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Predual of the Multiplier Algebra
of Ap(G) and Amenability

Tianxuan Miao

Abstract. For a locally compact group G and 1 < p < ∞, let Ap(G) be the Herz-Figà-Talamanca

algebra and let PMp(G) be its dual Banach space. For a Banach Ap(G)-module X of PMp(G), we prove

that the multiplier space M(Ap(G),X∗) is the dual Banach space of QX , where QX is the norm closure

of the linear span Ap(G)X of u f for u ∈ Ap(G) and f ∈ X in the dual of M(Ap(G),X∗). If p = 2

and PFp(G) ⊆ X, then Ap(G)X is closed in X if and only if G is amenable. In particular, we prove

that the multiplier algebra MAp(G) of Ap(G) is the dual of Q, where Q is the completion of L1(G)

in the ‖ · ‖M-norm. Q is characterized by the following: f ∈ Q if an only if there are ui ∈ Ap(G)

and fi ∈ PFp(G) (i = 1, 2, . . . ) with
∑

∞

i=1 ‖ui‖Ap (G)‖ fi‖PFp(G) < ∞ such that f =

∑

∞

i=1 ui fi on

MAp(G). It is also proved that if Ap(G) is dense in MAp(G) in the associated w∗-topology, then the

multiplier norm and ‖ · ‖Ap(G)-norm are equivalent on Ap(G) if and only if G is amenable.

1 Introduction and Notation

Let G be a locally compact group equipped with a fixed left Haar measure λ. If G is

compact, we assume λ(G) = 1. Let Lp(G), 1 ≤ p ≤ ∞, be the usual Lebesgue spaces

on G with norm ‖ · ‖p.

Suppose that 1 < p < ∞ and 1
p

+ 1
q

= 1. The Herz-Figà-Talamanca algebra

Ap(G) is the space of continuous functions u which can be represented as

u =

∞
∑

n=1

fi ∗ ǧi with fi ∈ Lq(G), gi ∈ Lp(G), and

∞
∑

n=1

‖ fi‖q‖gi‖p <∞,

where ǧ ∈ Lp(G) is defined by ǧ(x) = g(x−1), x ∈ G. The norm of u is defined by

‖u‖Ap(G) = inf

∞
∑

n=1

‖ fi‖q‖gi‖p,

where the infimum is taken over all the representations of u above. It is known that

Ap(G) is a subspace of C0(G) and, equipped with the norm ‖ · ‖Ap(G) above and the

pointwise multiplication is a regular tauberian algebra whose Gelfand spectrum is G.

Furthermore, the algebra Ap(G) has a bounded approximate identity if and only if

the group G is amenable (see Herz [8], Theorem 6). For p = 2, Ap(G) = A(G), the

Fourier algebra of G (see Eymard [3]). The dual of Ap(G) is PMp(G) and PFp(G)∗ =

Received by the editors July 13, 2002; revised June 17, 2003.
This research is supported by an NSERC grant.
AMS subject classification: 43A07.
Keywords: Locally compact groups, amenable groups, multiplier algebra, Herz algebra.
c©Canadian Mathematical Society 2004.

344

https://doi.org/10.4153/CJM-2004-016-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-016-x


The Predual of the Multiplier Algebra 345

Bp(G) is a Banach algebra such that Ap(G) is dense in the associated w∗-topology.

For the definitions and properties of PMp(G) and PFp(G), see Pier [11].

Let X be a Banach Ap(G)-module of PMp(G). Then the dual Banach space X∗

is also a Banach Ap(G)-module defined by 〈uF, f 〉 = 〈F, u f 〉 for all u ∈ Ap(G),

f ∈ X and F ∈ X∗. Suppose M(Ap(G),X∗) is the multiplier space of Ap(G) into X∗,

i.e., all bounded linear operators φ : Ap(G) → X∗ such that φ(uv) = uφ(v) for all

u, v ∈ Ap(G). Then M(Ap(G),X∗) is a Banach space equipped with the multiplier

norm ‖ · ‖M . We show in this paper that M(Ap(G),X∗) is the dual Banach space of

QX , where QX is the norm closure of the linear span Ap(G)X of u f for all u ∈ Ap(G)

and f ∈ X in the dual of M(Ap(G),X∗). We will characterize QX in terms of the

elements in Ap(G) and X (see Theorem 2.3). In Lau and Losert [9], it is proved that

for p = 2, Ap(G)PMp(G) is closed if and only if G is amenable. We prove that if

p = 2 and PFp(G) ⊆ X or `1(G) ⊆ X, then Ap(G)X is closed in X if and only if G is

amenable.

The special cases of X = PFp(G) and `1(G) will be considered. Let MAp(G)

be the space of pointwise multipliers of Ap(G) equipped with the multiplier norm

‖u‖M = sup{‖uv‖Ap(G) : v ∈ Ap(G), ‖v‖Ap (G) ≤ 1}, i.e., the space of all continu-

ous functions u on G such that the pointwise multiplication uv defines a bounded

operator from Ap(G) to Ap(G) for every v ∈ Ap(G). It is obvious that Ap(G) ⊆
MAp(G) and ‖u‖M ≤ ‖u‖Ap(G) if u ∈ Ap(G). It will be proved that MAp(G) =

M(Ap(G), PFp(G)∗), which is also equal to the space of multiplier algebra of the Ba-

nach algebra Ap(G), i.e., all the bounded linear operators φ : Ap(G) → Ap(G) with

φ(uv) = uφ(v) for all u and v in Ap(G). We show that the predual QPFp(G) of MAp(G)

is equal to the closure of L1(G) in MAp(G)∗ under the multiplier norm, where for

f ∈ L1(G), a continuous linear functional on MAp(G) is defined by 〈 f , φ〉 =
∫

G
f (x)φ(x) dx for all φ ∈ MAp(G). Thus, MAp(G) is a dual Banach space. This

result is proved in De Cannière and Haagerup [2] for p = 2 and in Xu [14] for

discrete G (see the comments on page 466 of Granirer and Leinert [6]). Also, an ele-

ment f is in its predual QPFp(G) if and only if there are ui ∈ Ap(G) and fi ∈ PFp(G)

(i = 1, 2, . . . ) with
∑

∞

i=1 ‖ui‖Ap(G)‖ fi‖PFp(G) < ∞ such that f =

∑

∞

i=1 ui fi on

MAp(G). We will investigate that when Ap(G) is w∗-dense in MAp(G). We prove that

the w∗-closure Ap
w∗

(G) of Ap(G) in MAp(G) is also a dual Banach space of the norm

closure of L1(G) in the dual of Ap
w∗

(G). If Ap(G) is w∗-dense in MAp(G), then the

multiplier norm and the ‖ · ‖Ap(G)-norm are equivalent if and only if G is amenable.

We do not have an example of G for which Ap(G) is not w∗-dense in MAp(G) even

for p = 2. For the case of X = `1(G), we have a similar characterization for the

predual of M(Ap(G), `1(G)
∗

). The relation between MAp(G) and M(Ap(G), `1(G)
∗

)

will be discussed.

For Banach spaces X and Y , let L(X,Y ) denote the space of all bounded linear

operators from X to Y and let X∗ be the conjugate Banach space of X. For x ∈ X

and f ∈ X∗, the value of f at x, f (x), is sometimes denoted by 〈 f , x〉 or 〈x, f 〉 in

duality. The norm of x (respectively, f) is sometimes written as ‖x‖X (respectively,

‖ f ‖X∗) or ‖x‖X∗ (respectively, ‖ f ‖X). The projective tensor product of X and Y is

the Banach space X ⊗̂Y such that each tensor t in X ⊗̂Y has a representation of the

form t =

∑

∞

i=1 xi ⊗ yi , where
∑

∞

i=1 ‖xi‖ ‖yi‖ ≤ ∞ and the norm of t in X ⊗̂Y
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is the infimum of
∑

∞

i=1 ‖xi‖ ‖yi‖ over all the representations. The most important

property of X ⊗̂Y used in this paper is that the Banach space dual of X ⊗̂Y can be

isometrically identified with L(X,Y ∗) by

〈

T,

∞
∑

i=1

xi ⊗̂ yi

〉

=

∞
∑

i=1

〈T(xi), yi〉

(see Wojtaszczyk [13] p. 125).

2 The Multiplier Space M(Ap(G),X∗)

Let X be a Banach Ap(G)-module of PMp(G). We will show in this section that

M(Ap(G),X∗) is a dual Banach space and characterize its predual in terms of ele-

ments in Ap(G) and X. We will also investigate when Ap(G)X is closed.

Proposition 2.1 Let G be a locally compact group and X be a Banach Ap(G)-module

of PMp(G). Then

(i) M(Ap(G),X∗) is a Banach Ap(G)-module with respect to the action defined by

(uφ)(v) = φ(uv) for u, v ∈ Ap(G) and φ ∈ M(Ap(G),X∗);

(ii) For every u ∈ Ap(G) and f ∈ X, u f is a bounded linear functional on

M(Ap(G),X∗) defined by 〈u f , φ〉 = 〈 f , φ(u)〉 for φ ∈ M(Ap(G),X∗) with

‖u f ‖M ≤ ‖u‖Ap(G)‖ f ‖X .

Proof (i) For every u ∈ Ap(G) and φ ∈ M(Ap(G),X∗), we have (uφ)(vw) =

φ(uvw) = v((uφ))(w) for all v and w in Ap(G). So uφ ∈ M(Ap(G),X∗) and

‖uφ‖M ≤ ‖u‖Ap(G)‖φ‖M .

(ii) Let φ ∈ M(Ap(G),X∗), then

|〈u f , φ〉| = |〈 f , φ(u)〉| ≤ ‖ f ‖X‖φ(u)‖X ≤ ‖ f ‖X‖φ‖M‖u‖Ap(G).

So u f is in M(Ap(G),X∗)∗ and ‖u f ‖M ≤ ‖u‖Ap(G)‖ f ‖X .

We denote the linear span of {u f : u ∈ Ap(G), f ∈ X} by Ap(G)X. Then

Ap(G)X ⊆ M(Ap(G),X∗)∗ by Proposition 2.1. Let QX be the norm closure of

Ap(G)X in M(Ap(G),X∗)∗.

Theorem 2.2 Let G be a locally compact group and let X be a Banach Ap(G)-module.

Then M(Ap(G),X∗) = (QX)∗.

Proof Define J : Ap(G) ⊗̂X → QX as follows. For
∑

∞

i=1 ui ⊗ fi ∈ Ap(G) ⊗̂X, where

ui ∈ Ap(G) and fi ∈ X, (i = 1, 2, . . . ), we define J(
∑

∞

i=1 ui ⊗ fi) =

∑

∞

i=1 ui fi .

Then J is well defined. In fact, it is obvious that M(Ap(G),X∗) is a closed subspace

of (Ap(G) ⊗̂X)∗ = L(Ap(G),X∗). If
∑

∞

i=1 ui ⊗ fi = 0 in Ap(G) ⊗̂X, then

〈

∞
∑

i=1

ui ⊗ fi , φ
〉

= 0 for all φ ∈ L(Ap(G),X∗).
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Hence
∑

∞

i=1 ui fi = 0 in M(Ap(G),X∗)∗. It follows from Proposition 2.1 that

‖ J(
∑

∞

i=1 ui ⊗ fi)‖M ≤
∑

∞

i=1 ‖ui‖Ap(G)‖ fi‖X . So J(
∑

∞

i=1 ui ⊗ fi) ∈ QX and ‖ J‖ ≤ 1.

We have the adjoint operator J∗ : (QX)∗ → (Ap(G) ⊗̂X)∗ with ‖ J∗‖ ≤ 1. For

every φ ∈ (QX)∗, since (Ap(G) ⊗̂X)∗ = L(Ap(G),X∗), we have J∗(φ) : Ap(G) → X∗

is a bounded linear operator. We will show that J∗(φ) ∈ M(Ap(G),X∗). In fact, let u

and v be in Ap(G). Then J∗(φ)(u) ∈ X∗ and

〈 J∗(φ)(uv), f 〉 = 〈 J∗(φ), (uv) ⊗ f 〉 = 〈φ, J((uv) ⊗ f )〉

= 〈φ, J(u ⊗ (v f ))〉 = 〈 J∗(φ)(u), v f 〉

= 〈v J∗(φ)(u), f 〉

for every f ∈ X. Hence J∗(φ)(uv) = v J∗(φ)(u) for all u, v ∈ Ap(G). Therefore

J∗(φ) ∈ M(Ap(G),X∗).

For every φ ∈ M(Ap(G),X∗), it is obvious that φ ∈ (QX)∗ by duality and it is

routine to check that J∗(φ) = φ. Therefore, J∗ is a surjective isometry.

Theorem 2.3 Let f ∈ M(Ap(G),X∗)∗. Then f ∈ QX if and only if there are ui ∈
Ap(G) and fi ∈ X (i = 1, 2, . . . ) with

∑

∞

i=1 ‖ui‖Ap(G)‖ fi‖X <∞ such that

f =

∞
∑

i=1

ui fi and ‖ f ‖M = inf

∞
∑

i=1

‖ui‖Ap(G)‖ fi‖X ,

where the infimum is taken over all the representations of f above.

Proof By definition, each element of the form
∑

∞

i=1 ui fi as in the theorem above is

in QX .

Conversely, let S be the subspace of Ap(G) ⊗̂X generated by (uv) ⊗ f − u ⊗ (v f )

for u, v ∈ Ap(G) and f ∈ X. Then an element φ ∈ L(Ap(G),X∗) is in M(Ap(G),X∗)

if and only if φ = 0 on S. Let I : Ap(G) ⊗̂X/S → QX be defined by

I
(

∞
∑

i=1

ui ⊗ fi + S

)

=

∞
∑

i=1

ui fi ,

where
∑

∞

i=1 ui ⊗ fi ∈ Ap(G) ⊗̂X. Then it is clear that I is well defined and ‖I‖ ≤ 1.

Also, that (Ap(G) ⊗̂X/S)∗ = M(Ap(G),X∗) and M(Ap(G),X∗) = Q∗

X implies that

I∗ : Q∗

X → (Ap(G) ⊗̂X/S)∗ is one-to-one and onto. So I is surjective (see Rudin [12],

Theorem 4.15). This proves the first part of the theorem.

For f ∈ QX with ‖ f ‖ = 1 and ε > 0, there are ui ∈ Ap(G) and fi ∈ X

(i = 1, 2, . . . ) such that
∑

∞

i=1 ‖ui‖Ap(G)‖ fi‖X < ∞ and f =

∑

∞

i=1 ui fi . Let η =
∑

∞

i=1 ui ⊗ fi + S be in Ap(G) ⊗̂X/S. Since φ(η) = φ( f ) for all φ ∈ M(Ap(G),X∗),

we have ‖η‖ ≤ 1. Thus, there exists vi ∈ Ap(G) and hi ∈ X (i = 1, 2, . . . ) such

that
∑

∞

i=1 ‖vi‖Ap(G)‖hi‖X < 1 + ε and η =

∑

∞

i=1 vi ⊗ hi + S by the definition of the

quotient norm. Thus, f =

∑

∞

i=1 vihi on M(Ap(G),X∗). This proves the second part

of the theorem.
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Proposition 2.4 If F ∈ X∗, then F defines an element of M(Ap(G),X∗) by F(u) = uF

for u ∈ Ap(G) and ‖F‖M ≤ ‖F‖X .

Proof Since X∗ is a Banach Ap(G)-module, F ∈ M(Ap(G),X∗) is well defined and

|〈F(u), f 〉| = |〈F, u f 〉| ≤ ‖F‖X‖u f ‖X ≤ ‖F‖X‖u‖Ap(G)‖ f ‖X for all u ∈ Ap(G) and

f ∈ X. Thus, ‖F‖M ≤ ‖F‖X .

Proposition 2.5 Let X be a Banach Ap(G)-module and PFp(G) ⊆ X. Then Bp(G) is

a subalgebra of M(Ap(G),X∗) with ‖b‖M ≤ ‖b‖Bp(G) for b ∈ Bp(G).

Proof Let u ∈ Ap(G) and b ∈ Bp(G), then bu ∈ Ap(G) ⊆ PMp(G)∗. So bu ∈
X∗. Since PFp(G) ⊆ X, we have ‖bu‖PFp(G) = ‖bu‖X ≤ ‖b‖PFp (G)‖u‖Ap(G). Hence

‖b‖M ≤ ‖b‖Bp(G).

We shall investigate the relationship between QX and X. In Proposition 2.4, we

have X∗ ⊆ M(Ap(G),X∗) with ‖ · ‖M ≤ ‖ · ‖X . Let R : (QX)∗∗ → X∗∗ be the restric-

tion map. Then ‖R‖ ≤ 1. If u ∈ Ap(G) and f ∈ X, then it is routine to check that

R(u f ) = u f ∈ X. So R(η) ∈ X for every η ∈ QX .

Theorem 2.6 Let G be a locally compact group. Then the following statements are

equivalent:

(i) the restriction map R : QX → X is onto;

(ii) the norms ‖ · ‖X and ‖ · ‖M are equivalent on X∗.

Proof (i) ⇒ (ii) Let R be onto. Then X∗ is ‖ · ‖M-closed in (QX)∗ (see Rudin [12],

page 103). So the norms ‖ · ‖X and ‖ · ‖M are equivalent on X∗.

(ii) ⇒ (i) Since the norms ‖ · ‖X and ‖ · ‖M are equivalent on X∗, R∗ is one-to-

one. That the norms ‖ · ‖X and ‖ · ‖M are equivalent on X∗ implies that X∗ is closed

in M(Ap(G),X∗). Thus, R is onto (see Rudin [12] page 103).

Corollary 2.7 Let X be a Banach Ap(G)-module of PMp(G) such that ‖ · ‖X and

‖ · ‖Ap(G) are equivalent on Ap(G). If Ap(G)X is closed in X, then the norms ‖ · ‖Ap(G)

and ‖ · ‖M are equivalent on Ap(G). In particular, if p = 2, A(G)X is closed in X if and

only if G is amenable.

Proof If Ap(G)X is closed in X, then ‖ · ‖Ap(G)X and ‖ · ‖M are equivalent on

(Ap(G)X)∗ by Theorem 2.6 if X is replaced by Ap(G)X. Since ‖ · ‖Ap(G)X and ‖ · ‖X

are equivalent on Ap(G), ‖ · ‖Ap(G) and ‖ · ‖M are equivalent on Ap(G) by the condi-

tion. If G is amenable, then Ap(G)X is closed by the Cohen facterization theorem. If

p = 2 and A(G)X is closed, then that the norms ‖ · ‖A(G) and ‖ · ‖M are equivalent on

A(G) implies that G is amenable (see Losert [10] and Remark 1 below).

Remarks 1. It is proved in Losert [10] that ‖ · ‖A(G) and ‖ · ‖MA2(G) are equivalent

on A(G) if and only if G is amenable. Let X satisfy the condition in Corollary 2.7.

Since MA2(G) ⊆ M(A(G),X∗) and the norms ‖ · ‖MA2(G) and ‖ · ‖M are equivalent
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on A(G), we have that ‖ · ‖A(G) and ‖ · ‖M are equivalent on A(G) if and only if G is

amenable.

We do not know whether this result is true for p 6= 2. So if A(G)V N(G) is closed,

then G is amenable. This result due to Lau and Losert [9].

2. If p = 2, let C∗

δ (G) denote the C∗ algebra generated by the point measures

δx, x ∈ G, and C∗

ρ (G) = PFp(G). Then both C∗

δ (G) and C∗

ρ (G) are Banach A(G)-

modules and satisfy the condition in Corollary 2.7.

Corollary 2.8 Let G be a locally compact group. Then

(i) if Ap(G)PMp(G) is norm closed, then ‖ · ‖Ap(G) and ‖ · ‖M are equivalent on Ap(G);

(ii) A(G)C∗

δ (G) is norm closed if and only if G is amenable;

(iii) A(G)C∗

ρ (G) is norm closed if and only if G is amenable.

Proof (i) follows immediately from Corollary 2.7.

(ii) and (iii) are direct consequences of Corollary 2.7 and Losert’s theorem men-

tioned above (see [10] and Remark 1 above).

Remark In Xu [14], there is a gap in the proof of the theorem that Ap(G)PMp(G)

is norm closed if and only if G is amenable for discrete groups. In fact, the in-

clusion Qp ⊆ PFp(G) in the proof (see Xu [14], page 3427) is ambiguous since

Qp ⊆ MAp(G)∗ while PFp(G) ⊆ Bp(G)∗. It may happen that an element f ∈ Qp

is nonzero on MAp(G), but its restriction f on Bp(G) is zero. This is related to the

approximation property, i.e., whether Ap(G) is w∗-dense in MAp(G) (see Section 3

for MAp(G)). We will discuss this in Proposition 3.7

Theorem 2.9 Let G be a locally compact group. Then

(i) if the restriction map R : QX → X is one-to-one, then X∗ is w∗-dense in

M(Ap(G),X∗), and if R is onto then X∗ is w∗-closed in M(Ap(G),X∗).

(ii) if PFp(G) ⊆ X, then R is one-to-one and onto if and only if G is amenable.

Proof (i) follows directly from the Corollary of Theorem 4.12 and Theorem 4.14 in

Rudin [12].

(ii) If R is a bijection, then X∗
= M(Ap(G),X∗). Since 1 ∈ M(Ap(G),X∗), 1 is

also in X∗. Since PFp(G) ⊆ X, we have 1 is in PFp(G)∗ as well. Thus, 1 ∈ Bp(G)

implies that G is amenable.

Conversely, let G be amenable. Then Ap(G) has a bounded approximate identity

{uα}. For every φ ∈ M(Ap(G),X∗) and u ∈ Ap(G), we have φ(uuα) = uαφ(u)

converges to φ(u) in the norm topology in X∗ since ‖uuα − u‖Ap(G) → 0. On the

other hand, since φ(uα) is bounded in X∗, let F be its w∗-limit. So F ∈ X∗. By

Proposition 2.4, F ∈ M(Ap(G),X∗) and F(u) = uF = lim uφ(uα) = lim uαφ(u) =

φ(u) in the w∗ topology in X∗. Thus, φ = F is in X∗. Hence X∗
= M(Ap(G),X∗),

which implies that R is one-to-one (see Rudin [12], page 99). Also, it is easy to see

that T∗ is one-to-one. Thus, R is onto by Theorem 4.15 in Rudin [12].
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3 The Case of X = PFp(G) and `1(G)

In this section, we will consider the multiplier spaces for the cases of X = PFp(G) and

`1(G). Let M(Ap(G)) be the multiplier algebra of Ap(G) equipped with the multiplier

norm, i.e., the algebra of all bounded linear operators φ from Ap(G) to Ap(G) with

the property φ(uv) = uφ(v) equipped with the operator norm. At first we show that

the multipliers defined in three different ways are the same.

Proposition 3.1 Let G be a locally compact group. Then

MAp(G) = M(Ap(G)) = M(Ap(G), PFp(G)∗).

Proof Let I : MAp(G) → M(Ap(G)) be defined by I(u)(v) = uv for all u ∈ MAp(G)

and v ∈ Ap(G). Then it follows from definition that I is an isometry. So MAp(G) ⊆
M(Ap(G)). Since Ap(G) is a subalgebra of PFp(G)∗, we have M(Ap(G)) ⊆
M(Ap(G), PFp(G)∗). Next we show that for every φ in M(Ap(G), PFp(G)∗), there

exists an u ∈ MAp(G) such that φ = I(u), that is, M(Ap(G), PFp(G)∗) ⊆ MAp(G).

We will define a function φ̃ on G as follows. For x ∈ G, there is an element

u ∈ Ap(G) with compact support and u(x) = 1. Define φ̃(x) = φ(u)(x). Then φ̃(x)

is independent of u. In fact, let v ∈ Ap(G) be with compact support and v(x) =

1. Then there is an w ∈ Ap(G) such that w = 1 on the supports of u and v. So

φ(u)(x) = φ(uw)(x) = u(x)φ(w)(x) = φ(w)(x). Similarly, φ(v)(x) = φ(w)(x).

Thus, φ(u)(x) = φ(v)(x). Let x0 ∈ G. There exists a open neighborhood U of x0

with compact closure. So there exists u ∈ Ap(G) with compact support such that

u = 1 on U . Then φ̃(x) = φ(u)(x) for all x ∈ U . Since φ(u) ∈ Ap(G) is continuous

at x0, φ̃ is continuous at x0. Let u ∈ Ap(G) and x ∈ G. There is an v ∈ Ap(G) with

compact support such that v(x) = 1. Then φ(u)(x) = v(x)φ(u)(x) = φ(vu)(x) =

u(x)φ(v)(x) = u(x)φ̃(x). Thus, φ(u) = φ̃u in Ap(G). By definition, φ̃ ∈ MAp(G).

Therefore, φ = I(φ̃).

Let f ∈ L1(G). Define a linear functional on MAp(G) by

〈 f , φ〉 =

∫

f (x)φ(x) dx for φ ∈ MAp(G).

Then |〈 f , φ〉| ≤ ‖ f ‖1‖φ‖∞ ≤ ‖ f ‖1‖φ‖M for every φ ∈ MAp(G). So f is in

MAp(G)∗ and its norm, denoted by ‖ f ‖M , is less than or equal to ‖ f ‖1. Define

Q = the completion of L1(G) with respect to the norm ‖ · ‖M .

Theorem 3.2 Let G be a locally compact group. Then QPFp(G) = Q and so MAp(G) =

Q∗.

Proof Let f ∈ L1(G) be with compact support. Then there exists u ∈ Ap(G) such

that u = 1 on the support of u. So f = u f is in QPFp(G) and 〈u f , φ〉 =

∫

G
f (x)φ(x) dx

for every φ ∈ MAp(G). Thus, there is an isometry between the dense subspace of

QPFp(G) and a dense subspace of (L1(G), ‖ · ‖M). Therefore QPFp(G) is the completion

of L1(G) in the ‖ · ‖M norm.
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Corollary 3.3 Let G be a locally compact group.

(i) Let f ∈ MAp(G)∗. Then f ∈ Q if and only if there are ui ∈ Ap(G) and fi ∈
PFp(G) (i = 1, 2, . . . ) with

∑

∞

i=1 ‖ui‖Ap(G)‖ fi‖PFp(G) <∞ such that

f =

∞
∑

i=1

ui fi and ‖ f ‖M = inf

∞
∑

i=1

‖ui‖Ap(G)‖ fi‖PFp(G),

where the infimum is taken over all the representations of f above.

(ii) G is amenable if and only if for any f ∈ PFp(G) and ε > 0, there are ui ∈ Ap(G)

and fi ∈ PFp(G) (i = 1, 2, . . . ) with
∑

∞

i=1 ‖ui‖Ap(G)‖ fi‖PFp(G) < ‖ f ‖ + ε such

that f =

∑

∞

i=1 ui fi on Bp(G).

Proof (i) follows immediately from Theorem 2.3. The condition of (ii) is equivalent

to that PFp(G) = Q by (i), i.e., Bp(G) = MAp(G), which is equivalent to that G is

amenable since 1 ∈ Bp(G).

Remarks (1) QPFp(G) may be considered as an analogue of the group C∗-algebra

C∗(G). But, in general, it is not an algebra under convolution even for p = 2 (see

Cowling and Haagerup [1] page 512).

(2) This result is proved in De Cannière and Haagerup [2] for p = 2 and in Xu

[14] for discrete groups.

As is well known, Ap(G) is always w∗-dense in Bp(G) (i.e., in σ(Bp(G), PFp(G))-

topology), and A(G) is dense in B(G), the Fourier-Stieltjes algebra, in the w∗-

topology if and only if G is amenable. It is natural to consider whether Ap(G) is

dense in MAp(G) with respect the w∗-topology. To this end, let

Ap
w∗

(G) = the w∗-closure of Ap(G) in MAp(G).

A locally compact group G is said to have the approximation property if there is

a net {uα} of functions in Ap(G) such that uα → 1 in the associated w∗-topology in

MAp(G). We will see that these two concepts are the same in the following.

Proposition 3.4 For every locally compact group G, then Ap(G) is w∗-dense in

MAp(G) if and only of G has the approximation property.

Proof If Ap(G) is w∗-dense in MAp(G), then 1 ∈ Ap
w∗

(G) since 1 ∈ MAp(G). So G

has the approximation property.

Conversely, suppose there is a net {uα} of functions in Ap(G) such that uα → 1 in

the w∗-topology. For every φ ∈ MAp(G), it is easy to see that φ f ∈ Q for all f ∈ Q

by the density of L1(G) in Q. So for every f ∈ Q, we have 〈uαφ, f 〉 = 〈uα, φ f 〉 →
〈1, φ f 〉 = 〈φ, f 〉. Hence the net {φuα} of functions in Ap(G) converges to φ in the

w∗-topology. Therefore, Ap(G) is w∗-dense in MAp(G).
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Proposition 3.5 Let G be a locally compact group. Then Ap
w∗

(G) is an ideal of

MAp(G) and is the dual of QL, where QL is the Banach space of the restrictions of ele-

ments in Q to Ap
w∗

(G). Furthermore, QL can be identified with the completion of L1(G)

with the norm, for f ∈ L1(G),

‖ f ‖L = sup
{

∣

∣

∣

∫

G

f (x)φ(x) dx
∣

∣

∣
: φ ∈ Ap

w∗

(G) with ‖φ‖M ≤ 1
}

.

Proof Let φ ∈ MAp(G) and ψ ∈ Ap
w∗

(G). Then there is a net {uα} of functions in

Ap(G) such that uα → ψ in the w∗-topology. The similar argument as in the proof

of Proposition 3.4 shows that uαφ → ψφ in the w∗-topology. Since each uαφ is in

Ap(G), we have that ψφ ∈ Ap
w∗

(G) and Ap
w∗

(G) is an ideal of MAp(G).

It is obvious that the identity map I : Ap
w∗

(G) → (QL)∗ is an isometry. Let

φ ∈ (QL)∗ be with norm 1. Since QL is a subspace of Ap
w∗

(G)∗, we extend φ to

Ap
w∗

(G)∗ with the same norm. By the Goldstine’s theorem, there is a net {uα} in the

unit ball of Ap
w∗

(G) such that uα → φ in σ(Ap
w∗

(G)∗∗,Ap
w∗

(G)∗) topology. Since

Q ⊆ Ap
w∗

(G)∗, we have 〈uα, f 〉 → 〈φ, f 〉 for every f ∈ Q. Hence φ ∈ Ap
w∗

(G).

Therefore, I is a surjective isometry. The proof of the last statement is similar to the

proof of Theorem 3.2.

Definition A locally compact group G is said to be p-weakly amenable if there exists

a net {uα} in Ap(G) such that {‖uα‖M} is bounded and

‖uαa − a‖Ap
→ 0 for every a ∈ Ap(G).

Remark If G is an amenable locally compact group, then Ap(G) has a bounded

approximate identity. So G is necessarily p-weakly amenable. Conversely, as shown in

Furuta [4], for the noncommutative free group Fr with r generators, there exists a net

{uα} in Ap(Fr) such that it is bounded in the multiplier norm and ‖uαa − a‖Ap
→ 0

for every a ∈ Ap(Fr). Hence, Fr is p-weakly amenable, but not amenable.

Proposition 3.6 Let G be a locally compact group.

(i) If G is p-weakly amenable, then Ap(G) is dense in MAp(G) in the weak∗ topology;

(ii) If β is a positive number and {u ∈ Ap(G) : ‖u‖M ≤ β} is w∗-dense in the unit

ball of MAp(G), then G is p-weakly amenable.

Proof (i) Let uα be a ‖ · ‖M-bounded net in Ap(G) such that ‖uαa − a‖Ap
→ 0 for

every a ∈ Ap(G). For every φ ∈ MAp(G), then uαφ is a ‖ · ‖M-bounded net in Ap(G)

as well. We assume, without loss of generality, uαφ converges in the weak∗ topology

by taking subnet if necessary. It is obvious that uα → 1 pointwisely. So uαφ → φ
pointwisely. Hence uαφ→ φ in the weak∗-topology.

(ii) Since {u ∈ Ap(G) : ‖u‖M ≤ β} is w∗-dense in the unit ball of MAp(G) and 1

is in the unit ball, there exists a net uα such that uα → 1 in the weak∗ topology and

‖uα‖M ≤ β for all α. Choose a continuous function h on G such that h(x) ≥ 0 for
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all x ∈ G,
∫

G
h(x) dx = 1 and the support of h is compact. Define u ′

α = h ∗ uα. Then

‖u ′

α‖M ≤ ‖h‖1‖uα‖M ≤ β for all α. We will show that ‖uu ′

α − u‖Ap(G) → 0 for all

u ∈ Ap(G). By the boundedness of the net, we can assume, without loss of generality,

that u has a compact support. Let S = supp(h)−1 supp(u). Then for x ∈ supp(u) we

have

u ′

α(x) =

∫

G

h(t)uα(t−1x) dt =

∫

G

h(t)(1Suα)(t−1x) dt.

So uu ′

α = u(h ∗ (1Suα)). Similarly, u = u(h ∗ 1S). Next, we show that 1Suα → 1S in

Lq(G). Let a ∈ Ap(G) such that a = 1 on S. For every f ∈ PFp(G), we have

〈auα, f 〉 = 〈uα, a f 〉 → 〈1, a f 〉 = 〈a, f 〉

since u f ∈ Q. Thus auα → a in the σ(Bp(G), PFp(G))-topology. So auα → a in mea-

sure with respect to the left Haar measure. Also, that auα is bounded in Ap(G)-norm

implies that auα is bounded in ‖ · ‖
∞

-norm. So 1Suα → 1S in Lq(G). Therefore, uu ′

α

converges to u in the Ap(G)-norm.

Remark There are examples of locally compact groups such that they are not p-

weakly amenable, but Ap(G) is w∗-dense in MAp(G) for p = 2 (see Haagerup and

Kraus [7], page 670).

Proposition 3.7 Let G be a locally compact group. Then

(i) the restriction map R : Q → PFp(G) is one-to-one if and only if Ap(G) is w∗-dense

in MAp(G);

(ii) the restriction map R : Q → PFp(G) is onto if and only if the norms ‖ · ‖Ap(G) and

‖ · ‖M are equivalent on Ap(G);

(iii) if Ap(G) is w∗-dense in MAp(G), then the norms ‖ · ‖Ap(G) and ‖ · ‖M are equiva-

lent on Ap(G) if and only if G is amenable.

Proof (i) If R is one-to-one, it follows from Theorem 2.9 that PFp(G)∗ is w∗-dense

in MAp(G). Since Ap(G) and PFp(G)∗ have the same w∗ closure in MAp(G) (see the

proof of Proposition 3.5), Ap(G) is w∗-dense in MAp(G). Conversely, if Ap(G) is w∗-

dense in MAp(G), let R( f ) = 0 for some f ∈ Q. Then 〈u, f 〉 = 0 for all u ∈ Ap(G).

So 〈φ, f 〉 = 0 for all φ ∈ MAp(G) by the density of Ap(G). Thus, f = 0. So R is

one-to-one.

(ii) If R is onto, then PFp(G)∗ is norm-closed in MAp(G) by Theorem 4.15 in

Rudin [12]. So the multiplier norm and the Ap(G)-norm are equivalent. Conversely,

let the multiplier norm and the Ap(G)-norm be equivalent on Ap(G). We will show

that the Bp(G)-norm and the multiplier norm are equivalent on Bp(G). In fact,

the inclusion map i : Ap(G) → MAp(G) is bounded and Ap(G) is ‖ · ‖M-closed in

MAp(G). By Theorem 4.14 in Rudin [12], i∗(MAp(G)∗) is w∗-closed in Ap(G)∗. By

Theorem 4.14 in Rudin [12] again, i∗∗(Ap(G)∗∗) is norm-closed in MAp(G)∗∗. Since

Bp(G) is a norm-closed subspace of Ap(G)∗∗, the norm on Bp(G) and the multiplier

norm are equivalent. Thus, Bp(G) is norm-closed in MAp(G). It is clear that R∗ is

one-to-one. Therefore, R is onto by Theorem 4.15 in Rudin [12].
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(iii) If G is amenable, then MAp(G) = Bp(G) and the multiplier norm and the

Ap(G)-norm are equal. Conversely, let the norms ‖ · ‖Ap(G) and ‖ · ‖M are equivalent

on Ap(G). If Ap(G) is w∗-dense in MAp(G), then by (ii) and (iii), the restriction

map is one-to-one and onto. So Q is isometrically isomorphic to PFp(G). Thus,

1 ∈ MAp(G) = Bp(G). Hence G is amenable.

Remark We do not have an example of locally compact group for which Ap(G) is

not w∗- dense in MAp(G).

If x ∈ G, then the point measure δx ∈ PMp(G). So `1(G) ⊆ PMp(G). We denote

the norm closure of `1(G) in PMp(G) by `1(G). Then `1(G) is a Banach Ap(G)-

module of PMp(G). Also, every bounded linear functional on `1(G) is in `∞(G).

Theorem 3.8 M(Ap(G), `1(G)
∗

) consists of functions φ in `∞(G) such that the point-

wise multiplication φa defines a bounded operator from Ap(G) to `1(G)
∗

. The predual

Q`1(G)
as in Theorem 2.2 is equal to the completion of `1(G) with respect the norm

‖ f ‖ = sup
{

∑

f (x)φ(x) : φ ∈ M(Ap(G), `1(G)
∗

) with ‖φ‖ ≤ 1
}

.

Furthermore, MAp(G) ⊆ M(Ap(G), `1(G)
∗

), and the inclusion map from MAp(G) to

M(Ap(G), `1(G)
∗

) is norm decreasing.

Proof If φ is in `∞(G) such that the pointwise multiplication φa defines a

bounded linear operator from Ap(G) to `1(G)
∗

, then φ is also a multiplier. So it

is in M(Ap(G), `1(G)
∗

). Conversely, if φ ∈ M(Ap(G), `1(G)
∗

), we define φ̃ as fol-

lows. For x ∈ G, take an u ∈ Ap(G) such that u(x) = 1 and supp(u) is compact.

Define φ̃(x) = φ(u)(x). Then it is well defined since if there is an v ∈ Ap(G) with

compact support such that v(x) = 1. Let aK ∈ Ap(G) satisfy that aK = 1 on the

support of u and of v. The φ(u−v)(x) = φ((u−v)aK )(x) = (u−v)(x)φ(aK )(x) = 0.

If u ∈ Ap(G) and x ∈ G, let v ∈ Ap(G) be with compact support and v(x) = 1. Then

φ(u)(x) = v(x)φ(u)(x) = φ(vu)(x) = u(x)φ(v)(x) = u(x)φ̃(x).

Thus, φ = φ̃ as an element of M(Ap(G), `1(G)
∗

).

It follows from Theorem 2.2 that M(Ap(G), `1(G)
∗

) is the dual of Q`1(G)
. If

f ∈ `1(G) with finite support, then 〈φ, f 〉 = 〈φ, a f 〉 = 〈aφ, f 〉 =

∑

φ(x) f (x),

where a ∈ Ap(G) with a = 1 on the support of f . By the density of the set of finite

support elements in `1(G), Q`1(G)
is equal to the completion of `1(G) with respect to

the multiplier norm.

Since Ap(G) is a subspace of PMp(G)∗ and `1(G) is a subspace of PMp(G), we have

φa ∈ `1(G)
∗

and ‖φa‖`1(G)
≤ ‖φa‖Ap(G) ≤ ‖φ‖M‖a‖Ap(G) for all φ ∈ MAp(G) and

a ∈ Ap(G). Hence the last statement of the theorem is true.

Remark When p = 2, then the norms of an element of Ap(G) on PFp(G) and

on `1(G) are equal (see Eymard [3]). Hence the inclusion map from Ap(G) to

M(Ap(G), `1(G)
∗

) is an isometry.
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