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1. Introduction. The following result is well known (as usual, [x] denotes 
the integral part of x) : 

(A) Let a and (3 be positive irrational numbers satisfying 

Then the sets [na], [nf3], n = 1 , 2 , . . . , are complementary with respect to the set 
of all positive integers] see, e.g. (1; 2; 4; 5; 6; 7; 8; 10; 13; 14; 15; 16). In some of 
these references the result, or a special case thereof, is mentioned in connection 
with Wythoff's game, with or without proof. It appears that Beatty (4) was the 
originator of the problem. 

The theorem has a converse, and the following holds: 

(B) Let a and /3 be positive. The sets [na] and [n(3], n = 1 , 2 , . . . , are comple
mentary with respect to the set of all positive integers if and only if a and (3 are ir
rational, and (1) holds. 

In this paper we deal with the non-homogeneous case, that is, we investigate 
conditions for sets of the form [na + y], [nf$ + <5] to be complementary. The 
integer n runs over all integers or is restricted to subsets n ^ N or n < N, 
where N is a fixed integer. The numbers a and /3 are either both rational or 
both irrational; y and ô are real. 

More specifically, let a and /3 be positive numbers, y and <5 real, N integral. 
Let S, SN', SN be the sets of all integers from the sequences <f>n = [na + y], 
where n = 0, d=l, ± 2 , . . . for S, n < N for SN

f, n ^ N for SN. Similarly, let T, 
TN

f, and TN be the sets of all integers from the sequences \[/n = ]n$ + ô], for 
n = 0, ± 1 , ± 2 , . . . , n < N, n ^ N, respectively. 

Without loss of generality, we shall assume that (f>N ^ \pN throughout. 

Definition 1. We say that 5 and T are complementary (SN
r and TV are 

N-lower complementary) [SN and TN are N-upper complementary] if 
(i) no integer appears more than once in <j>n and no integer appears more 

than once in ^n, n = 0, ± 1 , ± 2 , . . . {n < N) [n ^ N]; 

(ii) snT = 0 cv n TV = 0) [s„ n rv = 0]; 
(iii) 5 U r = Z ( V U TV = ZN

f) [SN \J TV = ZiV], where Z (ZN
f) [ZN] is 

the set of all integers (<</V) [̂ <fcv]-
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COMPLEMENTARY SETS OF INTEGERS 7 

Section 2 contains preliminary results and lemmas. In § 3 we give necessary 
and sufficient conditions for sets to be lower and upper complementary. We 
prove the following results. 

THEOREM I. Let a and 0 be positive irrational numbers. Then SN
f and TN

f are 
N-lower complementary if and only if (1) holds and 

(2) ? + -= <I>N-2N+1, 
a p 

(3) nfi + 8 = K, n, K integral implies n = N. 

THEOREM II. Let a and ft be positive irrational numbers. Then SN and TN are 
N-upper complementary if and only if (I) and (2) hold and 

(4) nfi + 8 = K, n, K integral implies n < N. 

Example 1. a = V2, 0 = 2 + V2, y = - 8 + 3V2/2, 8 = - 5 + 3V2/2. 
I t is easily verified that (1) is satisfied and that the left-hand side of (2) is — 5. 
The same value is obtained on the right-hand side for N = 0, — 1 (see Table 1). 
Furthermore, there exist no integers n and K satisfying n($ + 8 = K. Hence, 
SN' and TV (SN, TN) are iV-lower (iV-upper) complementary for N = —1,0. 

Example 2. a = V5 , 0 = (5 + V5) /4 , 7 = 2 - 2V5, Ô = (3 - V5) /4 . 
Equation (1) is satisfied and the left-hand side of (2) is — 1 . The right-hand 
side has the same value for 2 ^ N ^ 6. Thus, SN' and TN

f would be iV-lower 
complementary for these values of N, except for the fact that (3) is violated, 
namely, \pi = /3 + 8 = 2. 

TABLE 1 

n 4>n ^n 

-7 -16 -27 
-6 -15 -24 
-5 -13 -20 
-4 -12 -17 
-3 -11 -14 
-2 - 9 -10 
-1 - 8 - 7 
0 - 6 - 3 
1 - 5 0 
2 - 4 3 
3 - 2 7 
4 - 1 10 
5 1 14 
6 2 17 
7 4 21 

TABLE 2 

n <£n ^n *.* 

-3 -10 -6 -8 
-2 - 7 -4 -6 
-1 - 5 -2 -4 
0 - 3 0 -2 
1 - 1 2 0 
2 2 3 2 
3 4 5 3 
4 6 7 5 
5 8 9 7 
6 10 11 9 
7 13 12 11 
8 15 14 12 
9 17 16 14 
10 19 18 16 
11 22 20 18 
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Table 2 shows that </>2 = i£i = 2. Moreover, since a > 2,f(N) = 4>N - 2N + 1 
is a non-decreasing function of N. Since/( l ) = —2, we have that 5V and 7V 
are w-lower complementary for no N. 

Suppose now that we replace 8 by 

This has the effect of shifting the values of \f/n one place down, and results in 
the column ^n* = [np + Ô*] of Table 2. Now, y/a + 5*/p = - 2 , and the right-
hand side of (2) has the same value for — 2 ^ N ^ 1. For these values of 
N, SN

r and TN*' are iV-lower complementary, where TN*r is the set of all in
tegers from the sequence ^w*, n < N. The same considerations show that 
SN and TN are iV-upper complementary for 2 ^ iV ^ 6, but SN and TV* are 
iV-upper complementary for no N. 

Skolem investigated the non-homogeneous case (for N = 1, a and fi irra
tional only) in (12). In his Satz 10, he states (using the language of the present 
paper) that if a and & are positive irrational, then Si and 7\ are 1-upper 
complementary if and only if (1) holds and 

(5) ~ + -R^° (mod1)-
a p 

However, in view of Theorem II, these conditions are not quite sufficient. (In 
both Examples 1 and 2, (1) and (5) are satisfied. But Si and 7\ of Example 1 
and Si and TV of Example 2 are not 1-upper complementary. In Example 1, 
(2) does not hold, and in Example 2, (4) does not hold.) 

Now suppose that a and /3 are rationals of the form 

a = a/c, (a, c) = 1, 
(6) 

0 = b/d, (b, d) = 1, 

where a, b, c, d are positive integers. We write 

- = 7] (mod a - 1 ) , - = p (mod ZT1), 
a p 

meaning that 

(7) 1 = ka'1 + v, 0 S v < a"1, ~ = lb'1 + p, 0 ^ p < r \ 
a p 

& and / are integers. We prove the following theorem. 

THEOREM I II . Let a and ft be positive rational numbers of the form (6). ThenSN 

and TN are N-upper complementary if and only if (1) holds and 

(8) J + | = 4>N ~ 2iV + 1 - a"1 + v + p. 
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Theorem IV shows that for the rational case, SN and TN are iV-upper 
complementary if and only if SN

f and TN' are iV-lower complementary. This 
is in contrast to the irrational case, where it can easily happen that SN and TN 

are iV-upper complementary without 5; / and TN' being iV-lower complementary 
(e.g., if a and 0 satisfy (1), y = ô = 0, N = 1). 

Example 3. a = 5/3, 0 = 5/2, 7 = - 1 , 5 = V2. Then 

- + ~R + a'1 - ry - p = 0, 

and also, 0^ — 2N + 1 = 0 for — 2 ^ iV ^ 0. Hence, 5^ and TN are iV-upper 
and 52V-' and TN' are iV-lower complementary for these values of N (see Table 3). 

TABLE 3 

n <f>n tn 

- 6 - 1 1 - 1 4 
- 5 - 1 0 - 1 2 
- 4 - 8 - 9 
- 3 - 6 - 7 
- 2 - 5 - 4 
- 1 - 3 - 2 

0 - 1 1 
1 0 3 
2 2 6 
3 4 8 
4 5 11 
5 7 13 
6 9 16 

The following theorem is an immediate application of the rational case. 

THEOREM V. Let a and b be positive integers, a > 1. The set of all numbers 

(9) L W 7 ^ T + Ô J ' W - 0 , 

is identical with all integers m such that m > b and m ^ b (mod a) if and only if 

(10) Ô = b + 1 + pal {a - 1), 0 ^ p < a~\ 

Theorems VI and VII establish equivalence of sets of conditions, which 
permit alternative formulations of Theorems I and II. Section 3 concludes 
with a brief survey of the homogeneous case, i.e., 7 = ô = 0. We prove the 
following results. 
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T H E O R E M V I I I . Let a and p be positive numbers, 7 = 5 = 0. Then SN' and 
TV are N-lower complementary if and only if a and /3 are irrational, (1) holds, 
4>N = 2N - 1, and N = 0. 

T H E O R E M I X . Let a and /3 be positive numbers, 7 = 5 = 0. Then SN and TN 

are N-upper complementary if and only if a and f$ are irrational, (1) holds, 
<I)N = 2N - 1, and N > 0. 

These theorems follow directly from Theorems I and II. T h e special case, 
N = 1, of the sufficiency pa r t of Theorem I X is Bea t ty ' s result A. T h e special 
case N = 1 is the result B. T h e results of this section show, among other th ings , 
t h a t the rational case vanishes only if y = ô = 0. For the non-homogeneous 
case, non-trivial results hold also when a and 0 are rat ional . No te also t h a t 
5 and T can never be complementary in the homogeneous case. 

Section 4 contains results on complementary sets. Theorem X demons t ra tes 
a connection between lower and upper complementary sets and complementary 
sets for bo th the rat ional and the irrational case. By means of Theorems I and 
II we prove also the following general result. 

T H E O R E M X I . Let a and (3 be positive irrational numbers. Then S and T are 
complementary if and only if (1) and (5) hold and there exist no integers n and K 
satisfying n/3 + 5 = K. 

Similarly, by Theorems III and IV we prove the following result. 

T H E O R E M X I I . Let a and fi be positive rational numbers of the form (6). 
Then S and T are complementary if and only if (1) holds and 

(11) 1 + ^ + a-1-rJ- p ^ 0 ( m o d i ) . 
a p 

Section 4 concludes with a theorem abou t a lmost complementary sets, i.e., 
sets which are complementary except for a finite number of irregularities. T h e 
conditions of this theorem are precisely those of Skolem (12, Satz 10) mentioned 
above. 

2. P r e l i m i n a r y r e s u l t s . 

L E M M A 1. Suppose that a and /3 are positive irrational and satisfy ra + s/3 = t, 
where r, s, and t are integers satisfying (r, s, t) = 1. Then the points 

(12) (na + h,n/3 + I), n = - 1 , - 2 , . . . , h = 0, dbl , ± 2 , . . . , 

/ = 0, ± 1 , ± 2 , . . . , 
and the points 

(13) {na + h,n/3 + I), n = 0, 1, 2, . . . , h = 0, ± 1 , ± 2 , . . . , 

/ = 0, ± 1 , ± 2 , . . . , 
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lie on all the straight lines rx + sy = 0 (mod 1) and only on them. Moreover, 
the points (12), as well as the points (13), are everywhere dense on each of these 
lines. 

This lemma is essentially the same as Theorem 3.6 of (9) and the proof is 
therefore omitted. 

We shall now characterize the set R of all points (12) for the case where 
a and ft are rational. Incidentally, the sets (12) and (13) are identical in this 
case. Specifically, let a: and /5 be of the form (6). If (x, y) G R, then neces
sarily, x = e/c, y = f/d, where e and / are integers. But it is easy to see that in 
general not every point (e/c, f/d) belongs to R. 

Let 

(14) M = [c, d] = kxc = k2d, (kx, k2) = 1. 

There clearly exist infinitely many integers s, t, u such that 

(15) saki + tbk2 = uM, (s, t, u) = 1. 

Note that (a, /3) lies on sx + ty = u. For fixed s, t we prove the following 
auxiliary result. 

LEMMA 2. (i) (e/c, f/d) G Rif and only if 

(16) (c,d)\ (ac~
le - bd-y), 

where a~l denotes a residue of a - 1 (mod c), bd~
l a residue of b~l (mod d). 

(ii) The points of R lie on all and only on all straight lines sx + ty = 0 (mod 1). 
(iii) The projections on the x-axis and y-axis of the distances between adjacent 

points lying on the straight lines sx + ty = 0 (mod 1), are t/M and s/M, 
respectively. 

(iv) Suppose that six + hy = 0 (mod 1) and s2x + t2y = 0 (mod 1) are two 
distinct families on each of which lie all points of R. Then R is identical with all 
meeting points of the two families if and only if \D\ = M, where D = S\t2 — s2/i. 

Proof. The proof can be based on the theory of point lattices, but we use a 
different argument. 

(i) (e/c, f/d) = (na + h, n/3 + /) if and only if 

(e>f) — (na + he ,nb + Id), 

which holds if and only if 

n = a~le (mod c), n = b~xf (mod d). 

By the generalized Chinese Remainder Theorem, these congruences have a 
solution if and only if (16) holds. 

(ii) If (na + h, n$ + /) is any point of R, it lies on sx + ty = o for some 
integer a. Indeed, 

s(na + h) + t(nfi + /) = nu + sh + tl = a. 
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Conversely, let q be any integer. Since (u, s, t) = 1, the linear diophantine 
equation 

ux + sy + tz = q 

has an integral solution 

(x,y,z) = (n,h,l). 

For this solution, we have that 

s(na + h) + t(n(3 + I) = q. 

Thus, all the points of R lie on all the lines sx + ty = 0 (mod 1). 
(iii) From (15), k2\saki. By (14), k2\c. Since (a, c) = 1, (&2, a) = 1. There

fore, &2|s. Similarly, &i|/. Letting 

Or = s/k2, T = j / fe i , 

we obtain 

(17) aa + rb = uM/kik2 = w(c, d), (<r, r, w) = 1. 

Suppose that (£/c, 97/d) is a point of J? lying on sx + ty = q, q an arbitrary 
integer. The point 

lies on sx -\- ty = q if and only if 

sX tœ _ 
c ~~~d~0, 

which is equivalent to a\ = rco. Thus, Q lies on sx + ty = q if and only if 

X = kr/(<r, r ) , co = ka/(0-, r ) , & integral. 

Let A = a ^ X + V 1 " . By (i), Ç G R if and only if (c, i) |A. For suitable 
integers A and 5 , we have that 

= 6X(ĝ 4 + 1) + tto>(AB + 1) 

= -77 \ (w(c> ^) + ^ ^ + crBad), 
au(a, T) 

by (17). Thus, 

^ = ^ ) ( M + T ^(^T + < r 5 a(^))-
Since (cr, r, ^) = 1, we must have that (0-, r)\k, if A/(c, d) is to be an integer. 
Hence, X = Zr, co = la, and the points 

( ^ • ^ ) = (! + <ir! + <i). < = o.±1,±2,... 
and only these points lie on sx + ty = q and belong to R. 
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(iv) Every point of R is a meeting point of the two families. For, let 
(#o, 3>o) € R. Then (x0, y0) lies on stx + tty = qt for some integers qu i = 1, 2. 
Since the two families are distinct, D ^ 0, and the two straight lines meet at a 
single point which is (x0, yo)-

I t remains to show that there are no extraneous points if and only if 
\D\ = M. 

Suppose that the point (a, (3) lies on stx + tty = uu i = 1, 2, where a, 0 are 
given by (6). Let dt = (sif tu ut). By (15) and by (ii), all points of R lie on 
each of the two families 

ï±x + ±±y^0 (modi), 
di di 

and these families contain the families stx + tty = 0 (mod 1). Hence, 
dt = \,i = 1,2. 

Similar to (17), we obtain for the two families 

0**0 + Tib = ^ Ï ( C , d), {(Tu TU Ui) = 1, 

where 0̂  = s*/fe2, rt = tt/ki, i = 1, 2. Thus, 

(o"iT2 — cr2ri)a = (z/iT2 — U2TI)(C, d). 

Since (a, (c, d)) = 1, <7IT2 — O"2TI = k(c, d), k integral. Now, 

D = Sit2 — s2h = kik2((TiT2 — (T2T1) = kik2k(c, d) = kM ^ 0. 
Let 

*i* + hy = qi, s2x + t2y = q2 

be two members of the two families. Their meeting point (x, y) is given by 

_ g i r 2 — q2T\ _ q2<Ji — qi<72 
x kc y " kd ' 

Suppose that there are no extraneous points, i.e., (x, y) Ç R. Then certainly, 

k\(qir2 — q2Ti), k\(q2(Ji — qxa2) 

for all gi, g2. This implies that è|o-*, &|r*, i = 1, 2. Thus, 

<Ti = <r/&, T< = Ti'k, x = (qir2 — q2Ti)/c, y = (520"!' — q\cr2)/d. 

A simple computation shows that 

dc~1{q.iT2 — g2Ti') — bf1{g[7uî ~ qxrj) = 

(ffi«2 — g2«i) (c, d)/& + Abc(qiT2 — g2n') + Bad{qx<y2 — g2oY) iV 
__ = _ _ j s a y . 

By (i), (c,d)|tf,i .e., 

(c, d) I (gi«2 — ff2Wi) ', . 
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If \k\ = 1 (and \D\ = M), this condition is satisfied. If |jfe| > 1 (and \D\ 9* M), 
then since the condition has to hold for all qu q2, we must have that k\ui and 
k\iC2. But this is impossible, since {<JU ru ut) = 1. 

Now suppose that \D\ = M. Then \k\ = 1, and the above computation 
shows that (x, y) G R. 

LEMMA 3. Let a and /3 be positive numbers, y and 8 real, and suppose that (1) 
holds. 

(i) Suppose that 

'Y 8 
(22) - + - = q, q integral. 

a p 
There exists an integer m such that ma + 7 = K, K integral, if and only if there 
exists an integer n such that nfi + 8 = K. 

(ii) If (2) holds, then {N - l)/3 + 8 ^ fa. 
(iii) Equation (2) and 

(23) ma + y = K, m, K integral implies m tk N, 

imply that Nfi + 8 is non-integral. 

Proof, (i) By (1), 0 = a/(a - 1); by (22), 8 = (qa - 7 ) / ( a - 1). Hence, 

n/a + ^ ^ + ^ r 7 ^ ^ 
a — 1 

which implies that (K — n — q)a + y — K. The converse implication follows 
in the same way. 

(ii) Suppose that (N - 1)/J + 5 > <f>N. By (2), 

y (N- 1)0 + 8 
a+ p -4>N-N. 

Using (1), 

\ a/ a — 1 a —- 1 

which implies that fa > Na + 7, a contradiction. 
(iii) Suppose that N/3 + 8 is integral. By (1) and (2), and since fa ^ fa, 

(24) ,N + 1,'^±y + m±A< 
a p 

Np + 8+l Np + 8 , 1 . , , , 
+ â = fa + ~ < fa + 1-

a p a 
Thus, fa < fa. In particular, Na + 7 < fa. This shows that (24) can be 
strengthened, i.e., 

. , . Na + y , NP + 8 , N0 + 8 N/3 + 8 
fa + 1 = 1 < h 0 = Yfr. 
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By the proof of (i), 

Gfor ~ <t>N + N - l)a + 7 = ifar, 

which contradicts (23). 

3. Theorems on lower and upper complementary sets. 

Proof of Theorem I. Suppose that conditions (1), (2), and (3) are satisfied. 
Let f be the sequence of all numbers of the form na + 7, n/3 + <5, n < N. I t 
suffices to show that exactly one element of f is in [h, h + 1) for every integer 
h < <j>N. Hence, it suffices to show that for every integer M < <I>N, the number 
L of elements of f which are greater than or equal to M satisfies 

L = <t>N — M. 

Let 

(o*\ M - y M - ô 

(25) " = ~ T - ' V = -J-' 
We consider the following two cases: 

(1) v non-integral. By Lemma 3(i), also fj. is non-integral. Then M ^ na + 
7 < &V for » = JV - 1, N - 2, . . . , [/*] + 1. Similarly, i f ^ np + Ô < <j>N 

for n = N — 1, TV — 2, . . . , [v] + 1. The latter holds since Lemma 3(ii) and 
(3) imply that (N - 1)0 + 5 < ^ . Hence, 

L = 2iV - [/*] - H - 2. 

But 

M - 1 < [/x] < /*, y - 1 < M O . 

Adding and using (25), (1) and (2), we have that 

M - fa + 2N - 3 < |>] + [v] < M - fa + 2N - 1. 

The only possibility is that [/x] + [v] = M — <j>N + 2N — 2, which implies 
that L = 0iv — M, as required. 

(2) v = n is integral. Then »/3 + ô = Af. By (3), » à ^ - Hence, 

iV/3 + 5 ^ n/3 + ô = M < <I>N g $N ^ Np + 8. 

This contradiction completes the proof of the sufficiency part of the theorem. 
Now suppose that SN' and TV a r e iV-lower complementary. For M < 

min(4>N-iy ÏN-I, 0), let Da(M) be the number of elements of SN' which are 
greater than or equal to M. Define m by 

(m — l)a + y < M ^ ma + 7. 

Then n ^ m < /x + 1. Since there is no repetition in <pn, Da(M) = N — m. 
Thus, 

(26) N - /x - 1 < £>«(M) £N -n. 
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Dividing by M, which is negative, and using (25), we have that 

Hence, 

Similarly, 

N _ 1 - y/M < DgjM) N - 1 _ 1 - y/M 
M a ^ M < M a 

M^-œ M a 

l[mMMl_ I 
M 0 ' 

where Dp(M) is the number of elements of TN' which are greater than or 
equal to M. Also, 

L = Da{M) + Dp(M) = fa - M. 

Dividing by M, we have that 

DaiM) D»{M) fa _ 
M ^ M M 

Letting M —* — » , this equality implies (1). Similarly to (26) one obtains 

(27) N - v - 1 < D,(M) ^ N - v. 

Suppose that there is equality at the right-hand side in both (26) and (27). 
By (25), 

(N - Da(M))a + y = (N - De(M))fi + 5 = M. 

But Da(M) ^ 1 and Df,(M) à 1. Since SN' and TN' are iV-lower comple
mentary, the last equality is impossible, and at least in one of (26), (27) there 
must be strict inequality on the right. Adding (26) and (27), we obtain 

2N-M + 1 + ~-2<fa-M<2N-M + 1 + ^-, 
a p a p 

fa - 2N < 2 + | < fa - 2N + 2. 
a p 

Thus, (2) must hold if we can show that (5) holds, which we shall do now. 
By Lemma 1, the points 

{nor1 + h, nfi-1 + /) , n = - 1 , - 2 , . . . , h = 0, ± 1 , ± 2 , . . . , 

I = 0, ± 1 , ± 2 , . . . , 

are everywhere dense on all the lines x + y = 0 (mod 1). Suppose that the 
semi-closed rectangle Q (Figure 1) defined by 

(28) yjZ±<xztt *-^±<y*l 
a a p p 

contains an interval of one of these lines. 
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1 

s 
i y 

fi 

$ / Q 

X 

8-1 
£ r - ' •) 

r 

a 
FIGURE 1 

Then there exists an infinity of integral triplets (K, m, n), K < 0, such that 

(29) 7 - ^ - 1 < KoT1 - m ^ 1 , 8 - ^ < K/3'1 - » ^ f. 
a a p p 

This is equivalent to 

K£ma + y<K+l, K ^ n/3 + Ô < K + 1, 

which means that SN' P\ TN' is infinite. Therefore, Q cannot contain an interval 
of any of the lines x + y = 0 (mod 1). 

On the other hand, if x + y = q, then 

(x ± a-1) + (y dz /3"1) = q ± 1. 

This shows that any straight line parallel to the diagonal G of Q is cut by the 
family x + y = 0 (mod 1) into segments of length G. Hence, Q does not 
contain an interval of the family x + y = 0 (mod 1) if and only if the 
point (y/a, Ô//3) lies itself on one of the lines of the family; which means that 
y/a + Ô/P = 0 (mod 1). 

I t remains to prove (3). Suppose that nfi + 5 = K, n < N. By Lemma 3(i), 
ma + y = K; hence m ^ N. Thus, 

4>N ^ Na + 7 g ma + y = nfi + ô g (iV - 1)0 + ô < <^, 

a contradiction. (In terms of Figure 1, condition (3) means that the corner 
point (y/at 8/13) is not of the form (Ka~1 — m, Kfi~l — n), although it lies on 
x + y = 0 (mod 1).) 
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Theorem II can be proved by the same method with slight technical differ
ences. The proof is therefore omitted. 

Proof of Theorem III . The proof is similar to that of Theorem I, but suffi
ciently different to warrant a separate account. Suppose that (1) and (8) hold. 
Then a = a/c, @ = a/(a — c), a > c > 0, (a, c) = 1. Let f be the sequence 
of all numbers of the form na + y, nfi + <5, n ^ N. I t suffices to show that for 
every integer M > cj>Nj the number L of elements of f which are less than M 
satisfies 

L = M — 4>N. 

(1) fM and v (see (25)) are both non-integral. Then 

L=M+ [v] -2N+2, 

and (see Figure 2 and the definitions of rj and p in (7)), 

rv H r *H 

2cH 
a a 

(a-

FIGURE 2 

1 + P ^ H ^ v - (a- P) . 

1 - a~ 

Adding, we obtain 

M - for + 2N - 3 + a-1 S [M] + M û M - fa + 2N 

hence, [M] + M = M — for + 2N — 2 and therefore, L = M - fay as 
required. 

(2) /x non-integral, v integral. Then p = 0 and L = [/*] + v — 2iV + 1. Also, 

M - fa + 2N - 2 + a"1 S M + v ^ M - fa + 2N - 1, 

which implies that [p] + v = M — fa + 2N — 1 and L = M — fa. The 
case [x integral, v non-integral is dealt with in the same way. 

(3) M = m, v = n are both integral. Then y = p = 0. By (8), 

- a - 1 ^ 0 (mod 1). 1 i A 
a 0 

By (25) and (1), 

M ~ \l + p) = W + *' 
which implies that y/a + 5//3 = 0 (mod 1). Therefore, this case is impossible. 
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Now, suppose that SN and TN are iV-upper complementary. For 
M > ma,x(\f/N, 0), let Da(M) and Dp(M) be the number of elements of SN and 
TN, respectively, which are less than M. Define m by 

ma + 7 < M ^ (m + l )a + y. 

Then £>a(Af) = m - N + 1, and similarly to (26) and (27), 

(30) fx - N ^ Da(M) < M - N+lf v - N ^ jfy(M) < v - N + 1, 

where equality on the left cannot hold in both expressions. Also, 

l i m ~~M = 1 / a» h m
 TI>

 = Vfr 

and 

L = £>a(M) + Dfi(M) = M - <j>N 

are obtained, leading to (1). We consider two cases: 
(1) Strict inequality in both expressions of (30). Then 

M - N + v S Da(M) S M - N + 1 - (a-1 - v), 

v - N + p ^ ^ ( M ) ^ y - AT + 1 - (a"1 - p). 

Adding, we obtain 

M ~ (a + f) ~~ 2N + V + P - M ~ *N -
M - (1+ ^ - 2N + rj + p + 2 - 2a"1, 

<t>N-2N + v + pS1 + ^<l>N-2N+v + p + 2- 2a~\ 
a p 

Suppose that 

(31) - + - = q - aT1 + 7] + p, g integral. 
a p 

Then the last inequality implies that q = <f>N — 2N + 1, which establishes (8) ; 
(2) Inequality in the first and equality in the second expression of (30). A 

similar computation shows that in this case 

<j>N - 2N + v ^ 1 + | ^ 4>N - 2N + v + 1 - oT1. 
a p 

Under assumption (31) this implies, again, (8). The case where there is equality 
in the first and inequality in the second expression of (30) is dealt with in the 
same manner. 

We shall now establish the truth of (31). Consider the rectangle Q defined 
by (28) (Figure 3). Now SN C\TN 9^ Q (in fact, SN C\ TN is infinite) if and 
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only if there exist integers, K, m, n, satisfying (29). By Lemma 2(i) or (iii), a 
necessary condition for (29) to hold is that 

x = Kor1 — m = (k — ii)a~l, 0 S M ^ c — 1, 
y = Kp-1 - n = (I - v)a~\ Q S v ^ a - c - l , 

where k and / are as denned in (7). Adding, we obtain 

x + y = (k + I - ft - v)a~\ O^ix + v ^ a - 2 . 

Suppose that k + / = —1 (mod a). Then 

x + y = q— (IJL + V+ l)a~~\ l^fjL + v+lSa — 1, 

for some integer g. Since x + y ^ 0 (mod 1), Lemma 2(h) shows that (x, y) 
is not of the form (29). 

If, on the other hand, k + 1 ̂  —1 (mod a), i.e., 

k + I = qa + p, 0 S p ^ a - 2, 

then x + 3/ = 0 (mod 1) for /x + *> = £. In this case, (x, y) is of the form (29). 
I t follows that SN C\ TN = 0 if and only if k + I = - 1 (mod a) . By (7), the 
latter condition is equivalent to (31). 

x+y = l x+y=2 

FIGURE 3 (for the case a = 3/2, 0 = 3) 
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By the same method we can prove the following result. 

THEOREM IV. Let a and ft be positive rational numbers of the form (6). Then 
SN' and TN

f are N-lower complementary if and only if (1) and (8) hold. 

These are the same conditions as for Theorem III . 

Proof of Theorem V. Let a. = a, /3 = a/(a — 1), y = b. All conditions of 
Theorem III are satisfied for TV = 0 if and only if 8 is given by (10). Hence, 
the sets 

S0 = an + b, To = \n —^—r + 8 J , n ^ 0, 

are 0-upper complementary if and only if 8 satisfies (10). 

COROLLARY. Let a and b be positive integers, 

a > 1, (a, b) = 1, Ô = kb+l + pa/(a - 1), 0 ^ p ^ a~\ 

k integral. Then the complement of the set of numbers (9) contains an infinity of 
primes, all of which are congruent to b (mod a). 

The next two theorems establish equivalence of various conditions. These 
equivalences permit obvious alternative formulations of Theorems I and II. 

THEOREM VI. If a, /3 > 0 satisfy (1), the following three sets of conditions are 
equivalent: 

(2) 

(32) 

(2) 

(3) 

(5) 

(33) 

(3) 

2 - 4 - ! - A 
T 0 — <PN a p 

ma + y = K, 

7 

2N+1, 

m, K integral implies m > N; J 

+ -R = 4>N - 2N + 1, 
a p 

(i) 

(n) 
n/3 + 8 = K, n,K integral implies n ^ N; J 

0 (mod 1), 1 i §. 
a 8 

a p 
(in) 

nfi + 8 = K, n,K integral implies n ^ N. J 

Proof. (I) implies (II): Suppose that w/3 + ô = K, n < N. By Lemma 3(i) 
and (32), ma + y = K, m > N. By Lemma 3(h), 

<I>N ^ Na + y < ma + y = n$ + 8 ^ (N - 1)0 + 8 ^ 0^, 

K,m S N. Then w/3 + 5 = 
a contradiction. 

(II) implies (I): Suppose that ma + 7 
K,n ^ N. There are two possibilities: 
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(1) m = N. Then 

K = Na + y ^ N/3 + Ô ^ n(3 + Ô = K, 

i.e., Na + y = N/3 + Ô. By (1) and (2), 

Na + y .NP + Ô 
+ z = Na + y = 4>N + 1, 

a p 
a contradiction. 

(2) m < N. Since (1) implies a > 1, we have that 
i£ = ma + 7 ^ ( i V - l ) a + Y<7V0 + ô + l - a < 

iV0 + 5 ^ w/3 + ô = K, 
a contradiction. 

(II) implies ( III) : Lemma 3(h) and (3) imply the left-hand side of (33). 
(2) implies that 

(N - l ) a + y , NP + Ô 4>N-_I±J_ , NP + Ô 
<PN = -r Ô < I Ô — 

a p a p 
(III) implies (II): Let g = y/a + Ô//3. Then 

fa_! + 1 ATg + 8 < ( # - D« + 7 + 1 A^ + ô ,9N - , 1 
^ < - + - y - ^ - + — — = g + 2 i V - l + - . 

Thus, q^ c/)N - 2N + 1. Also, 

far-i + 1 , JVff + 3 . 4>N , *v + 0 . , -, 1 — < l_ — — = 0 -f- 1# 
a p a p 

On the other hand, 

fo-i + 1 + JVj8 + g > ( ^ - l )a + 7 + ^ff + S = + 2 N _ h 

a fi a j8 

Hence, g ^ <frv - 2iV + 1, establishing (2). 

THEOREM VII. If a, /3 > 0 satisfy (1), the following three sets of conditions are 
equivalent: 

(2) 2 + i = ^ _ 2 t f + l i I ( i ) 

(23) ma + 7 = K, m,K integral implies m ^ N; J 

(2) 2 + i = ^ _ 2 i V + 1 ) | ( n ) 

(4) np + 8 = K, n,K integral implies n <N;) 

(5) 1 + ~R = ° ( m o d l ) > ! 
a p 

(34) * L ± * + £ < „ , + ,, j <™ 
a p j 

(4) ^ + ô = i£, ^ , K integral implies n < N. ) 
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Proof. (I) implies (II): Suppose that nfi + 5 = K. By Lemma 3(iii), 
n 7^ N.lln > N, then 

K = ma + y^Na + y<N/3 + 8+l^ 
in - l)/3 + 8 + 1 < n/3 + 8 = K, 

a contradiction. Hence, n < N. 
(II) implies (I): Suppose that ma + y = K, m > N. Then 

<t>N ^ Na + y < ma + y = n/3 + 8 S (N — 1)0 + Ô, 

contradicting Lemma 3(ii). 
(II) implies (III): By (4), N(3 + <5 is non-integral. Therefore, 

JV<* + Y , *N . A^ + 7 , Afff + S . , -
+ ~ - < 1 = 0jv- + 1. 

a p a p 
(III) ira^/iéw (II): Let q = y /a + 8/j3. Then 

Thus, q S <I>N ~ 2N + 1. Also, 

<frv , <fev ^ iVa + T , N0 + 8 
(I>N = — + ~̂ ~ = 1 o = 2N + q. 

a (3 a p 
Equality would imply that <I)N = N/3 + 8, contradicting (4). Hence, 
<j>N < 2N + q, i.e., q ^ </>N - 2A7 + 1, establishing (2). 

We shall now establish the homogeneous case. 
Proof of Theorem VIII. Suppose that the four conditions are satisfied. The 

only solution of 
n/3 = K, n, K integers, 

is n = K = 0. Since N S 0, (3) is satisfied and 5iV' and TN
f are AMower 

complementary by Theorem I. 
Now, suppose that SN' and TN

r are AMower complementary, lia and /3 were 
rational, (8) would have to hold by Theorem IV, which is impossible for 
7 = 5 = 0. Hence a and /3 are irrational, and the other three conditions must 
hold by Theorem I. 

Note. The condition <f>N = 2N — 1 is not satisfied for A7 = 0. Hence, the 
condition A" ̂  0 could be replaced by N < 0. This is also what is obtained 
directly if conditions (I) (rather than (II)) of Theorem VI are used. 

The proof of Theorem IX follows in the same way. (The last condition of 
Theorem IX can be replaced by A7 ^ 0.) 

4. Theorems on complementary sets and related results. 

THEOREM X. 5 and T are complementary if and only if there exists an integer N 
such that SN and TN are N-upper complementary and SN

f and TN
r are N-lower 
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complementary, except that if a = P = 2, there are complementary sets S and T, 
such that SN and TN are N-upper complementary for no N. 

Proof. From Definition 1, it follows immediately that if SN and TN are 
iV-upper complementary and SN' and TV are iV-lower complementary for 
some N, then 5 = SN' KJ SN and T = TV U TN are complementary. 

Now, suppose that S and T are complementary. By renaming a and P if 
necessary, we may assume that a S P. We consider two cases: 

(1) a < p. There clearly exists an integer N such that <f>n > $n for all n < N, 
and (for < fa. In particular, ^ _ i < 4>N_i < 4>N < \//N. This immediately 
implies that SN' and TV are iV-lower complementary and SN and TN are 
TV-upper complementary; 

(2) a = p. Then 7 < ô and $w < \f/n for all w. Let N be any integer. For 
M > m a x f e , 0), define A* W and Dp(M) as in the proof of Theorem III . 
Then 

r Da(M) 1 r DP(M) 1 
hm —77-^ = - , hm p-\. = -

is obtained as before. 
Let U be the set of all <t>n,$n,n ^ N, <j>n < M,\//n < M. Since 5 and T are 

complementary, every integer in the interval [\pN, M) is in U. In addition, U 
contains the L integers (j>n satisfying 4>N S 4>n < $N> Hence, 

Da(M) + Dp(M) = M - fa + L, 

which, upon division by M", leads to (1). Hence, a = (3 = 2. 
The exceptional case does indeed happen, e.g., for $w = 2n, \j/n = 2n + 3. 

But <j>n = 2n,\f/n = 2n + 1 induces the normal case of the theorem. 

Proof of Theorem XI . Suppose that the conditions are satisfied. By renaming 
a and P if necessary, we may assume that a < p. Hence, 1 < a < 2, and 
therefore, f(N) = <£AT — 2iV + 1 is a non-increasing function of N. Let N be 
any integer satisfying f(N) < q, where q = y/a + ô//3. Let k = q — f(N), 
5* = 5 _ jfe/3. Then 7/a + ô*/p = q - k = f(N). Also, 7 ~ « < T - 1 < 
<j>N - iVa. Since a = p/(p - 1), 

/ 3 ^ - l ) < <^(/3 - 1) - iV/3. 

Thus, 

^ < /*(** - # - 2 + 1 ) = /3(<^ - JV - g + 1) + Ô < [(N - k)p + Ô] + 1. 

Hence, <j>N ^ \f/N* = [Np + 5*], and the sets, SN' and TV", of all integers from 
the sequences $w, 1/̂ * = [nP -{- 8*],n < N, are iV-lower complementary by 
Theorem I, and SN and TN* are iV-upper complementary by Theorem II . 
Hence, S and T* are complementary by Theorem X. Since the sequence \//n 

is nothing but a translation of the sequence \//n* by k places, 5 and T are com
plementary. 
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Now, suppose that 5 and T are complementary. By Theorem X, there exists 
an integer N such that SN

r, TN' and SN, TN are iV-lower and iV-upper comple
mentary, respectively. Hence, the conditions of the theorem must hold by 
Theorems I and II. 

Proof of Theorem XII . Suppose that the conditions are satisfied. By renaming 
a and /3 if necessary, we assume that a S fi-

(1) a < fi. Letting 
y . ô _ i 

Ç = - + ô + a - rj ~ p 
a p 

and using (since a = a/c ^ a/ (a — 1)) 

7 — a ( l — a - 1 + rj + p) ^ 7 — 1 < <j>N — Na, 

the condition <f>N S ÏN* is obtained as in the proof of Theorem XI. 
(2) a = p. Actually, a = (3 = 2. Also, 7 ^ 5 . Now 

f(N) = 4>ir-2N+l = [2N + y]-2N+l. 

If/(TV) < g for some N, the above argument is valid. If/(TV) ^ q for all TV, 
let I = f(N) - q, 8* = Ô + Z/3. Then 

1 + ~ = q-a-1 + r, + p + l=f(N)-a-1 + r, + p, a p 

and certainly, <I>N ^ \f/N*. 
Thus, in any case, <j>N S &v*« Hence, SN', TN*' and SN, TN* are iV-lower and 

iV-upper complementary by Theorems III and IV, respectively. Hence, 5, T* 
and, hence 5, T are complementary. 

Now, suppose that 5 and T are complementary. If a < /3, the result follows 
from Theorem X. U a = (3, (1) is proved as in the proof of Theorem X, and 
(11) follows by the same arguments used in proving (31). 

I t is natural to introduce the following concept. 

Definition 2. We say that S and T are almost complementary (SN
f and TN' are 

almost N-lower complementary) [SN and TN are almost N-upper complementary] if 
(i) no integer appears more than once in $w and no integer appears more 

than once in \pn, n = 0, ± 1 , ± 2 , . . . (n < N) [n ^ N]\ 
(ii) 5 r\ T = $ ( V C\ TN

f = $) [SN r\TN = <£>], where $ denotes a set 
containing at most one element; 

(iii) SVJ T = 2 (SN'\J TN
f = ZN') [SN KJTN = ZN], where Z {ZN') [ZN], 

denotes the set of all integers with the possible exception of a single integer 
(all integers less than <j>N and a finite number of integers greater than or equal 
to 4>N) [all integers greater than or equal to <f>N except for a finite number of 
these integers]. 

THEOREM XII I . Let a and fi be positive irrational {rational) integers, and let 
N be any integer. Each of the following three statements is equivalent to (1), (5) 

((i), ai)).-
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(i) SN
f and TN

r are almost N-lower complementary; 
(ii) SN and TN are almost N-upper complementary; 

(iii) S and T are almost complementary {complementary). 

Proof. Suppose that the conditions are satisfied. There may exist integers, 
n and K, satisfying n/3 + ô = K. If so, Lemma 3(i) implies that ma + y = K 
for some integer m. Thus, K is repeated, and clearly, K — 1 g S U T. If (2) 
is satisfied, the first part of the proof of Theorem I shows that apart from these 
two irregularities, ,S and T are complementary. (By (11), ma + 7 = 
n$ + ô = K cannot occur if a and 13 are rational.) If (2) is violated, a "shift" of 
the sequence \//n will make (2) hold, irrespective of whether a and 13 are rational 
or irrational. Thus, SN and TN are almost TV-upper complementary. 

The arguments used in establishing (5) and (11) in the proofs of Theorems 
I and III , respectively, show that the conditions are also necessary. 

In addition to complementary sets, disjoint sets were also considered in 
(11; 12). In (12, Satz 6), it is stated that Si and T\ are 1-upper disjoint if and 
only if there exist positive integers, a and b, such that 

(35) - + ! = 1 ' a - + i | = 0 (modi ) . 
a p a ft 

That these conditions are not sufficient can be seen from Example 2, where 
conditions (35) are satisfied with a — b = 1, but Si P\ T\ = 2. They become 
sufficient if a condition of the form (4) is adjoined. However, with or without 
(4), the conditions are not necessary. For a = ft = \/5, 7 = 0, ô = 1, we 
clearly have that 

[na + 7] < [n/3 + Ô] < [(n + l )a + 7], 

which shows that S C\ T = 0. 
For the homogeneous case, Skolem (11) proved that [na] and [n/3] are 

disjoint if and only if there exist positive integers, a and b, such that aa~l + 
bfi~l = 1. From this he easily deduced that there do not exist three irra
tionals, a, 0, 7, such that [na], [n0], and [ny] are mutually disjoint. If (12, 
Satz 6) were correct, the same conclusion would apply to the non-homogeneous 
case. Actually, however, more than two mutually disjoint sets do exist in the 
latter case. For example, let at = V10, i = 1, 2, 3, 71 = 0, 72 = 1, 73 = 2. 
Then the sets [nat + 7 J, i = 1, 2, 3, are mutually disjoint, since, clearly, 

[nax + 71] < [na2 + 72] < [naz + 73] < [(n + l)ai + 71]. 

For the rational case, we trivially have three complementary sets given by 
3», Zn + 1, 3w + 2. 

We remark finally that results on complementary sets of integers suggest 
natural generalizations of WythofTs game. These may be pursued elsewhere 
in the future. 
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