of [La3, Corollary 6.8]. More precisely, a finite G can be written as the kernel of an isogeny of p-divisible groups $G_0 \to G_1$, which gives exact sequences $0 \to T(G_0) \to T(G_1) \to T(G) \to 0$ and $0 \to M(G_0) \to M(G_1) \to M(G) \to 0$, and the latter gives an exact sequence $0 \to T^{\mathrm{nr}}(M(G_0)) \to T^{\mathrm{nr}}(M(G_1)) \to$ $T^{\mathrm{nr}}(M(G)) \to 0$. The resulting isomorphism $T(G) \cong T^{\mathrm{nr}}(M(G))$ is independent of the resolution $G_0 \to G_1$ of G. Acknowledgments. The author thanks Th. Zink for interesting and helpful discussions, and the anonymous referee for many detailed suggestions to improve the presentation.

References

- [Ar] M. Artin, Etale coverings of schemes over Hensel rings, Amer. J. Math. 88 (1966), 915–934.
- [BBM] P. Berthelot, L. Breen and W. Messing, *Théorie de Dieudonné cristalline II*, Lecture Notes in Math. 930, Springer, Berlin, 1982.
 - [Br] C. Breuil, *Schemas en groupes et corps des normes*, unpublished manuscript (1998).
 - [El] R. Elkik, Solutions d'équations à coefficients dans un anneau hensélien, Ann. Sci. Éc. Norm. Supér. (4) 6 (1973), 553–603.
 - [Fa] G. Faltings, Integral crystalline cohomology over very ramified valuation rings, J. Amer. Math. Soc. 12 (1999), 117–144.
 - [Fo1] J.-M. Fontaine, "Représentations p-adiques des corps locaux", in Grothendieck Festschrift II, Prog. Math. 87, Birkhäuser, Boston, 1990, 249–309.
 - [Fo2] J.-M. Fontaine, Le corps des périodes p-adiques, in Cohomologies p-adiques, Périodes p-adiques, Astérisque 223 (1994), 59–111.
 - [Gre] S. Greco, Two theorems on excellent rings, Nagoya Math. J. 60 (1976), 139–149.
 - [K] W. Kim, The classification of p-divisible groups over 2-adic discrete valuation rings, Math. Res. Lett. 19 (2012), 121–141.
 - [Ki1] M. Kisin, "Crystalline representations and F-crystals", in Algebraic Geometry and Number Theory, Progr. Math. 253, Birkhäuser, Basel, 2006, 459–496.
 - [Ki2] M. Kisin, Modularity of 2-adic Barsotti-Tate representations, Invent. Math. 178 (2009), 587–634.
 - [La1] E. Lau, Tate modules of universal p-divisible groups, Compos. Math. 146 (2010), 220–232.
 - [La2] E. Lau, Frames and finite group schemes over complete regular local rings, Doc. Math. 15 (2010), 545–569.
 - [La3] E. Lau, Relations between crystalline Dieudonné theory and Dieudonné displays, Algebra Number Theory 8 (2014), 2201–2262.
 - [Laz] M. Lazard, Commutative Formal Groups, Lecture Notes in Math. 142, Springer, Berlin, 1975.
 - [Li] T. Liu, The correspondence between Barsotti-Tate groups and Kisin modules when p = 2, J. Théor. Nombres Bordeaux **25** (2013), 661–676.
- [Me1] W. Messing, The Crystals Associated to Barsotti-Tate Groups: With Applications to Abelian Schemes, Lecture Notes in Math. 264, Springer, Berlin, 1972.
- [Me2] W. Messing, Travaux de Zink. Séminaire Bourbaki 2005/2006, exp. 964, Astérisque 311 (2007), 341–364.
- [Ra] M. Raynaud, Anneaux Locaux Henséliens, Lecture Notes in Math. 169, Springer, Berlin, 1970.
- [Se] H. Seydi, Sur la théorie des anneaux de Weierstrass I, Bull. Sci. Math. (2) 95 (1971), 227–235.
- [SP] The Stacks Project Authors: Stacks Project. http://stacks.math.columbia.edu, 2017.
- [Ta] J. Tate, "p-divisible groups", in Proceedings of a Conference on Local Fields, Driebergen 1966, Springer, Berlin, 1976, 158–183.

E. LAU

- [VZ] A. Vasiu and Th. Zink, "Breuil's classification of p-divisible groups over regular local rings of arbitrary dimension", in Algebraic and arithmetic structures of moduli spaces (Sapporo 2007), Adv. Stud. Pure Math. 58, Math. Soc. Japan, Tokyo, 2010, 461–479.
- [We] Ch. Weibel, An Introduction to Homological Algebra, Cambridge University Press, Cambridge, 1994.
- [Zi1] Th. Zink, The display of a formal p-divisible group, in Cohomologies p-adiques et applications arithmétiques, I Astérisque 278 (2002), 127–248.
- [Zi2] Th. Zink, "A Dieudonné theory for p-divisible groups", in Class field theory—its Centenary and Prospect, Adv. Stud. Pure Math. 30, Math. Soc. Japan, Tokyo, 2001, 139–160.
- [Zi3] Th. Zink, "Windows for displays of p-divisible groups", in Moduli of Abelian Varieties, Progr. Math. 195, Birkhäuser, Basel, 2001, 491–518.

Institut für Mathematik Universität Paderborn D-33098 Paderborn Germany elau@math.upb.de