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The main goal of the present study is to thoroughly test the recently derived OBurnett
equations for the normal shock wave flow problem for a wide range of Mach number
(3 ≤ Ma ≤ 9). A dilute gas system composed of hard-sphere molecules is considered
and the numerical results of the OBurnett equations are validated against in-house
results from the direct simulation Monte Carlo method. The primary focus is to study
the orbital structures in the phase space (velocity–temperature plane) and the variation
of hydrodynamic fields across the shock. From the orbital structures, we observe that
the heteroclinic trajectory exists for the OBurnett equations for all the Mach numbers
considered, unlike the conventional Burnett equations. The thermodynamic consistency
of the equations is also established by showing positive entropy generation across the
shock. Further, the equations give smooth shock structures at all Mach numbers and
significantly improve upon the results of the Navier–Stokes equations. With no tweaking of
the equations in any way, the present work makes two important contributions by putting
forward an improved theory of shock waves and establishing the validity of the OBurnett
equations for solving complex flow problems.
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1. Introduction

The accurate description of the strong non-equilibrium region inside a shock has remained
an elusive problem in theoretical fluid dynamics. The variation of macroscopic properties
across this narrow region (of the order of a few mean free paths) is quite steep and the
well-known Navier–Stokes equations based on the small gradient approximation are found
to be inadequate (Becker 1929; Thomas 1944; Gilbarg 1951; Gilbarg & Paolucci 1953).
The Mach number (Ma) and the Knudsen number (Kn) are two important non-dimensional

† Email address for correspondence: amit.agrawal@iitb.ac.in

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.
org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 929 A37-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

85
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:amit.agrawal@iitb.ac.in
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.858&domain=pdf
https://doi.org/10.1017/jfm.2021.858


R.S. Jadhav, A. Gavasane and A. Agrawal

numbers that characterize the shock profiles. The Mach number is defined as the ratio of
velocity of the shock and the adiabatic sound velocity, both defined at the upstream point,
and is greater than unity. The Knudsen number measures the degree of rarefaction and is
defined as ratio of the mean free path and the characteristic length scale. In a typical shock
wave, the Knudsen number is of the order of unity and falls in the transition regime. With
no physical wall boundaries and well-defined boundary conditions, the one-dimensional
normal shock has served as a benchmark problem for assessing the accuracy of continuum
theories, along with the force-driven Poiseuille flow problem (Tij & Santos 1994; Uribe &
Garcia 1999; Jadhav, Singh & Agrawal 2017). Recently, another problem, known as Grad’s
second problem (Jadhav & Agrawal 2020a, 2021), has been proposed as a benchmark
problem which explicitly studies the effect of the interaction potential upon the solution
of pressure and temperature in an infinite gas domain with no bulk velocity upon the
application of a one-dimensional heat flux.

The theoretical treatment of the shock wave flow problem can be branched into two
higher-order continuum theories, namely the Chapman–Enskog-based Burnett equations
and the Grad moment based 13 moment equations. Both of these theories are derived
by solving the Boltzmann kinetic equation for the single particle distribution function.
The Chapman–Enskog method (Enskog 1921; Burnett 1936; Chapman & Cowling 1970)
involves expressing the distribution function in an infinite series in terms of the Knudsen
number and the method yields Euler, Navier–Stokes and Burnett equations at zeroth-, first-
and second-order approximations, respectively, with explicit expressions for the transport
coefficients. Essentially, the linear constitutive laws of the Navier–Stokes equations are
appended with several nonlinear terms involving the products of the gradients of velocity,
temperature and density. The appended terms are second-order accurate in Knudsen
number and are expected to describe non-equilibrium flows better than the Navier–Stokes
equations in the transition regime. In the Grad 13 moment method (Grad 1949, 1958), the
distribution function is represented in tensorial form of orthogonal Hermite polynomials.
The stress tensor and heat flux vector are treated on par with other thermodynamic
variables and separate transport equations are generated for them, thereby increasing
the number of partial differential equations to be solved. Although the two theories
have a completely different basis for their derivation, they do not exclude each other,
in the sense that the Burnett equations can be extracted from the moment equations
using Maxwell–Truesdell–Green iteration (Truesdell & Muncaster 1980; Struchtrup 2004;
Garcia-Colin, Velasco & Uribe 2008). Both theories also rely on the correct form of the
Maxwell–Boltzmann distribution in their derivation.

Another recent approach, known as the Onsager-consistent approach, has been proposed
recently (Singh & Agrawal 2016; Singh, Jadhav & Agrawal 2017; Agrawal, Kushwaha &
Jadhav 2020) wherein Onsager’s symmetry principle forms the basis for the derivation
of the particle distribution function. Utilizing this form of the distribution function, the
Burnett-like equations, known as the Onsager–Burnett (OBurnett) equations (Singh et al.
2017), and the Grad-like equations, known as the Onsager-13 (O13) moment equations
(Singh & Agrawal 2016), were derived. More details about this approach are given in § 2.

The initial studies based on the Burnett equations (Foch 1973; Pham-Van-Diep, Erwin
& Muntz 1991; Reese et al. 1995; Uribe, Velasco & García-Colín 1998; Uribe et al.
2000) for a one-dimensional normal shock showed improvement over the results of
the Navier–Stokes equations. However, a serious drawback of the Burnett equations
in the form of the unstable nature of the equations surfaced (Bobylev 1982). Further,
subsequent studies showed the thermodynamic inconsistency of the equations (Comeaux,
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Shock waves using the OBurnett equations

Chapman & MacCormack 1995; Garcia-Colin et al. 2008) and the non-existence of
heteroclinic trajectory for Ma > 2.69 (Uribe et al. 1998, 2000) invalidating the results of
the Burnett equations. The shock profiles using the BGK–Burnett equations based on the
BGK (Bhatnagar–Gross–Krook) model are also reported in the literature (Balakrishnan
1999, 2004). Within the moment framework, owing to the hyperbolic character of the
equations, the 13 moment equations give rise to subshocks (discontinuities in the shock
profiles) for Ma > 1.65 (Grad 1952; Müller & Ruggeri 1998). This critical Mach number
corresponds to the largest characteristic speed of a monatomic gas in a 13 moment system
(Müller & Ruggeri 1998) and can be extended further by including more moments in
the primary variables set, as shown by Weiss (1995). Combining the advantages of the
Chapman–Enskog approach and the moment method, Struchtrup & Torrilhon (2003)
proposed regularized (R13) 13 moment equations, wherein the hyperbolic nature of the
equations was changed to parabolic by the regularization process. The issue of subshocks
did not arise in the R13 equations and they gave smooth shock structures at all Mach
numbers (Torrilhon & Struchtrup 2004; Torrilhon 2016).

In the present work, we numerically solve the OBurnett equations for a wide Mach
number range of 3 ≤ Ma ≤ 9 with a primary focus on orbital structures and variation
of hydrodynamic fields across the shock. An important shock structure parameter, the
temperature–density separation, is also evaluated for different Mach numbers. The results
of the OBurnett equations are benchmarked against the in-house direct simulation Monte
Carlo (DSMC) results. The OBurnett closure relations for the stress tensor and heat flux
vector are reviewed and compared with those of other higher continuum theories and
important remarks are made in this context.

The paper is organized as follows: a brief description of the OBurnett equations is
presented in § 2. In § 3, the problem definition for a normal shock wave is given along with
the reduced form of the Navier–Stokes and the OBurnett equations for this flow problem.
Section 4 describes the numerical procedure adopted in the present study. The results of
the OBurnett equations are then presented in § 5 followed by important remarks in § 6.
Finally, the conclusions drawn from the study are given in § 7.

2. OBurnett equations

In the derivation of the OBurnett equations (Singh et al. 2017), the Onsager-consistent
distribution function is cast in terms of thermodynamic forces and fluxes (Mahendra
& Singh 2013; Singh & Agrawal 2016; Agrawal et al. 2020) and constructed carefully
so that it is consistent with the Onsager symmetry principle (Onsager 1931a,b) and the
H-theorem. This particular form of the distribution function also satisfies the linearized
Boltzmann equation and the collision invariance property and which is then utilized to
evaluate the Burnett-order constitutive relationships for the stress tensor and the heat flux
vector. The detailed derivation of the constitutive relationships for the stress tensor and the
heat flux vector is given in our earlier work (Singh et al. 2017) The final set of conservation
equations for mass, momentum and energy along with the constitutive relationships for the
stress tensor σij, and the heat flux vector qi, are given as,

∂ρ

∂t
+ ∂ρuk

∂xk
= 0, (2.1)

ρ
∂ui

∂t
+ ρuk

∂ui

∂xk
+ ∂p

∂xi
+ ∂σik

∂xk
= ρGi, (2.2)
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ρ
∂ε

∂t
+ ρuk

∂ε

∂xk
+ ∂qk

∂xk
+ p

∂uk

∂xk
+ σij

∂ui

∂xj
= 0, (2.3)

where ρ is the mass density, uk is the bulk velocity vector, p is the thermodynamic pressure,
qi is the heat flux vector, σij is the stress tensor, Gi is the external body force per unit mass,
ρε (ε = 3RT/2) is the internal energy, T is the absolute temperature, R (= kB/m) is the
specific gas constant, kB is the Boltzmann constant and m is the mass of the particle.

The complete expressions for σij and qi are obtained by adding the corresponding
Navier–Stokes and Burnett-order terms as,

σxx = σNS
xx + σB

xx

= μ

(
δ1

∂u
∂x

+ δ2
∂v

∂y
+ δ2

∂w
∂z

)
+ 4

μ2β

ρ

[
α1

(
∂u
∂x

)2

+ α2

(
∂u
∂y

)2

+ α3

(
∂u
∂z

)2

+ α4
∂u
∂y

∂v

∂x
+ α5

∂u
∂z

∂w
∂x

+ α6

(
∂w
∂x

)2

+ α7

(
∂v

∂x

)2

+ α8
∂u
∂x

∂v

∂y
+ α9

(
∂v

∂y

)2

+ α10

(
∂w
∂z

)2

+ α11
∂v

∂y
∂w
∂z

+ α12
∂u
∂x

∂w
∂z

+ α13
∂v

∂z
∂w
∂y

+α14

(
∂w
∂y

)2

+ α15

(
∂v

∂z

)2
]

, (2.4)

σxy = σNS
xy + σB

xy

= μδ3
∂u
∂y

+ μδ3
∂v

∂x
+ 4

μ2β

ρ

[
β1

∂u
∂x

∂u
∂y

+ β2
∂v

∂x
∂v

∂y
+ β3

∂u
∂z

∂v

∂z
+ β4

∂u
∂x

∂v

∂x

+β5
∂u
∂y

∂v

∂y
+ β6

∂w
∂x

∂w
∂y

+ β7
∂v

∂z
∂w
∂x

+ β8
∂u
∂z

∂w
∂y

+ β9
∂u
∂y

∂w
∂z

+ β10
∂v

∂x
∂w
∂z

]
,

(2.5)

qx = qNS
x + qB

x

= δ4k
1

2Rβ2
∂β

∂x
+ 4

μ2β

ρ

[
γ1

1
β

∂g
∂x

∂u
∂x

+ γ2
1
β2

∂β

∂x
∂v

∂y
+ γ3

1
β2

∂β

∂x
∂w
∂z

+ γ4
1
β

∂g
∂y

∂u
∂y

+ γ5
1
β

∂g
∂y

∂v

∂x
+ γ6

1
β

∂g
∂z

∂w
∂x

+ γ7
1
β2

∂β

∂x
∂u
∂x

+ γ8
1
β2

∂β

∂y
∂u
∂y

+ γ9
1
β2

∂β

∂z
∂u
∂z

+ γ10
1
β2

∂β

∂y
∂v

∂x
+ γ11

1
β2

∂β

∂z
∂w
∂x

+ γ12
1
β

∂g
∂x

∂v

∂y
+ γ13

1
β

∂g
∂x

∂w
∂z

]
+
(

2k(γ − 1)

Rγ

)2 1
ρβ

[
γ14

∂β

∂y
∂v

∂x
+ γ15

∂β

∂z
∂w
∂x

+ γ16
∂β

∂x
∂u
∂x

+ γ17
∂β

∂y
∂u
∂y

+ γ18
∂β

∂z
∂u
∂z

+ γ19
∂β

∂x
∂v

∂y
+ γ20

∂β

∂x
∂w
∂z

]
, (2.6)

where u, v and w are the x, y and z components of the bulk velocity vector, respectively,
μ is the absolute viscosity, k is the thermal conductivity of the gas and γ is the specific
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Flow

Downstream state: ρ1, u1, T1

Upstream state: ρ0, u0, T0

1.0

0.5

0
0

Normalized

velocity, un
Normalized

density, ρn

ρn= 0.5

Normalized

temperature, Tn

x/λ0

Figure 1. Schematic of the internal structure of a one-dimensional normal shock wave. Temperature and
density profiles are normalized as Tn = (T − T0)/(T1 − T0) and ρn = (ρ − ρ0)/(ρ1 − ρ0).

heat ratio. The expressions for β and g are given as,

β = 1
2RT

, g = log
(

ρ

β

)
. (2.7a,b)

The coefficients, α, β, γ and δ with numerical subscripts, are functions of the type of gas
and the interaction potential between the molecules. The values of these coefficients are
given in Singh et al. (2017). To evaluate the Burnett contribution for other components
of the stress tensor and heat flux vector, we apply a suitable change of variables in an
appropriate base equation.

A careful analysis of the OBurnett constitutive relations reveals the absence of second-
and higher-order derivatives of velocity and temperature, unlike the conventional Burnett
equations. As such, the OBurnett equations need the same number of boundary conditions
as the Navier–Stokes equations. This is a remarkable feature since the well-established
Maxwell velocity slip and temperature jump boundary conditions are now sufficient for
the complete solution. Further, the equations are unconditionally stable and predict the
correct value of the Prandtl number. We believe that, with these remarkable features, it
should now be possible to apply the OBurnett equations for boundary value problems and
strong non-equilibrium flows without any restrictions.

3. Problem definition

The shock wave flow problem can be modelled as a one-dimensional problem so that
the velocity, stress tensor and heat flux vector have only an x-component. The time
dependence can be eliminated by modelling the problem in the frame of reference moving
with the shock. The upstream flow (x → −∞), characterized by density ρ0, velocity
u0 and temperature T0, is supersonic while the downstream flow (x → ∞) is subsonic
and characterized by ρ1, u1 and T1. The density and temperature increase rapidly across
the narrow width of the shock. Owing to different relaxation times for momentum and
energy transport, the temperature rises much earlier than the density, as shown in figure 1,
suggesting a spatial lag between the temperature and density profiles.
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The stationary field equations for mass, momentum and energy conservation, equations
(2.1)–(2.3), can be obtained as

d
dx

[ρ(x)u(x)] = 0, (3.1)

ρ(x)u(x)
du(x)

dx
= −dp(x)

dx
− dσ

dx
, (3.2)

u(x)
dρ(x)ε(x)

dx
= −dq

dx
− p(x)

du(x)
dx

− σ
du(x)

dx
, (3.3)

where the normal stress σxx and the x-component of the heat flux vector are represented by
σ and q, respectively. For a dilute, monatomic gas system, we have the ideal gas equation
and the internal energy of a monatomic gas without internal degrees of freedom as

p = ρRT, ε = 3
2 RT. (3.4a,b)

Substituting for p and ε, we obtain
d

dx
[ρu] = 0, (3.5)

d
dx

[ρu2 + ρRT + σ ] = 0, (3.6)

d
dx

[ρu3 + 5ρRTu + 2uσ + 2q] = 0. (3.7)

The above equations can be readily integrated between the upstream and downstream
equilibrium states to obtain the well-known Rankine–Hugoniot conditions as

ρ0u0 = ρ1u1 (3.8)

ρ0u2
0 + ρ0RT0 = ρ1u2

1 + ρ1RT1 (3.9)

u2
0 + 5RT0 = u2

1 + 5RT1. (3.10)

Note that, in both of the equilibrium states, there are no gradients of velocity or
temperature, thereby giving σ = 0 and q = 0. When integration is performed between
the upstream state and any point inside the shock, we obtain

ρ0u0 = ρu, (3.11)

ρ0u2
0 + ρ0RT0 = ρu2 + ρRT + σ, (3.12)

ρ0u3
0 + 5ρ0RT0u0 = ρu3 + 5ρRTu + 2uσ + 2q. (3.13)

The non-dimensionalization of the x-momentum and energy equations is carried out
following Torrilhon & Struchtrup (2004) as

ρ̃ = ρ

ρ0
, ũ = u√

RT0
, T̃ = T

T0
, σ̃ = σ

ρ0RT0
, q̃ = q

ρ0
√

RT0
3 , (3.14a–e)

and the space coordinate is non-dimensionalized as

x̃ = xρ0
√

RT0

μ0
, (3.15)

where μ0 is the viscosity at the upstream state. The general trend in the literature is to
show the variation of the hydrodynamic fields across the shock against the Alsmeyer space
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coordinate, x/λ0, and we follow the same in the present study. Accordingly, the mean free
path at the upstream state can be calculated as (Alsmeyer 1976; Torrilhon & Struchtrup
2004),

λ0 = 4
5

μ0

ρ0

√
πRT0

8

, (3.16)

and the relation between Alsmeyer’s space coordinate, x/λ0 and the dimensionless space
variable x̃ becomes

x
λ0

= 5
4

√
π

8
x̃ ≈ 0.783x̃. (3.17)

The Mach number (Ma) defined on the basis of upstream velocity is

Ma = u0√
γ RT0

=
√

3
5

ũ0, (3.18)

where γ is the specific heat ratio and for a monatomic gas, γ = 5/3.
The dimensionless variables in front of the shock at the upstream equilibrium state are

ρ̃0 = 1, ũ0 =
√

5
3

Ma, T̃0 = 1. (3.19a–c)

In non-dimensionalized form, the mass (3.11), x-momentum (3.12) and energy (3.13)
equations using (3.19a–c) can be written as

ũ0 = ρ̃ũ (3.20)

ũ0
2 + 1 = ρ̃ũ2 + ρ̃T̃ + σ̃ (3.21)

ũ3
0 + 5ũ0 = ρ̃ũ3 + 5ρ̃T̃ũ + 2ũσ̃ + 2q̃. (3.22)

Supposing ξ =
√

5
3 Ma and removing the tildes for better readability, the above equations

become,

ξ = ρu (3.23)

ξ2 + 1 = ρu2 + ρT + σ (3.24)

ξ3 + 5ξ = ρu3 + 5ρTu + 2uσ + 2q. (3.25)

From this point onward, the analysis differs when we substitute the constitutive
relationships for the stress tensor and the heat flux vector based on the Navier–Stokes
and the OBurnett equations.

3.1. Reduced form of the Navier–Stokes equations
In the Navier–Stokes framework, we have linear constitutive relationships for the stress
tensor and the heat flux vector which are of Knudsen order. For the shock wave flow
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problem, these equations reduce to

σ = −4
3
μ

du
dx

, q = −k
dT
dx

. (3.26a,b)

Using (3.14a–e) and (3.15), the non-dimensionalized form of these equations can be
obtained as (tildes are removed)

σ = −4
3

Tϕ du
dx

, q = −Tϕ 1
Pr

γ

γ − 1
dT
dx

, (3.27a,b)

where the symbol ϕ denotes the viscosity exponent in the expression,
μ

μ0
=
(

T
T0

)ϕ

= T̃ϕ. (3.28)

The thermal conductivity k appearing in Fourier’s law is replaced using expression

k = μR
Pr

γ

γ − 1
, (3.29)

where Pr is the Prandtl number, which is 2/3 for monatomic gases. Substituting these
expressions in (3.24) and (3.25), we obtain an explicit dynamical system of two ordinary
differential equations of order one as

du
dx

= 3
4

1
Tϕ

[
ξ

(
u + T

u
− ξ

)
− 1
]

, (3.30)

dT
dx

= −Pr
2

γ − 1
γ

1
Tϕ

[ξ3 + 5ξ + ξu2 − 3ξT − 2uξ2 − 2u]. (3.31)

The space dependency can be removed by taking the derivative of the temperature with
respect to velocity as,

dT
du

= −2
3

Pr
(

γ − 1
γ

) [
uξ3 + 5uξ + ξu2 − 3ξTu − 2u2ξ2 − 2u2]

ξu2 + ξT − ξ2u − u
. (3.32)

With the highest order of the differential equations being one, the orbits for the
Navier–Stokes dynamical system are two-dimensional in the phase space (u, T). In
addition, the expression for dT/du does not involve the viscosity index (ϕ), implying that
the orbits in the Navier–Stokes equations are independent of the viscosity index.

3.2. Reduced form of the OBurnett equations
The constitutive relationships for the normal stress and the heat flux according to the
OBurnett equations can be obtained as

σ = μδ1
du
dx

+ 4
μ2β

ρ
α1

(
du
dx

)2

, (3.33)

q = δ4k
1

2Rβ2
dβ

dx
+ 4

μ2β

ρ

[
γ1

1
β

dg
dx

du
dx

+ γ7
1
β2

dβ

dx
du
dx

]

+
(

2k(γ − 1)

Rγ

)2 1
ρβ

[
γ16

dβ

dx
du
dx

]
. (3.34)

The underlined terms represent the Navier–Stokes contribution while the remaining terms
are of the order of the Knudsen number squared and represent the OBurnett contribution.
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Shock waves using the OBurnett equations

The variables β and g appearing in the equations are given as

β = 1
2RT

, g = log
(

ρ

β

)
= log (2ρRT) = log(2p), (3.35a,b)

and their derivatives are
dβ

dx
= − 1

2RT2
dT
dx

,
dg
dx

= 1
p

dp
dx

. (3.36a,b)

The coefficients appearing in (3.33) and (3.34) are given as

δ1 = −4
3
; α1 =

(
125γ 2 − 576γ + ϕ(110 − 160γ + 50γ 2) + 643

40

)
= 8

15
;

δ4 = 1; γ1 =
(−47 + 25γ

8

)
= −2

3
; γ7 = ϕ

(
77 − 35γ

8

)
= 7

6
;

γ16 =
(−77 + 35γ + 10ϕ(−1 + γ )

8

)
= −23

12
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.37)

where we have used γ = 5/3 and ϕ = 1/2 for a monatomic gas composed of hard-sphere
molecules.

In terms of regular variables ρ, u and T ,

σ = −4
3
μ

du
dx

+ 2α1
μ2

ρRT

(
du
dx

)2

, (3.38)

q = −k
dT
dx

+ 4γ1

(
μ

ρ

)2 dρ

dx
du
dx

+ 4
(
γ1 − γ7 − γ16

Pr2

) μ2

ρT
du
dx

dT
dx

. (3.39)

Performing non-dimensionalization and replacing density with velocity using (3.23)

σ = −4
3

Tϕ du
dx

+ 2α1

ξ
T2ϕ−1u

(
du
dx

)2

, (3.40)

q = −Tϕ 1
Pr

γ

γ − 1
dT
dx

− 4γ1
T2ϕ

ξ

(
du
dx

)2

+ 4Ψ
T2ϕ−1

ξ
u

du
dx

dT
dx

, (3.41)

where we have combined the expression [γ1 − γ7 − γ16/Pr2] into a single constant Ψ

(= 119/48). Substituting these constitutive relationships in (3.24) and (3.25), we obtain an
implicit dynamical system of two ordinary differential equations of order one as

− 4
3

Tϕ du
dx

+ 2α1

ξ
T2ϕ−1u

(
du
dx

)2

= ξ2 + 1 − ξu − ξ
T
u

, (3.42)

− Tϕ 1
Pr

γ

γ − 1
dT
dx

− 4γ1
T2ϕ

ξ

(
du
dx

)2

+ 4Ψ
T2ϕ−1

ξ
u

du
dx

dT
dx

= 1
2

[
ξ3 + 5ξ + ξu2 − 3ξT − 2uξ2 − 2u

]
. (3.43)

It is evident that obtaining an explicit expression for dT/du is not possible and the orbital
structures are different for different values of the viscosity index, unlike the Navier–Stokes
equations.
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In matrix form, the system of equations can be represented as

A · dy
dx

= B, (3.44)

where

y =
(

u
T

)
, A =

⎛⎜⎜⎝−4
3

Tϕ + 2α1

ξ
T2ϕ−1u

du
dx

0

−4γ1
T2ϕ

ξ

du
dx

−Tϕ 1
Pr

γ

γ − 1
+ 4Ψ

T2ϕ−1

ξ
u

du
dx

⎞⎟⎟⎠ ,

(3.45a,b)

B =

⎛⎜⎝ ξ2 + 1 − ξu − ξ
T
u

1
2

[
ξ3 + 5ξ + ξu2 − 3ξT − 2uξ2 − 2u

]
⎞⎟⎠ . (3.46)

The determinant of a lower triangular matrix A is

det A = 4
3

T2ϕ

Pr
γ

γ − 1
− 16

3
Ψ

T3ϕ−1

ξ
u

du
dx

− 2α1

ξ

1
Pr

γ

γ − 1
T3ϕ−1u

du
dx

+ 8α1Ψ

(
T2ϕ−1

ξ
u

du
dx

)2

. (3.47)

The first term in (3.47) is the same as that obtained in the Navier–Stokes equations and
is always positive. As the velocity gradient term is negative (velocity transforms from
supersonic to subsonic) and the coefficients of all the terms are positive, all the remaining
terms are also positive and the determinant of matrix A is always positive inside the shock
in the case of the OBurnett equations. The inverse of the matrix A can then be obtained as

A−1 = 1
det A

⎛⎜⎜⎝−Tϕ 1
Pr

γ

γ − 1
+ 4Ψ

T2ϕ−1

ξ
u

du
dx

0

4γ1
T2ϕ

ξ

du
dx

−4
3

Tϕ + 2α1

ξ
T2ϕ−1u

du
dx

⎞⎟⎟⎠ . (3.48)

Subsequently, the system (3.44) can be written in the following form:

dy
dx

= C
det A

, where C = A−1B. (3.49)

Since the determinant does not change sign inside the shock, the issue of subshocks does
not arise and the OBurnett equations give smooth shock structures at all Mach numbers,
similar to the Navier–Stokes equations.

4. Numerical procedure

The inherent coupled and nonlinear form of the Navier–Stokes (3.30) and (3.31) and
the OBurnett (3.42) and (3.43) equations makes it improbable to solve these equations
analytically. Hence, one must make recourse to numerical methods to obtain the shock
wave profiles. To solve the differential equations for the velocity and temperature,
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Shock waves using the OBurnett equations

appropriate boundary conditions must be supplied, which are given by Rankine–Hugoniot
conditions as

At upstream point: u0|x→−∞ =
√

5
3 M0; T0|x→−∞ = 1 (4.1a,b)

At downstream point: u1|x→∞ =
√

5
3

M2
0 + 3
4M0

; T1|x→∞ = (5M2
0 − 1)(M2

0 + 3)

16M2
0

.

(4.2a,b)

In the present study, we tackle the shock wave flow problem as an initial value problem
as done in the literature (Gilbarg & Paolucci 1953; Holian et al. 1993; Uribe et al. 1998,
2000). The system of (3.43) with conditions (4.1a,b) and (4.2a,b) is numerically solved
using a variable-step, variable-order Matlab solver ode15i with a maximum order of 5. The
downstream equilibrium state is disturbed by introducing perturbations and the integration
is performed from the downstream point to the upstream point. The relative and absolute
errors are set as 10−13 and 10−14, respectively, in the numerical integration. The numerical
results of the Navier–Stokes and the OBurnett equations are validated against the DSMC
results. A brief introduction to the DSMC technique along with the set-up for the current
problem is presented in the following paragraphs.

The DSMC method, devised by Bird in 1960 (Bird 1994, 2013), is a probabilistic
molecular method based on the kinetic theory for simulation of the dilute gases. With
experimental data available only for limited macroscopic quantities in rarefied gas flows,
the results of the DSMC simulation technique serves as the benchmark for verifying the
theoretical results. The DSMC technique is a mesoscopic technique in the sense that each
simulated molecule represents a number of real molecules. The ratio of real to simulated
molecules and the cells that the entire computational domain is divided into, are the
important simulation parameters. The basic assumption in DSMC is that, over a small time
step, molecular movement and collisions can be decoupled. The time step must be less than
the mean collision time. The basic four steps in DSMC are movement, indexing, collision
and sampling. The flow domain is divided into cells and cells are further subdivided into
subcells. The length of the cell should be less than the local mean free path to achieve
physically realistic collisions. The simulated molecules are distributed into the cells and
their positions and velocities are stored and updated at all times. In the movement step,
all simulated molecules are moved using the selected time step and molecular velocities.
The interaction with the boundaries is simulated in this step using different models. The
molecules are indexed into the cell and rearranged in an array to facilitate collisions in
the indexing step. In the collision step, collision partners are selected from the same cell
using the probabilistic approach. The post-collision velocities of colliding molecules are
calculated using different models. Finally, the macroscopic properties are sampled from
the microscopic properties in the sampling step. A large number of samples are needed to
minimize the statistical scatter.

In the present study, Bird’s DSMC code (Bird 1994) for shock wave flow problems
which is available on Bird’s website is implemented to generate the DSMC data. The
length of the computational domain is taken as 0.04 m while helium gas is selected as the
working fluid. The diameter (d) and molecular mass (m) of helium gas are taken as (Bird
2013)

d = 2.19 × 10−10 m; m = 6.65 × 10−27 kg. (4.3a,b)

The no time counter method is used to select the collision pairs. The variable soft-sphere
(VSS) model is selected and for hard-sphere molecules, the parameters in the VSS model
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are taken as ϕ = 0.5 and α = 1. The number of simulated molecules in each cell is kept as
100 and time step is selected as 5 × 10−8 s. The upstream number density and temperature
are specified as 2.89 × 1021 m−3 and 160 K, respectively.

5. Results

In this section, we compare the results of the OBurnett equations for hard-sphere molecules
(ϕ = 0.5) with the DSMC simulation results for a wide range of Mach number. The
DSMC technique furnishes a detailed and accurate structure of shock wave profiles: from
the measurement of the particle distribution function inside the shock (Holtz & Muntz
1983; Pham-Van-Diep, Erwin & Muntz 1989; Erwin, Pham-Van-Diep & Muntz 1991) to
the variation of hydrodynamic fields across the shock. In the numerical solution of the
equations, the origin of the x/λ0 axis is selected in such a way that the velocity at x/λ0 = 0
gives the average of the upstream and downstream values of velocities. The profiles of the
Navier–Stokes, conventional Burnett and OBurnett equations come together when they are
translated along x/λ0 (Holian et al. 1993; Uribe et al. 2000).

5.1. Entropic consistency of the equations
The entropic consistency of the equations is an important aspect of higher-order continuum
theories. It is well known that the Navier–Stokes equations are thermodynamically
consistent, i.e. they always give positive entropy generation σ̇ and thereby, obey the second
law of thermodynamics. However, the same cannot be said for higher-order continuum
transport equations given the complicated structure of the equations.

According to the second law of thermodynamics, the term σ̇ must be a non-negative
quantity and given as

σ̇ = − 1
T

σij
∂ui

∂xj
− 1

T2 qi
∂T
∂xi

≥ 0. (5.1)

Substituting the OBurnett closure relations for normal stress (3.38) and heat flux (3.39) in
the above equation, the entropy generation inside the shock for the OBurnett equations can
be obtained in dimensional form as

σ̇ = 4
3

μ

T

(
du
dx

)2

− 2
T

α1
μ2

p

(
du
dx

)3

+ k
T2

(
dT
dx

)2

− 4γ1

(
μ

ρT

)2 dρ

dx
du
dx

dT
dx

− 4Ψ
μ2

ρT3
du
dx

(
dT
dx

)2

. (5.2)

The underlined terms represent the Navier–Stokes contribution to the entropy generation
and are always positive. Now, across the shock, density and temperature progressively
increase from an upstream to a downstream point while velocity changes from supersonic
to subsonic. As a result, the contribution to the entropy generation from the remaining
higher-order terms is always positive and the overall entropy generation according to the
OBurnett equations turns out to be always positive. This is illustrated through figure 2,
which shows the variation of dimensionless entropy generation throughout the shock for
three Mach numbers (Ma = 2.69, 5, 7).

At Ma = 2.69 (figure 2a), all the equations predict positive entropy generation
throughout the shock. Note that this particular value is the critical Mach number above
which a heteroclinic trajectory does not exist for the conventional Burnett equations
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Figure 2. Entropy generation across the shock for three different Mach numbers; solid line: OBurnett; dotted
line: Navier–Stokes; dashed line: conventional Burnett: (a) Ma = 2.69; (b) Ma = 5; and (c) Ma = 7.

(Uribe et al. 2000). As we go above this critical Mach number (figures 2(b) and 2(c)),
the conventional Burnett equations start predicting negative entropy generation in the
upstream region of the shock, thereby losing their validity. This important observation
also shows that the two critical aspects: existence of a heteroclinic trajectory and
thermodynamic consistency of the equations are intricately connected to each other. With
respect to the OBurnett equations, it is evident that the equations obey the second law of
thermodynamics by giving positive entropy generation throughout the shock for all Mach
numbers, similar to the Navier–Stokes equations. In addition, a heteroclinic trajectory
exists for all Mach numbers, as we show in § 5.2. This important result of positive
entropy generation throughout the shock establishes the thermodynamic consistency of
the OBurnett equations.

5.2. Orbital structures in phase space
After establishing the thermodynamic consistency of the equations, we next explore the
orbits in the phase space (u − T plane) as obtained by the OBurnett and Navier–Stokes
equations and compare with those of the DSMC results. These orbital structures in
phase space give detailed information about the velocity and temperature profiles. A
clear advantage in exploring these orbits is that these structures do not depend on the
choice of origin, hence making it possible to compare with different choices available
in the literature without any ambiguity. For example, while showing the variation of
hydrodynamic fields across the shock (Alsmeyer 1976; Salomons & Mareschal 1992;
Torrilhon & Struchtrup 2004; Greenshields & Reese 2007), the origin is selected such
that density at the origin gives the average of upstream and downstream values, whereas in
some works (Holian et al. 1993; Uribe et al. 1998, 2000), the origin is selected based
on the velocity parameter. As such, translating the shock profiles of other variables
accordingly based on these two selection criteria will yield a different comparison with
the DSMC results. However, working in a phase space removes the dependence on the
space coordinate and a fair comparison with the benchmark results is possible. Further,
since the results for density, heat flux and normal stress are derived from velocity and
temperature profiles in the Burnett and moment frameworks, the phase plots are sufficient
to describe the internal structure of shocks for all the variables.

A careful analysis of the orbital structures around the upstream point region reveals the
existence of a heteroclinic trajectory. This important point regarding the existence of a
heteroclinic trajectory has not drawn much attention from researchers and is somewhat
trivialized in the literature. However, it is to be noted that this aspect is connected to the
hydrodynamic stability of the equations beyond the Navier–Stokes regime (Garcia-Colin
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u′
Figure 3. Orbits in the (a) u − T; (b) u − u′; (c) T − T ′; and (d) u′ − T ′ planes for Ma = 3.

et al. 2008). Following the analysis given in Gilbarg & Paolucci (1953), it can be shown
mathematically that the heteroclinic trajectory exists for the OBurnett equations. This
aspect is probed further for two different Mach numbers (Ma = 3, 7) and the results clearly
lend support to the existence of a heteroclinic trajectory for all Mach numbers.

The orbital structures in the phase space (u, T) for Ma = 3 are shown in figure 3 for
the Navier–Stokes and OBurnett equations. These phase plots show that the OBurnett
results are in better agreement with the DSMC results as compared with the Navier–Stokes
equations. The zoomed-in view in the region nearby the upstream point is shown in figure 4
where the results of the conventional Burnett equations are also included. In the case of the
conventional Burnett equations, the derivatives of velocity and temperature become quite
large near the upstream point. As a result, we observe oscillations near the upstream point
and the phase trajectory never reaches the upstream point. As also discussed in Uribe
et al. (1998, 2000), in the long time limit, a limit cycle exists for Ma < 2.69 whereas
for higher Mach numbers, the oscillations grow rapidly and such a limit cycle eventually
disappears, indicating the non-existence of the heteroclinic trajectory. However, a clear
heteroclinic trajectory exists for the Navier–Stokes and OBurnett equations. The phase
plots at Ma = 7 (figure 5) further confirm the existence of the heteroclinic trajectory for
the OBurnett equations at higher Mach numbers. It is possible to extend the finding to
higher Mach numbers, as discussed later in § 6.4.
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Figure 4. Zoomed in view of the orbits in the (a) u − T; (b) u′ − T ′ planes for Ma = 3 near the upstream
point.
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Figure 5. Orbits in the (a) u − T; (b) u − u′; (c) T − T ′; and (d) u′ − T ′ planes for Ma = 7.
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Figure 6. Variation of conserved variables (ρ, u and T) and non-conserved variables (σ and q) inside the
shock at Ma = 3.

5.3. Hydrodynamic fields across the shock
The variation of the hydrodynamic fields (ρ, u, T , σ and q) inside the shock for three Mach
numbers, Ma = 3, 5, 9 is shown in figures 6, 7 and 8. The limitations of the Navier–Stokes
equations come to the fore in describing the shock structures, particularly at higher
Mach numbers. The shock profiles for the velocity and temperature as predicted by the
Navier–Stokes equations appear to be quite narrow while the OBurnett equations predict
broader profiles for these quantities, which are in good agreement with the DSMC results.
For density and velocity shock profiles, the more rarefied upstream region of the shock is
resolved accurately by the OBurnett equations whereas some deviation is observed in the
downstream region. From the temperature plots, the DSMC results predict that temperature
rises much earlier than the density, which is well captured by the OBurnett equations.

In theoretical formulation of continuum theories within the Burnett hydrodynamics it is
well known that constitutive relationships are obtained for the stress tensor and the heat
flux vector in terms of the primary variables (ρ, u and T) and their gradients. Hence, the
comparison of the normal stress and heat flux inside the shock depicts the accuracy of these
constitutive relationships. Moreover, these being higher-order moments (the stress tensor
is a second-order moment, σij = m

∫
C〈iCj〉f dC whereas heat flux vector is a contracted

third-order moment, qi = (m/2)
∫

CiC2f dC), it is believed that their profiles inside the
shock are more difficult to capture. The variation of normal stress and heat flux across
the shock clearly shows the inability of the linear constitutive laws of the Navier–Stokes
equations (Newton’s law of viscosity and Fourier’s law) to capture the flow physics inside
the shock. On the other hand, the higher-order terms (O(Kn2)) present in the OBurnett
constitutive relations significantly improve upon the results of the Navier–Stokes equations
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Figure 7. Variation of conserved variables (ρ, u and T) and non-conserved variables (σ and q) inside the
shock at Ma = 5.
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Figure 8. Variation of conserved variables (ρ, u and T) and non-conserved variables (σ and q) inside the
shock at Ma = 9.
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Figure 9. Comparison of normalized density profiles (ρn = (ρ − ρ0)/(ρ1 − ρ0)) obtained using the OBurnett
equations with the experimental measurements of Alsmeyer (1976) for two different Mach numbers; (a) Ma =
6.5 and (b) Ma = 9.

and predict a much wider shock, in agreement with the DSMC results. The agreement is
especially good in the upstream region of the shock; however, the peak for both normal
stress and heat flux is not captured that well by the OBurnett equations.

5.4. Comparison with experimental measurements of density
In view of the extreme flow conditions and a very narrow flow domain (of the order of a
few mean free paths), scarce experimental data of the hydrodynamic fields across the shock
are available in the literature. In particular, accurate experimental measurements of the
density field using the electron beam absorption technique are available for argon gas (see
Alsmeyer (1976) and references therein). The numerical results of the OBurnett equations
for argon gas can be obtained by taking the viscosity index ϕ = 0.816 as suggested by
Gilbarg & Paolucci (1953), Chapman & Cowling (1970) and Bird (2013).

Figure 9 shows the comparison of normalized density profiles (ρn = (ρ − ρ0)/(ρ1 −
ρ0)) across the shock as obtained by the OBurnett equations with the experimental results
of Alsmeyer (1976) for two Mach numbers, namely 6.5, and 9. From the figure, it is clear
that the density results of the OBurnett equations are in quantitative agreement with the
experimental results in the upstream region whereas further improvement is desirable in
the downstream region. As we know, the downstream region of the shock is characterized
by high temperatures, we believe that the relation between viscosity and temperature (μ ∝
Tϕ) might be insufficient to capture the flow physics in the downstream region accurately.
By increasing dissipation in the downstream region, accurate resolution of the density
profiles can be achieved. Increased dissipation tends to smoothen out the shock profiles,
thereby increasing the shock thickness in the downstream region. This can be achieved
either by fine tuning the viscosity index, as is done in Greenshields & Reese (2007) and
Uribe & Velasco (2018), or by applying Holian’s conjecture (Holian 1988; Holian et al.
1993). We believe that the OBurnett theory in conjunction with Holian’s conjecture or an
enhanced viscosity index can resolve the density profiles accurately.

5.5. Temperature–density separation
Temperature–density separation (δρ−T ) is an important parameter used to characterize
the internal structure of the shock. It is defined as the distance measured between the
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Density-temperature separation (δρ−T )

Mach Number Navier–Stokes OBurnett DSMC

2 1.0602 1.3036 1.3250
3 0.9096 1.2435 1.3594
4 0.8422 1.2222 1.3876
5 0.8121 1.2132 1.3986
7 0.7825 1.2058 1.4080
9 0.7705 1.2025 1.4142

Table 1. Comparison of temperature–density parameter for the Navier–Stokes and OBurnett equations with
the DSMC results.

midpoints of the temperature and density shock profiles. Since the relaxation times for
momentum and energy transport are finite and different, there will always be a spatial
lag between temperature and density profiles. Typically in a shock wave, temperature
rises from the upstream value to the downstream value before the density, as observed
in figures 6–8, and a good hydrodynamic model should capture this spatial lag accurately.

For six different Mach numbers, the values of δρ−T for the Navier–Stokes and OBurnett
equations are compared with that of the DSMC results in table 1. It is observed that the
Navier–Stokes equations severely under-predict these values while the OBurnett equations
are able to predict the spatial lag reasonably well when compared with the DSMC results.

6. Discussion

In this section, we review the structure of the OBurnett constitutive relations for the stress
tensor and the heat flux vector and compare with other higher-order continuum theories.
This allows us to identify the problematic terms appearing in other theories which can be
the potential source of instability of the equations. An order of magnitude analysis is also
performed which helps to identify the less dominant terms in the equations.

For an order of magnitude analysis, upstream quantities, u0 and ρ0, and mean free path
λ0 are selected as the velocity, density and length scales, respectively. In the flow domain,
the pressure difference scales as ρ0u2

0 while the pressure scales as ρ0c2 (from the ideal gas
equation) with c being the velocity of sound. Similarly, the temperature difference scales as
ρ0u2

0/R while the absolute temperature scales as ρ0c2/R. We normalize the stress terms by
ρ0u2

0 and the heat flux terms by ρ0u3
0 and identify the following non-dimensional numbers

as:

Ma = u0

c
, Re = ρ0u0λ0

μ0
. (6.1a,b)

Using relation Kn = √
πγ /2(Ma/Re), we obtain an order of magnitude for the Knudsen

number as

Kn ∼ Ma
Re

. (6.2)

For the OBurnett equations, an order of magnitude analysis can be performed for
different terms in the constitutive relations for the normal stress and heat flux as (see
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(3.38) and (3.39))

σ = −4
3
μ

du
dx

+

(i)︷ ︸︸ ︷
2α1

μ2

ρRT

(
du
dx

)2

∼ O (Kn/Ma) ∼ O(Kn2)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (6.3)

q = −k
dT
dx

+

(viii)︷ ︸︸ ︷
4γ1

(
μ

ρ

)2 dρ

dx
du
dx

+

(ix)︷ ︸︸ ︷
4
(
γ1 − γ7 − γ16

Pr2

) μ2

ρT
du
dx

dT
dx

∼ O (Kn/Ma) ∼ O(Kn2) ∼ O(Kn2)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (6.4)

It is observed that the Navier–Stokes terms are of the order of Kn/Ma whereas the
higher-order terms in both the equations of stress and heat flux are of the order of the
Knudsen number squared.

6.1. Comparison with conventional Burnett equations
For the conventional Burnett equations, expressions for the normal stress and heat flux as
obtained in Uribe et al. (1998, 2000) for the normal shock wave flow problem are

σ = −4
3
μ

du
dx

+ 2
3

μ2

ρRT

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(i)︷ ︸︸ ︷(

ω1 − 7ω2

3
+ ω6

3

)(
du
dx

)2
+

(ii)︷ ︸︸ ︷
(ω4 − ω2)

R
ρ

dρ

dx
dT
dx

+

(iii)︷ ︸︸ ︷
ω2

T
ρ2

(
dρ

dx

)2

∼ O (Kn/Ma) ∼ O(Kn2) ∼ O(Ma2Kn2) ∼ O(Kn2)

(iv)︷ ︸︸ ︷
− (ω2 − ω3)

d2T

dx2

(v)︷ ︸︸ ︷
− ω2

T
ρ

d2ρ

dx2 +

(vi)︷ ︸︸ ︷
(ω4 + ω5)

1
T

(
dT
dx

)2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∼ O(Kn2) ∼ O(Kn2) ∼ O(Ma2Kn2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.5)

q = −k
dT
dx

+

(vii)︷ ︸︸ ︷
2
3

(θ4 − θ2)
μ2

ρ

d2u

dx2 +

(viii)︷ ︸︸ ︷
2
3
θ3

(
μ

ρ

)2 du
dx

dρ

dx
+

(ix)︷ ︸︸ ︷(
θ1 − 8

3
θ2 + 2

3
θ3 + 2θ5

)
μ2

ρT
du
dx

dT
dx

∼ O (Kn/Ma) ∼ O(Kn2/Ma2) ∼ O(Kn2) ∼ O(Kn2)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

(6.6)

An order of magnitude analysis for stresses in the conventional Burnett equations
identifies four terms having O(Kn2) while two terms are of O(Ma2Kn2). Out of the three
heat flux terms, two are of O(Kn2) while the second-order derivative term of velocity is
of O(Kn2/Ma2), which can be safely neglected at higher Mach numbers. The numerical
values of coefficients appearing in the stress and heat flux equations for the conventional
Burnett and OBurnett equations are given in table 2. Note that there is no discrepancy
in sign between the conventional Burnett and OBurnett coefficients. As seen from the
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(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

Conventional
Burnett

1.1991 −0.898 1.352 0.26 −1.352 0.6 −2.2692 −2.06 10.8298

OBurnett 1.0667 0 0 0 0 0 0 −2.6667 9.9167

Table 2. Numerical values of coefficients of different terms appearing in the stress and heat flux equations
for the conventional Burnett and OBurnett equations.

above equations, a much more simpler structure of the Burnett contribution to the normal
stress and heat flux is obtained for the OBurnett equations when compared against the
conventional Burnett equations. The problematic second-order derivatives terms (arising
from the material derivative terms) that are present in the conventional Burnett equations
are not encountered in the OBurnett equations. An order of magnitude analysis also
suggests that some of these terms are insignificant at higher Mach numbers. These terms
are probably responsible for the instability of the conventional Burnett equations to small
wavelengths. They also create problems in the upstream region of the shock where they
predict negative entropy generation, as shown in Comeaux et al. (1995). This is what we
observed in the upstream region where the derivatives of velocity and temperature became
too large, resulting in amplified oscillations in the shock profiles and thereby, suggesting
the non-existence of the heteroclinic trajectory (see figure 4). With no second-order
derivative terms in the OBurnett closure relations, none of these issues surface and we
have stable OBurnett equations which give smooth structures at all Mach numbers along
with the existence of the heteroclinic trajectory and positive entropy generation across the
shock.

6.2. Comparison with other higher-order transport equations
Another recent second-order continuum theory has been proposed by Paolucci &
Paolucci (2018) where the authors used the entropy inequality principle and extended
the constitutive equations to second order in strain rate and gradients of density and
temperature. It is important to note that the theory does not have its roots in the kinetic
theory of gases and the coefficients appearing in the equations are free parameters. When
applied to the shock wave flow problem, this theory predicts smooth shock structures at
all Mach numbers. The constitutive relations for normal stress and heat flux according to
this theory read as

σ = −4
3
μ

du
dx

− k∗′ μ2

ρT2

(
dT
dx

)2

− k∗∗′ μ2

ρ2T
dρ

dx
dT
dx

∼ O(Kn/Ma) ∼ O(Ma2Kn2) ∼ O(Ma2Kn2)

⎫⎪⎬⎪⎭ (6.7)

q = −k
dT
dx

− k∗∗′
(

μ

ρ

)2 dρ

dx
du
dx

− k∗′ μ2

ρT
du
dx

dT
dx

∼ O(Kn/Ma) ∼ O(Kn2) ∼ O(Kn2)

⎫⎪⎬⎪⎭ . (6.8)

Comparing these relations with that of OBurnett relations (3.38) and (3.39), we find that
the terms in heat flux equation are exactly similar whereas the OBurnett expression for
normal stress (3.38) has only a velocity gradient square term while (6.7) has a temperature
gradient square term in addition to one more term. Both the higher-order terms are found
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to be O(Ma2Kn2), suggesting these terms to be dominant at higher Mach numbers. The
parameters k∗′

and k∗∗′
appearing in (6.7) and (6.8) are given as

k∗′ = k∗
(

ρT
μ2

)
, k∗∗′ = k∗∗

(
ρ

μ

)2

, (6.9a,b)

where k∗ and k∗∗ are functions of density and temperature,

k∗ = k∗
0ρ

β4Tγ4, k∗∗ = k∗∗
0 ρβ5Tγ5 (6.10a,b)

The β and γ appearing in above equation are free parameters and their values are selected
in order to obtain good quantitative agreement of the density profiles with the experimental
measurements. Hence, the parameters k∗′

and k∗∗′
are more or less fitting parameters and

lack a derivation from first principles. This is not the case in the OBurnett equations since
there are no free parameters and all the OBurnett coefficients come from kinetic theory.

Comparison with the nonlinear coupled constitutive relations (NCCR) theory proposed
by Myong (1999) can also be done. This theory is thermodynamically consistent at every
order of approximation (Myong 1999; Tang & Xiao 2017) and is based on the generalized
hydrodynamics equations proposed by Eu (Eu 1980; Al-Ghoul & Eu 1997). The partial
differential equations for the stress tensor and heat flux vector are transformed into
nonlinear coupled algebraic equations using the adiabatic approximation (Myong 1999).
The corresponding relations for the shock wave flow problem are obtained as (Jiang et al.
2019; Liu, Yang & Zhong 2019),

σ = 1
q̃(κ)

μ

p

{
−4

3
du
dx

( p + σ)

}
(6.11)

q = 1
q̃(κ)

μ

p
1

Pr

{
− (p + σ) Cp

dT
dx

− du
dx

q
}

, (6.12)

where q̃(κ) is a nonlinear dissipation factor. Note that the equations are implicit, coupled
and can be solved by iterative methods like the Newton method for given values of
conserved variables and their derivatives. A simple exercise of substituting for σ and q
on the right-hand side of (6.11) and (6.12) using the Navier–Stokes linear constitutive laws
can make the equations explicit. The relation for normal stress is then similar in structure
to the OBurnett stress relation (6.3) although the coefficients are different. For the heat flux
relation, we see that the NCCR relation (6.12) is a subset of the OBurnett relation (6.4)
where one additional term involving the product of the gradient of density and velocity is
present in the OBurnett theory (second term in (6.4)).

Some recent works have obtained shock profiles within the Navier–Stokes framework
and important remarks can be made in this context. In the work of Uribe & Velasco
(2018), the viscosity index was enhanced (greater than one) and fine tuned so as to
obtain quantitative agreement of density profiles with the experimental results; however,
temperature profiles were markedly different when compared with the DSMC results.
An attempt for the enhancement in viscosity can be traced to Holian’s work (Holian
1988; Holian et al. 1993). The conjecture proposed by Holian was to use the temperature
component in the direction of the shock wave propagation, Txx, in computing the linear
transport coefficients instead of the mean temperature (T = (Txx + Tyy + Tzz)/3). Since
Txx is almost twice that of T , significant enhancement in viscosity is achieved, which
results in better agreement between the Navier–Stokes and molecular dynamics results
(He, Tang & Pu 2008; Velasco & Uribe 2021).
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6.3. Comparison with moment equations
We now make some important remarks in the context of the moment equations and their
results for the shock wave problem. In the moment framework, we encounter complex
production terms coming from the collision integral in the transport equations for the stress
tensor and the heat flux vector. These production terms signify the net gain of stresses or
heat flux due to intermolecular collisions. For Maxwell molecules, these production terms
can be evaluated in closed form without knowledge of the distribution function (Truesdell
& Muncaster 1980). However, for other interaction potentials, evaluation of these integrals
is extremely cumbersome and their exact form is not known, although a linearized form
of the R13 equations based on an order of magnitude method has been derived for an
arbitrary interaction potential (Struchtrup & Torrilhon 2012, 2013). Recently, Cai & Wang
(2020) proposed R13 moment equations for hard-sphere molecules where these production
terms are evaluated by considering the linearized form of the collision integral. These
equations are extremely complex and have a drastically different form when compared with
the Grad 13 moment equations. This also suggest different sets of governing equations for
different interaction potentials in the moment framework, which is not the case in Burnett
hydrodynamics. In Burnett theories, the effect of the interaction potential is expressed
through the Burnett coefficients and the viscosity index.

The effect of the interaction potential is embodied in the collision integral of the
Boltzmann equation. In the derivation of the Grad distribution function, there is no
active involvement of the Boltzmann equation (and thereby collision integral) and hence
the interaction potential does not appear explicitly in the Grad distribution function.
On the other hand, in Burnett theories, the perturbed series of the distribution function
is substituted in the Boltzmann equation to obtain successive approximations of the
distribution function. As such, the distribution function employed in Burnett theories is
general for all interaction potentials.

The application of the R13 moment equations to shock wave flow problems for Maxwell
molecules described shock profiles accurately when compared with the DSMC results
(Torrilhon & Struchtrup 2004). However, an extension of the R13 equations to hard-sphere
molecules by changing the viscosity index did not yield satisfactory results. The authors
remarked that the validity of the R13 moment equations is questionable for Ma > 4;
however, recent works by Timokhin et al. (2015, 2016, 2017) show that the applicability of
the R13 equations can be extended up to a Mach number equal to 8 for different interaction
potentials. When shock profiles are evaluated by the R13 equations for hard-sphere
molecules proposed by Cai & Wang (2020), the results agreed well with the DSMC results.
However, the high complexity in the collision terms puts a serious limitation on the usage
of these equations.

6.4. Advantages of using the OBurnett equations
With above critical comments, we now make some important remarks with respect to
the OBurnett equations. In our earlier work (Jadhav & Agrawal 2020b), the case of a
very strong shock (Ma = 134) was studied using the OBurnett equations wherein several
fundamental aspects of the equations were established. Without tweaking the equations in
any way, mathematical evidence was put forward for the following important aspects:

(i) Smooth shock structures at all Mach numbers.
(ii) Existence of a heteroclinic trajectory at all Mach numbers.

(iii) Positive entropy generation across the shock at all Mach numbers.
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It is important to note that the conventional Burnett equations and the Grad 13
moment equations do not satisfy all these fundamental aspects. For example, the
conventional Burnett equations are unstable, thermodynamically inconsistent and a
heteroclinic trajectory does not exist for the shock wave flow problem. On the other hand,
the Grad 13 moment equations suffer from subshocks. In addition, the Burnett and moment
equations require additional boundary conditions for the complete solution, which are
difficult to prescribe. Since there are no higher-order derivatives in the OBurnett equations,
well-established velocity slip and temperature jump boundary conditions are sufficient for
the complete solution. All these aspects clearly show that the OBurnett equations have
significant advantages when compared with the conventional Burnett or the Grad moment
equations and can be applied to complex flow problems without any restrictions.

The significant results achieved with the OBurnett equations can be attributed to the
Onsager-consistent approach (Singh & Agrawal 2016; Singh et al. 2017) followed in the
derivation of the equations. The distribution function formulated at the microscopic level is
consistent with Onsager’s symmetry principle. When projected onto the macroscopic level
by deriving the closure relations for the stress tensor and the heat flux vector, we obtain
OBurnett equations that comply with the principles of non-equilibrium thermodynamics.
There is no ad hoc addition or deletion of terms as we see in some of the variants of
higher-order continuum theories. Further, in obtaining shock profiles, the equations are
neither tweaked in any way nor there are any free parameters. Hence, with a sound physical
basis, it is not surprising that the OBurnett equations are entropically consistent, give
smooth shock structures at all Mach numbers and, at the same time, significantly improve
upon the results of the Navier–Stokes equations. With sound physical results for the shock
waves, the next important step is to apply the OBurnett equations for other important
non-equilibrium flows in rarefied gas dynamics which will help to firmly establish the
validity of the equations. This exercise is currently in progress and we aim to report it in
our future works.

7. Conclusions

In the present study, the internal structure of a one-dimensional normal shock wave is
studied using the recently derived OBurnett equations. In our previous work (Jadhav &
Agrawal 2020b), the equations were shown to give smooth shock structures at all Mach
numbers with positive entropy generation across the shock and the clear existence of a
heteroclinic trajectory for a demanding case of a strong shock (Ma = 134). In the present
work, the aim was to verify these claims for a wide range of Mach numbers (3 ≤ Ma ≤ 9)
with a special emphasis on the orbital structures in the phase space.

The problem was solved as an initial value problem for a dilute gas system composed
of hard-sphere molecules and the numerical results of the OBurnett equations were
benchmarked against the in-house DSMC results. The orbital structures of the OBurnett
equations in the phase space clearly suggested the existence of a heteroclinic trajectory
for all Mach numbers; a significant result in the sense that such a trajectory does not exist
for the conventional Burnett equations for Ma > 2.69. The thermodynamic consistency
of the OBurnett equations was also established by showing positive entropy generation
throughout the shock for all Mach numbers. The intricate connection between the existence
of the heteroclinic trajectory and the thermodynamic consistency of the equations
was highlighted, where we observed that thermodynamic consistency of the equations
guarantees the existence of the heteroclinic trajectory. The OBurnett constitutive relations
for the stress tensor and heat flux vector are reviewed and compared against that of the
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conventional Burnett equations and other higher-order continuum theories and important
remarks are made in the context of stability of the equations. The results of the OBurnett
equations for the variation of hydrodynamic fields across the shock also showed substantial
improvement over those of the Navier–Stokes equations. The agreement between the
OBurnett and the DSMC results is quantitative, especially in the upstream region of
the shock. These significant results firmly establish the Onsager-consistent approach in
the underlying derivation of the OBurnett equations.

We believe that with a strong fundamental basis and no arbitrary assumptions, the
OBurnett equations are not restricted to small Knudsen number flows and are expected
to discern flow physics in strong non-equilibrium flows better than the Navier–Stokes
equations, which we have shown here for shock waves. With Chapman–Enskog based
Burnett equations and the Grad moment equations valid for a small Mach number range,
the present work assumes significance and puts forward an improved theory for shock
waves with no upper Mach number limit.
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