On the highest space in which a non-ruled surface of given order can lie

By G. Timms.

(Received 8th November, 1939. Read 25th November, 1939.)
It is well known ${ }^{1}$ that a non-ruled (i.e. not consisting of an infinity of lines) surface of order n lies in a space of not more than n dimensions $(n \neq 4)$, and that for $n>9$, the maximum dimension actually attained (here denoted by R) is certainly less than n.

The precise value of R does not seem to have been stated explicitly: the purpose of this note is to shew that

$$
R=I\left(\frac{3}{4} n\right)+2, \quad n \neq 1,2,3,9
$$

where $I(x)$ denotes the integral part of x.
This conclusion is deduced from del Re's theorem ${ }^{2}$ that for a nonruled surface whose prime sections are of genus $p(\geqq 2)$, the maximum order is $4 p+4$.

Consider a surface of order n in space of r dimensions, whose prime sections are of genus $p(\geqq 2)$. The series cut on any prime section by all the other prime sections (characteristic series of prime sections) is evidently of order n and freedom $r-1$: suppose that it is contained in a complete series of freedom $r_{0}-1$ (so that $r \leqq r_{0}$), and that its index of speciality is i.

From the Riemann-Roch theorem $n-r_{0}+1=p-i$.
From del Re's result quoted above $p \geqq \frac{1}{4} n-1$.
Eliminating $p \quad r_{0} \leqq \frac{3}{4} n+2+i$.
In general $i=0$, i.e. the series is not special, so that

$$
r \leqq r_{0} \leqq \frac{3}{4} n+2
$$

If the series is special, the prime sections are not hyperelliptic (for the oharacteristic series of a prime section is cut thereon by primes, and is therefore certainly simple). Hence from Clifford's theorem
so that

$$
r_{0}-1 \leqq \frac{1}{2} n
$$

Thus in no case for which $p \geqq 2$ can r exceed $I\left(\frac{3}{4} n\right)+2$.

[^0]The value $r=I\left(\frac{3}{4} n\right)+2$ is attained ${ }^{1}$ by the surface represented upon a plane by curves of order m having one fixed $\overline{m-2}$-fold point and $4 m-4-n$ fixed simple points, m being the least integer $\geqq \frac{1}{4} n+1$. This confirms incidentally del Pezzo's surmise that the maximum R is attained by a rational surface.

It follows that for $p \geqq 2, R=I\left(\frac{3}{4} n\right)+2$.
The cases $p=0,1$ (and therefore $n \leqq 9$) are well-known and yield the same value for R, except when $n=1,2$ (when non-ruled surfaces are impossible); $n=3,(R=3) ; n=9,(R=9)$.

[^1]The University, St Andrews.

[^0]: ${ }^{1}$ Del Pezzo, Rend. R. Acc. Napoli, 24 (1885̄), 215, and 25 (1886), 208.
 ${ }^{2}$ Rend. R. Acc. Napoli (3), 30 (1924), 80.

[^1]: ${ }^{1}$ The prime sections are evidently hyperelliptic. The same surfaces, when $\ddagger n$ is an integer, are in fact those having the maximum order for a given genus of section.

