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Abstract

Conformal slit maps play a fundamental theoretical role in analytic function theory and
potential theory. A lesser-known fact is that they also have a key role to play in applied
mathematics. This review article discusses several canonical conformal slit maps for
multiply connected domains and gives explicit formulae for them in terms of a classical
special function known as the Schottky–Klein prime function associated with a circular
preimage domain. It is shown, by a series of examples, that these slit mapping functions
can be used as basic building blocks to construct more complicated functions relevant
to a variety of applied mathematical problems.

2010 Mathematics subject classification: primary 30C20; secondary 31A15.

Keywords and phrases: conformal slit maps, Schottky–Klein prime function, multiply
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1. Introduction

The theoretical importance of conformal slit maps in the analysis of a single complex
variable is well known [2, 22, 31]. Schiffer [31], for example, has elucidated a
number of useful connections between conformal slit maps and the fundamental
objects of potential theory such as Green’s functions, modified Green’s functions and
harmonic measures. For applied mathematicians, especially those with a background
in theoretical mechanics, what often comes to mind when conformal slit maps are
mentioned is the function

z =
1
2

(1
ζ

+ ζ
)
. (1.1)

This is the well-known Joukowski map [33]. It transplants the interior of the unit disc
in a complex ζ-plane to the unbounded region exterior to a slit occupying the interval
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[−1, 1] along the real axis in a complex z-plane. In applications, this slit might model
a flat plate, an aerofoil, a defect or dislocation in an elastic medium, or a gap in a
wall.

But suppose the problem at hand involves two slits (that is, two aerofoils, defects, or
gaps in the wall). What is the generalization of the Joukowski map then? It is possible
to find formulae for such maps, expressed in terms of elliptic functions, in classical
texts on conformal mapping such as the monograph by Nehari [27] (see also the book
by Sedov [33]). But such explicit formulae for maps to doubly connected domains are
rare. Moreover, if a problem involves three or more slits, elliptic function theory is no
longer relevant (in general) and the standard literature is then virtually devoid of any
analytical results. In practice it is common to defer, in such cases, to purely numerical
methods.

The message of this review article is that a constructive analytical theory exists
for multiply connected conformal slit maps and that the latter find abundant use in
applications. This theory has been developed by the author and his collaborators in
recent years, and it relies on the use of a classical special function, hardly known
to nonspecialists, called the Schottky–Klein prime function [1]. For a taste of its
usefulness, the reader is invited to verify directly that the Joukowski map (1.1) can
be rewritten in the form

z =
ω2(ζ, −1) + ω2(ζ, 1)
ω2(ζ, −1) − ω2(ζ, 1)

(1.2)

if we define

ω(ζ, α) = (ζ − α). (1.3)

This apparently innocuous rewriting of the Joukowski map has particular significance
once it is recognized that the function (1.3) is just one manifestation (indeed the
simplest one) of a Schottky–Klein prime function.

A circular domain is a domain whose boundaries are all circles. On the left
in Figure 1, two other circular domains besides the simple unit disc are shown:
the concentric annulus domain is doubly connected, and the domain comprising
the unit disc with two excised interior circular discs is triply connected. These
circular domains can be conformally mapped to the multiple slit domains shown
to the right of each in Figure 1 by the very same map (1.2). The only difference
is that the definition of ω(·, ·) changes in each case: it must be chosen to be the
Schottky–Klein prime function associated with that particular circular domain. In
Figure 1 each circular boundary C j maps to the slit S j on the real axis in the image
domain.

This simple illustration points to the more general fact that, in many instances,
reinterpreting well-known results—in this case, the Joukowski map (1.1)—in terms of
the Schottky–Klein prime function can give important clues to useful generalizations.
In this respect, formula (1.2) might be viewed as a generalized Joukowski map to any
number of slits on the real axis.
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F 1. Each circular domain on the left is transplanted to the slit domain on the right by the map (1.2).
The only difference in each case is the definition of the Schottky–Klein prime function ω(·, ·).

2. The simplest prime function

The Schottky–Klein prime function is a classical mathematical object discussed,
for example, in Baker’s 19th-century monograph on abelian functions [1], but it is not
well known. Every mathematician has, however, come across the simplest instance
of it. The fundamental theorem of algebra states that any Nth-degree polynomial
PN(ζ), with N ≥ 1, can be uniquely factorized into a product of simpler functions in the
form

PN(ζ) = ζN + aN−1ζ
N−1 + · · · + a1ζ + a0 =

N∏
k=1

(ζ − γk),
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where {γk | k = 1, . . . , N} are the roots of the polynomial. It is natural to define the
simple monomial function of two variables ω(ζ, γ) = (ζ − γ) to be a prime function
because, by analogy with the fact that any integer can be factorized into a unique
product of prime integers, any polynomial can be uniquely factorized into a product of
such prime functions, namely,

PN(ζ) =

N∏
k=1

ω(ζ, γk).

By extension, any rational function R(ζ) (a function whose only singularities in
the extended complex plane, or Riemann sphere, are poles) can be written in the
form

R(ζ) =

∏N
k=1 ω(ζ, αk)∏N
k=1 ω(ζ, βk)

, (2.1)

where {αk | k = 1, . . . , N} are the zeros and {βk | k = 1, . . . , N} the poles of the function.
The Schottky–Klein (SK) prime function is the name given to the function that replaces
the simple monomial function (ζ − γ) when the underlying compact Riemann surface
has higher genus than the Riemann sphere. Any meromorphic function R(ζ) on such a
surface then also has a representation in terms of its zeros and poles that is very much
akin to (2.1). The prime function for general compact Riemann surfaces was first
considered by Klein [25] and Schottky [32]. It is discussed by Burnside [3] and treated
in a special chapter of the classic monograph by Baker [1]. It has close mathematical
connections with the notion of a prime form [21] on the Jacobi variety associated
with a compact Riemann surface, and prime forms have, over the years, found much
application in, for example, algebraic geometry, mathematical physics and integrable
systems theory.

The SK prime function within the Schottky model of algebraic curves has, by
contrast, been used much less often, and, in particular, its relevance to analysis in
multiply connected domains has only very recently been formulated and explored,
principally by the author and his group. Hejhal [24] considers the SK prime function
in his discussion of the classical kernel functions of planar domains, and it is on
the particular application of the prime function to planar domains that the present
article focuses. It is possible to associate with any multiply connected planar domain
a compact symmetric Riemann surface called its Schottky double [23]. The SK prime
function on such symmetric Riemann surfaces has certain special properties which are
reviewed here. Consequently, a large number of results associated with the function
theory of planar domains can be conveniently expressed in terms of the SK prime
function on the Schottky double of the domain.

3. A more complicated prime function

The SK prime function for the Riemann sphere is simple and familiar; the prime
function for a sphere with one handle, or the torus, is more interesting. One
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mathematical model of a torus is to consider the two neighbouring annuli ρ < |ζ | < 1
and 1 < |ζ | < 1/ρ, where 0 < ρ < 1 is a real parameter. These two annuli will constitute
the two symmetric “sides” of the Schottky double. They already meet at the circle
|ζ | = 1 but we also want them to be associated at the two other boundary circles |ζ | = ρ
and |ζ | = 1/ρ. A holomorphic identification of these two circles is provided by the
Möbius map ζ 7→ ρ2ζ. A meromorphic function F(ζ) on this torus can be defined as a
function satisfying the functional relation

F(ρ2ζ) = F(ζ) (3.1)

and having only poles in the annulus ρ ≤ |ζ | < ρ−1. By the functional relation (3.1),
F(ζ) will have poles in all other so-called equivalent annuli obtained by repeatedly
mapping the annulus ρ ≤ |ζ | < ρ−1 under the transformation ζ 7→ ρ2ζ, or its inverse
ζ 7→ ρ−2ζ (these will produce a tessellation of the plane). Meromorphic functions
satisfying (3.1) have been dubbed loxodromic functions [35].

But how do we construct functions satisfying (3.1)? Consider the function P(ζ)
defined by the infinite product

P(ζ) = (1 − ζ)
∞∏

k=1

(1 − ρ2kζ)(1 − ρ2kζ−1). (3.2)

(Notice that this function depends on the parameter ρ, but our notation does not include
this parameter explicitly as an argument of the function.) Using standard methods for
infinite products [35], the function (3.2) can be shown to be absolutely convergent for
all ζ , 0 and 0 < ρ < 1. It is easy to confirm, directly from this definition, that P(ζ)
satisfies the functional relation

P(ρ2ζ) = −ζ−1P(ζ). (3.3)

The function P(ζ) does not itself satisfy (3.1), but the ratio of products

R(ζ) =

∏N
k=1 P(ζα−1

k )∏N
k=1 P(ζβ−1

k )
(3.4)

does satisfy (3.1) provided the parameters {αk, βk | k = 1, . . . , N}, which are all points
inside the annulus ρ < |ζ | < ρ−1, satisfy the single condition

N∏
k=1

αk =

N∏
k=1

βk.

This result is a simple exercise based on use of (3.3). By inspection, R(ζ) can be seen
to have only poles in the annulus ρ ≤ |ζ | < ρ−1, and is therefore meromorphic on the
torus. On comparing (3.4) with (2.1) it is natural to identify the function P(ζ) with the
prime function for the torus, and, up to normalization by a multiplicative constant, this
is indeed the case.
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An important observation is that since P(ζ) is analytic in the annulus ρ < |ζ | < 1, in
addition to the infinite product expression (3.2) it also has a convergent Laurent series
there. By making use of (3.3), this can be shown to be given by the rapidly convergent
series

P(ζ) = A
∞∑

n=−∞

(−1)nρn(n−1)ζn, (3.5)

where

A =

∏∞
n=1(1 + ρ2n)2∑∞

n=1 ρ
n(n−1)

.

The Laurent series (3.5) converges everywhere in the annulus ρ ≤ |ζ | < ρ−1. These two
representations of the same function furnish the identity

(1 − ζ)
∞∏

k=1

(1 − ρ2kζ)(1 − ρ2kζ−1) = A
∞∑

n=−∞

(−1)nρn(n−1)ζn, (3.6)

which relates an infinite product to an infinite sum. The relation (3.6) is known as the
Jacobi triple product identity [36].

4. The Schottky–Klein prime function

The Riemann mapping theorem, which says that any simply connected domain
is conformally equivalent to the unit disc, has been generalized by Koebe (see, for
example, the monograph by Goluzin [22]) to the case of planar domains of finite
connectivity. Any multiply connected planar domain of connectivity M + 1 is known
to be conformally equivalent to a canonical circular domain Dζ of the following
form. Consider the unit ζ-disc in a complex ζ-plane and excise M smaller circular
discs centred at points {δ j ∈ C | j = 1, . . . , M} and having radii {q j ∈ R | j = 1, . . . , M}.
The unit circle is denoted by C0 and the boundary circles of the interior discs by
{C j | j = 1, . . . , M}. The resulting domain Dζ is a circular domain of connectivity
M + 1; the data {δ j, q j | j = 1, . . . , M} are the conformal moduli of the domain.

Given any such circular domain Dζ , there exists a special transcendental function
associated with it: the SK prime function [1], denoted by ω(ζ, α). It is ostensibly
a function of two variables ζ and α, but it also depends on the geometrical data
{qk, δk | k = 1, . . . , M} characterizing the domain Dζ (but, again, our notation does not
include these explicitly as arguments of the function).

There are two known ways to evaluate the SK prime function. There is a classical
infinite product for it that is described by Baker [1]; in the case M = 1, the product
(3.2) is precisely such a representation. Alternatively, Crowdy and Marshall [16]
have devised a novel numerical method for calculating ω(·, ·) based on representations
of it in terms of Fourier–Laurent series. The motivating idea behind the latter
numerical method is to extend the Jacobi triple product identity (3.6) (relevant only for
M = 1) to the general multiply connected case. Downloadable MATLAB files for the
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F 2. A circular domain Dζ (left) and a circular slit domain (right). The circular slit map η1(ζ; α)
in (5.1) maps Dζ to the circular slit domain, with C0 mapping to the unit circle L0, and C1 and C2
mapping to concentric circular arc slits L1 and L2 inside L0. The point α maps to the centre of the circle
L0. The domains shown are triply connected (M = 2).

computation of ω(·, ·) based on this method are available [12]. Given these resources,
for the remainder of this paper we treat the SK prime function as a readily computable
special function.

5. Prime functions and conformal slit maps

It is a remarkable and useful fact that conformal maps of multiply connected circular
domains to all the canonical slit domains [2, 27] can be expressed explicitly, as concise
formulae, in terms of the SK prime function. This was first pointed out by Crowdy
and Marshall [15]. Those formulae relevant to the remainder of this article are now
reviewed. For full details of the properties of the prime function leading to all the
results stated below, the reader should refer to the paper by Crowdy and Marshall [15].

5.1. Circular slit domains Pick a point α in the interior of some multiply connected
circular domain Dζ as shown in Figure 2 for the case M = 2. Consider the function

η1(ζ; α) =
ω(ζ, α)

|α|ω(ζ, α−1)
. (5.1)

As a conformal map this takes C0 to a unit circle L0 and the point ζ = α to the centre
of L0; the circles C1 and C2 are mapped to circular arc slits L1 and L2 concentric with
the circle L0. The image domain is a circular slit domain recognized as being one of
the canonical multiply connected slit domains [2, 27].

5.2. Half-space slit domains Consider the function

η2(ζ; α1, α2) =
ω(ζ, α1)
ω(ζ, α2)

,

where the two parameters α1 and α2 are both taken to be on the same boundary circle
of a multiply connected circular domain Dζ . Figure 3 shows the case with M = 2,
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F 3. A half-space slit domain (right) and the preimage circular domain Dζ (left). Under the map
η2(ζ; α1, α2), C0 maps to an infinite straight line through the origin and infinity while C1 and C2 map to
radial slits R1 and R2. The point α1 maps to the origin and the point α2 maps to infinity.
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R1

F 4. A radial slit domain (right) and the preimage circular domain Dζ (left). Under the map
η3(ζ; α, β), the circles {C j | j = 0, 1, 2} map to radial slits {R j | j = 0, 1, 2} of finite length. The point α
maps to the origin and the point β maps to infinity.

with α1 and α2 both chosen to be on C0. The point α1 maps to the origin and the
point α2 maps to infinity in such a way that C0 maps to an infinite straight line through
the origin. The circles C1 and C2 are each transplanted to radial slits of finite length.
This image domain is referred to as a half-space slit domain. Actually, such domains
are not discussed explicitly by Crowdy and Marshall [15], but they are a special case
of the radial slit maps presented next.

5.3. Radial slit domains Pick two points α and β strictly inside a multiply connected
circular domain Dζ and consider the function

η3(ζ; α, β) =
ω(ζ, α)ω(ζ, α−1)

ω(ζ, β)ω(ζ, β
−1

)
.

As a conformal map this takes ζ = α to the origin and ζ = β to infinity. It also maps
all the circles {C j | j = 0, 1, . . . , M} to radial slits {R j | j = 0, 1, . . . , M} which are
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F 5. A parallel slit domain (right) and the preimage circular domain Dζ (left). Under the map
η4(ζ; χ), the circles {C j | j = 0, 1, 2} map to parallel slits {L j | j = 0, 1, 2} each making an angle χ to the
real axis. The point β maps to infinity.

finite-length intervals on rays emanating from the origin. Figure 4 shows a schematic
in a triply connected case.

5.4. Parallel slit domains Consider the function

η4(ζ; χ) = a
[{
∂

∂α
− e2iχ ∂

∂α

}
log η1(ζ; α)

]
α=β

+ b,

where a, χ ∈ R and b ∈ C are constants. This maps the circular domain Dζ to the
unbounded domain exterior to M + 1 parallel slits each making angle χ to the positive
real axis and with the point ζ = β mapping to infinity. Figure 5 shows a schematic in
which the circles {C j | j = 0, 1, 2} map to parallel slits {L j | j = 0, 1, 2}.

6. Conformal slit maps in applications

The remaining sections of this paper survey a series of example applications where
the conformal slit maps mentioned above play a useful role in providing solutions to
various problems. The aim is to demonstrate the versatility of the methods and to alert
the reader to the potential of the ideas. In each problem, the reader will see that the
conformal slit maps discussed above play a central role in building expressions for the
solutions.

6.1. Point vortices and sources in ideal flow As a first example, consider
two-dimensional, ideal, irrotational fluid flow in some unbounded region D exterior
to M + 1 solid objects with impenetrable boundaries, with M ≥ 0. The objects might
be aerofoils, islands or obstacles, depending on the application. To fix ideas, Figure 6
shows a schematic of a geophysical flow in which there are three islands off a coastline
with an outlet into the ocean, perhaps from a river basin entering the sea. The fluid in
this case is quadruply connected, so that M = 3. In a simple model, the flow from a
river outlet might be modelled as a so-called point source singularity, and the oceanic
eddies moving around the islands might be modelled as point vortices.
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Islands

Coastline

Vortices

Source

F 6. Schematic of an ideal flow in a multiply connected situation. The flow from a river outlet, say,
in a coastline might be modelled as a point source; the oceanic eddies moving around the islands can be
modelled as point vortices.

To elucidate these singularity models, let w(z) be the (instantaneous) complex
potential for the flow. This is the complex analytic function of the variable z = x + iy
such that the two-dimensional velocity field (u, v) is given by

u − iv =
dw
dz
.

A point source of strength m at zα is defined to be a logarithmic singularity with the
local form near z = zα given by

w(z) =
m
2π

log(z − zα) + locally analytic function. (6.1)

A point vortex at zα of circulation Γ corresponds to a singularity of w(z) having local
form near z = zα given by

w(z) = −
iΓ
2π

log(z − zα) + locally analytic function. (6.2)

While (6.1) and (6.2) differ only in whether the strength of the logarithmic singularity
is purely real or purely imaginary, the functional forms of the associated complex
potentials are rather different and involve distinct types of conformal slit map. More
background on the basic singularities of two-dimensional ideal fluid flows can be
found in standard fluid dynamics texts [26, 33].

Let Dζ denote a circular domain that is conformally equivalent to D and let z(ζ)
be the conformal mapping from Dζ to D. There is a (hopefully harmless) abuse of
notation here in that the symbol z is used to denote both the coordinate in the image
domain and the function that carries out the mapping to that domain. A point β maps
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to infinity so that, near ζ = β,

z(ζ) =
a

ζ − β
+ locally analytic function

for some constant a. Let zα = z(α) so that α is the preimage in Dζ of zα. Define

W(ζ) = w(z(ζ)).

In order to satisfy the condition that the boundaries of D are streamlines, the conformal
invariance of the boundary value problem implies that W(ζ) has constant imaginary
part on the boundaries of Dζ . Moreover, a local analysis shows that, for a point source
or a point vortex, W(ζ) inherits the same logarithmic singularity as w(z). So for a point
source of strength m,

W(ζ) =
m
2π

log(ζ − α) + locally analytic function,

and for a point vortex of circulation Γ,

W(ζ) = −
iΓ
2π

log(ζ − α) + locally analytic function.

The complex potential W(ζ) for a point source of strength m at a point zα can be
built using conformal slit maps. It is

W(ζ) =
m
2π

log[η3(ζ; α, β)], (6.3)

where η3(ζ; α, β) is the radial slit map of Section 5.3. The complex potential (6.3) has
the required logarithmic singularity at α and has constant imaginary part on all the
boundaries of Dζ ; its imaginary part on C j is the value of [m/(2π)]arg[η3(ζ; α, β)] on
C j, which is constant because η3(ζ; α, β) is a radial slit map having constant argument
on C j for j = 0, 1, . . . , M. The function (6.3) also has a sink at β, corresponding to
a far-field sink in the physical domain D, as required by conservation of mass. To
uniquely define a two-dimensional ideal flow taking place in the unbounded region
exterior to a set of objects, it is necessary to specify the circulation around each of
those objects. It can be shown that (6.3) gives a zero circulation around each object.

On the other hand, the complex potential for a point vortex of circulation Γ at the
point zα in the same domain is

W(ζ) = −
iΓ
2π

log
[
η1(ζ; α)
η1(ζ; β)

]
, (6.4)

where η1(ζ; α) is the circular slit map of Section 5.1. This function has the effect of
putting a point vortex of opposite circulation at infinity in order that the circulations
around all the obstacles are zero. More details of point vortex and source/sink flows in
multiply connected domains are given by Crowdy and Marshall [4, 8, 14].
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Formulae (6.3) and (6.4) reflect the central role played by the canonical conformal
slit maps in this classical application. It is interesting to point out, however, that
neither (6.3) nor (6.4) can be found in standard fluid dynamics texts, except in the
simply connected case. More generally, it turns out that the ideas outlined above can
be extended to devise a new and very general “calculus” for analysing two-dimensional
ideal flows in multiply connected domains [8].

6.2. Hele-Shaw flows Hele-Shaw flows, or Laplacian growth problems, constitute
a paradigmatic free boundary problem arising, in various guises, in many different
physical applications. For flow of viscous fluid between the two plates of a Hele-Shaw
cell, the pressure satisfies the two-dimensional Laplace equation, and so complex
variable methods are again available. An important basic problem dates back to Taylor
and Saffman [34], who studied the situation where a single bubble of less viscous fluid,
such as air, travels steadily along a channel in a Hele-Shaw cell containing a much
more viscous fluid, such as oil. The bubble is assumed to be at constant pressure with
no surface tension on its boundary. The free boundary problem is to ascertain the
shape, and speed, of this bubble as it travels steadily along the channel. Taylor and
Saffman [34] also assumed that the bubble is symmetric across the channel centreline
so that they could take advantage of the classical Schwarz–Christoffel formula [20] to
find their solution. (The general topic of Schwarz–Christoffel maps is discussed again
in Section 6.5.)

One generalization of the Taylor–Saffman problem is the multiple bubble problem,
that is, to consider M + 1 constant-pressure bubbles, for M > 0, co-travelling in a
steady arrangement in free space (with no channel walls) and to ask about their shapes
as they travel. Figure 7 shows a schematic of this arrangement when M = 2. An
averaging of the Navier–Stokes equations over the thin layer of fluid between the two
plates of a Hele-Shaw cell implies that the pressure field exterior to the bubbles is
harmonic, and that it is proportional to a velocity potential φ, so that the fluid velocity
u = ∇φ.

This free boundary problem can also be solved using the conformal slit maps
introduced earlier. It is natural to move to a co-travelling frame of reference in which
the bubble configuration is steady. Suppose the bubbles all travel at speed U in a
background uniform flow with unit speed V = 1. The mathematical problem then
reduces to finding the complex potential w(z) = φ + iψ for the flow (where ψ is a
streamfunction), as well as the conformal map z(ζ) from a canonical circular preimage
region to the flow domain; the latter will give information on the bubble shapes. Since
the flow exterior to the bubbles is unbounded, we require

z(ζ) ∼
a

ζ − β
+ locally analytic function (6.5)

near some point β in Dζ which maps to infinity. As in the previous problem, it is
expedient to introduce

W(ζ) = w(z(ζ)).
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U

UU

V

V

Constant

ConstantConstant

pressure

pressurepressure

Bubbles

F 7. Three constant-pressure bubbles in an unbounded Hele-Shaw cell co-travelling steadily with
speed U in a uniform flow V . The free boundary problem is to find the equilibrium bubble shapes. The
velocity potential φ is harmonic exterior to the bubbles.

On the boundaries of all the co-travelling bubbles, which must be streamlines, we
require

ψ = Im[W(ζ)] = constant (6.6)

with W(ζ) having the local behaviour

W(ζ) ∼ (1 − U)z ∼
(1 − U)a
ζ − β

(6.7)

as ζ→ β. The condition that the fluid pressure is constant on all bubble boundaries
reduces to the condition that

Re[S (ζ)] = constant where S (ζ) = W(ζ) + Uz(ζ). (6.8)

It is clear from (6.5) and (6.7) that, as ζ→ β,

S (ζ) ∼
a

ζ − β
. (6.9)

Once W(ζ) and S (ζ) have been found, the conformal map z(ζ) can be determined and,
hence, so can the shape of the steadily translating bubbles.

Inspection of (6.6) and (6.7) shows that W(ζ) shares the same properties as a
conformal map from Dζ to an unbounded parallel slit region with slits all parallel
to the real axis. On the other hand, from (6.8) and (6.9), S (ζ) is seen to share the
properties of a conformal map from Dζ to an unbounded parallel slit region with slits
all parallel to the imaginary axis. The required solution therefore turns out to have the
form

W(ζ) = c1η4(ζ; 0), S (ζ) = c2η4(ζ; π/2),
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where c1 and c2 are constants chosen to ensure that the appropriate far-field conditions
(6.7) and (6.9) are satisfied and η4(ζ; χ) is the parallel slit map of Section 5.4. With
W(ζ) and S (ζ) determined, the conformal map z(ζ) can be found. We refer the reader
to an earlier paper by the author [7] for more details but, once again, the role of the
conformal slit maps is clear.

6.3. Hollow vortices A hollow vortex is a finite-area, constant-pressure region D
having a nonzero circulation around it [30]. Let its boundary be denoted by ∂D. It is
usually supposed that the fluid, of density ρ, exterior to the hollow vortex is irrotational
and, hence, described mathematically by a complex potential w(z) whose imaginary
part is the streamfunction for the flow. The derivative of w(z) with respect to z gives
the velocity components u = (u, v) in the complex form

dw
dz

= u − iv.

In a steady configuration the boundary of the hollow vortex is a streamline, so that

Im[w(z)] = constant on ∂D. (6.10)

Bernoulli’s theorem [26] provides the fluid pressure p from the relation

p
ρ

+
1
2

∣∣∣∣∣dw
dz

∣∣∣∣∣2 = constant,

and, in order that the fluid pressure on the vortex boundary be continuous with the
constant internal pressure, it is therefore necessary that∣∣∣∣∣dw

dz

∣∣∣∣∣ = constant on ∂D. (6.11)

Recently, several new analytical solutions for hollow vortex equilibria have been
discovered by using free streamline theory combined with the conformal slit maps
discussed here. To give an idea of the solution method, consider the two functions

W(ζ) = w(z(ζ)), R(ζ) =
dw
dz
.

The boundary condition (6.10) suggests that W(ζ) is related to a parallel slit map of
Section 5.4, with angle χ = 0, while (6.11) suggests that R(ζ) is related to the circular
slit map of Section 5.1. This is indeed the case, and expressions for W(ζ) and R(ζ)
can be determined explicitly. The chain rule then provides the functional form of the
relevant conformal map z(ζ), and hence the shape of the vortices, via the relations

R(ζ) =
dw
dz

=
dW/dζ
dz/dζ

or
dz
dζ

=
dW/dζ
R(ζ)

.

Using these ideas, the doubly connected SK prime function of Section 3 has recently
been used to find a new class of exact solutions for a von Kármán vortex street
comprising two rows of hollow vortices [13]. A superposition of such streets of hollow
vortices with gradually increasing areas is illustrated in Figure 8.
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F 8. Superposition of staggered von Kármán streets of hollow vortices with gradually increasing
areas. Three periods of each singly periodic array of vortices are shown. All solutions travel in the
horizontal direction at speed U = 0.4.

6.4. Superhydrophobic surfaces The use of conformal slit maps in applications is
not restricted just to flows involving Laplace’s equation. They can also be used to
solve problems involving low Reynolds number flows which, in two dimensions, are
governed by a biharmonic equation for the streamfunction ψ, that is,

∇4ψ = 0.

There has been much recent interest, owing to technological advances and applications
in microfluidics, in so-called superhydrophobic surfaces and the quantification of their
“effective slip lengths”. This is a measure of the frictional properties of the surface:
it is the fictional distance below the surface at which the velocity profile of a low-
Reynolds number shear flow over it would extrapolate to zero [29].

For shear flows with shear rate γ̇ over such a surface occupying the plane y = 0, the
velocity field far from the plane of the surface, as y→∞, takes the form

u = (γ̇y + γ̇λ)x̂,

where x̂ is the flow direction. Figure 9 shows a schematic of a surface at y = 0 with a
shear flow over it making angle φ with the positive x-direction. The constant λ is the
effective slip length. Larger slip lengths correspond to reduced frictional properties.
The slip length also depends on the direction φ of the shear flow. If the flow is parallel
to the length of the grooves, so that φ = π/2 in the schematic of Figure 9, the slip
length has the value λ||; if the flow is perpendicular to the length of the grooves, so that
φ = 0 in Figure 9, the associated slip length is denoted by λ⊥. To find λ|| and λ⊥ it is
necessary to solve two distinct flow problems.

It turns out that the solution to both flow problems can be reduced to finding
two conformal maps, z(ζ) and H(ζ), from a canonical (M + 1)-connected circular

https://doi.org/10.1017/S1446181112000119 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181112000119


186 D. Crowdy [16]

x

y

z

r1 s1r0 s0 r2 s2

No-shear slots

Shear flow

Period 2L

F 9. Shear flow over a surface at y = 0 with a 2L-periodic array of M + 1 no-shear grooves, or
“slots”, in each period window extending along the z-direction. In between the slots, the surface is a
no-slip surface. A single period window of the M = 2 case is shown. The shear flow makes angle φ to
the direction of the slots. The mathematical problem is to determine the effective slip length of such a
surface.

region Dζ . The first is the conformal map z(ζ) to the period strip x ∈ [0, 2L], −∞ <
y <∞, with M + 1 horizontal slits along the real axis as shown in Figure 9 in the case
M = 2. A second map, denoted H(ζ), is to the same period strip but now with M + 1
vertical slits centred on the real axis. It is found that these maps are given explicitly as

z(ζ) = −
iL
π

log
[
η1(ζ; α)
η1(ζ; α)

]
, H(ζ) = −

iL
π

log[η3(ζ; α, α)], (6.12)

where α is a point in Dζ and η1 and η3 are the conformal slit maps of Sections 5.1
and 5.3. The central role played by conformal slit maps is again clear.

Philip [28] found the solution for the slip lengths in the simplest case when M = 0.
Philip’s result can be stated as

λ|| =
c
πδ

log(sec(πδ/2)) = 2λ⊥, (6.13)

where δ = c/(2L). The results (6.12) can be used to show that this is the simplest case
of a more general result expressed concisely as

λ|| =
2L
π

log
∣∣∣∣∣ω(α, 1/α)
ω(α, 1/α)

∣∣∣∣∣ = 2λ⊥. (6.14)

Philip’s result (6.13) is retrieved when M = 0 and the prime function is simply
ω(ζ, α) = (ζ − α). For more general choices of the SK prime function, (6.14) gives
the longitudinal and transverse slip lengths when there are M + 1 no-shear slots, of
arbitrary position and length, in each period window. The formula (6.14) is clearly
relevant to a much more general class of superhydrophobic surfaces. More details of
the derivation of (6.12) are given by the author in an earlier paper [10].

6.5. Schwarz–Christoffel maps The conformal slit maps of Section 5 are simple
examples of maps from circular preimage domains to polygonal and polycircular
arc domains. Polygonal domains have boundaries that are a union of straight-line
segments; polycircular arc domains have boundaries that are a union of arcs of circles,
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including straight-line segments with zero curvature. It is perhaps not surprising, then,
that these basic slit maps have been found [5, 6] to provide “building block functions”
in constructing generalizations of the classical Schwarz–Christoffel formula [20] to the
case of multiply connected polygonal domains. This central role played by conformal
slit maps in the construction of a generalized Schwarz–Christoffel formula to multiply
connected polygonal domains in terms of the SK prime function has been elucidated
by the author in an earlier paper [9].

The topic of multiply connected Schwarz–Christoffel maps has been an active area
of research in recent years, with several groups of workers making contributions
[5, 6, 17–19]. Moreover, a new approach, based on the SK prime function, to the
conformal mapping of multiply connected polycircular arc domains has been presented
by Crowdy et al. [11].

7. Conclusion

The Schottky–Klein prime function on the Schottky double of a planar domain
provides an important linchpin in the function theory associated with planar multiply
connected domains. As indicated in this review, it has many applications in this area
and it is only recently that many of these have been identified. With new numerical
techniques for its evaluation [16], together with the availability of freely downloadable
MATLAB files [12], it is hoped that future workers will incorporate it as a theoretical
and computational tool in their investigations of problems in multiply connected
domains.
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