On the highest space in which a non-ruled surface of given order can lie

By G. TIMMS.

(Received 8th November, 1939. Read 25th November, 1939.)

It is well known¹ that a non-ruled (*i.e.* not consisting of an infinity of lines) surface of order n lies in a space of not more than n dimensions $(n \pm 4)$, and that for n > 9, the maximum dimension actually attained (here denoted by R) is certainly less than n.

The precise value of R does not seem to have been stated explicitly: the purpose of this note is to shew that

 $R = I(\frac{3}{4}n) + 2, \qquad n \neq 1, 2, 3, 9;$

where I(x) denotes the integral part of x.

This conclusion is deduced from del Re's theorem² that for a nonruled surface whose prime sections are of genus $p (\geq 2)$, the maximum order is 4p + 4.

Consider a surface of order n in space of r dimensions, whose prime sections are of genus $p (\geq 2)$. The series cut on any prime section by all the other prime sections (characteristic series of prime sections) is evidently of order n and freedom r - 1: suppose that it is contained in a complete series of freedom $r_0 - 1$ (so that $r \leq r_0$), and that its index of speciality is i.

From the Riemann-Roch theorem $n-r_0+1=p-i$. From del Re's result quoted above $p \ge \frac{1}{4}n-1$. Eliminating p $r_0 \le \frac{3}{4}n+2+i$. In general i=0, *i.e.* the series is not special, so that

 $r \leq r_0 \leq \frac{3}{4}n + 2.$

If the series is special, the prime sections are not hyperelliptic (for the characteristic series of a prime section is cut thereon by primes, and is therefore certainly simple). Hence from Clifford's theorem

$$r_0 - 1 \leq \frac{1}{2}n,$$

$$r \leq r_0 \leq \frac{1}{2}n + 1 < \frac{3}{4}n + 2.$$

so that

Thus in no case for which $p \ge 2 \operatorname{can} r$ exceed $I(\frac{3}{4}n) + 2$.

¹ Del Pezzo, Rend. R. Acc. Napoli, 24 (1885), 215, and 25 (1886), 208.

² Rend. R. Acc. Napoli (3), 30 (1924), 80.

G. TIMMS

The value $r = I(\frac{3}{4}n) + 2$ is attained¹ by the surface represented upon a plane by curves of order *m* having one fixed $\overline{m-2}$ -fold point and 4m-4-n fixed simple points, *m* being the least integer $\geq \frac{1}{4}n + 1$. This confirms incidentally del Pezzo's surmise that the maximum *R* is attained by a *rational* surface.

It follows that for $p \ge 2$, $R = I(\frac{3}{4}n) + 2$.

The cases p=0, 1 (and therefore $n \leq 9$) are well-known and yield the same value for R, except when n = 1, 2 (when non-ruled surfaces are impossible); n = 3, (R = 3); n = 9, (R = 9).

¹ The prime sections are evidently hyperelliptic. The same surfaces, when $\frac{1}{2}n$ is an integer, are in fact those having the maximum order for a given genus of section.

THE UNIVERSITY, ST ANDREWS.