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Abstract

We develop a theory of ergodicity for unbounded functions <t> : J -*• X, where J is a subsemigroup
of a locally compact abelian group G and X is a Banach space. It is assumed that <j> is continuous and
dominated by a weight w denned on G. In particular, we establish total ergodicity for the orbits of an
(unbounded) strongly continuous representation T : G ->• L(X) whose dual representation has no unitary
point spectrum. Under additional conditions stability of the orbits follows. To study spectra of functions,
we use Beurling algebras L^ (G) and obtain new characterizations of their maximal primary ideals, when
w is non-quasianalytic, and of their minimal primary ideals, when w has polynomial growth. It follows
that, relative to certain translation invariant function classes &', the reduced Beurling spectrum of <j> is
empty if and only if # € &. For the zero class, this is Wiener's tauberian theorem.

2000 Mathematics subject classification: primary 46J20,43A60; secondary 47A35, 34K25, 28B05.
Keywords and phrases: weighted ergodicity, orbits of unbounded semigroup representation, non-
quasianalytic weights, stability, Beurling spectrum.

1. Introduction

Throughout this paper G denotes a locally compact abelian topological group with
a fixed Haar measure /j, and dual group G. We use additive notation for G and
multiplicative for G. The Fourier transform of a function/ e L'(G) is then defined
by f(y) = fG Y(-t)f (t) d,x(t) for y e G.

By J we denote a closed sub-semigroup of G with non-empty interior such that
G = J — J and by X a complex Banach space. For a function <p : J -> X, its translate
<j>h a n d difference Ah<j> b y h e J a r e g i v e n b y 4>h(t) = <p(t + h) a n d Ah<p = <ph — </>. I f
h = ( h u . . . , h n ) e J\ t h e n Ah<p = A h n ( A h ^ ••• ( A / , , 0 ) • • • ) , " € N ; i f f y = t, f o r
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210 Bolis Basit and A. J. Pryde [2]

all 1 < j < n, we write A"</> instead of A/,</>. Finally, \</>\ will stand for the function
defined by \<p\(t) = \\<p(t)\\ for t e J.

Weights are functions w : G -> R which, unless otherwise stated, are assumed to
satisfy the following conditions:

(1.1) w is continuous, w(t) > 1 and w(s + t) < w(s)w(t) for all s, t € G;

(1.2) w(-t) = w(t) for every r e G;
oo i

(1.3) Y^ — logio(«0 < oo for every t e G;

Atu>
(1.4) - i - e Q(G) for every s e G;

(1.5) sup — >• 0 as J —> 0 in G.
,€G to(f)

The symmetry condition (1.2) is only used to simplify the exposition. Without
it, the definition of the Beurling spectrum is modified as in [8, (1.9)]. Moreover, if
w satisfies all these conditions except (1.2) then w(t) + w{—t) satisfies all of them.
Condition (1.3) is the Beurling-Domar condition (see [14])and a weight satisfying
(1.3) is called non-quasianalytic. In the case that w is bounded we will assume
w = 1, as this will cause no loss of generality. For certain results, as we shall see,
condition (1.4) may be weakened. We can also pass to equivalent weights. Functions
io, W\ : G —> K are equivalent if c\w(t) < wx{t) < c2w(t) for some cx, c2 > 0 and
all t e G. The function w(t) = (1 + | sin r|)(l + |r|) on 1 does not satisfy (1.4), but
is equivalent to W\(t) = 1 + |r| which does satisfy (1.4).

Frequently we will also assume the existence of N e 1+ such that

w(mt)
(1.6) lim —j— = 0 for all t e G; and

w(mt)
(1.7) inf ., > 0 for some t e G.

mel \m\N

We will say that a weight w has polynomial growth of order N e Z+ if it satisfies
(1.6)—(1.7). The Beurling-Domar condition (1.3) follows from (1.6).

A function <f> : J —> X is called w-bounded if <j>/w is bounded. The space
BCW(J, X) of all continuous io-bounded functions <p : J ->• X is a Banach space
with norm Î IL.oo = sup,ey(||0(/)||/iu(r)). For this space and others, we will omit
the subscript w when w = 1.

Following [31, page 142], we say that a function 4> : J -> X is w-uniformly
continuous if for each e > 0 there is a neighbourhood U of 0 in G such that \\<p{s) —
0(011 < em(r) for all r € J and 5 e (t+ U)n J. The closed subspaceof BCW(J, X)
consisting of all m-uniformly continuous functions is denoted BUCW(J, X); the closed
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subspace of BCW(J,X) consisting of functions 0 for which (f>/w e C0(i , X) is
denoted CW,O(J, X).

Condition (1.5) is equivalent to w e BUCW(G, C). Also, if w satisfies (1.1) and
(1.2), then |AAu;(r)/u;(OI < w(h) - 1 for all A, t e G and so (1.5) holds if u>(0) = 1.
Moreover, Ah(<p/w) = Ah<j>/w — (<f>/w)i,(AhW/w) and therefore from (1.5) we
conclude

(1.8) </> e BUCW(J, X) •O- (j>/w is uniformly continuous and bounded.

Furthermore, \\4>t+h - (p,\\Wt00 < w(t)\\<t>h - 0IL,oo and so

(1.9) 4> e BUCW(J, X) => t\-+ 0, : J - • BUCW(J, X) is continuous.

EXAMPLE 1.1. The function to(r) = c(l + IrD" exp(l + \t\)p on Kd or Td satisfies
(1.1)—(1.5) whenever c > l/e, N > 0 and 0 < /? < 1. If also p = 0 then UJ has
polynomial growth of order N.

The Beurling algebra L\,{G) = {f eh\G):wf e Ll(G)} is a subalgebra of the
convolution algebra L\G) and a Banach algebra under the norm

ll/IL,i= [ \f(t)\w(t)dfi(t)

JG

(see [31, page 83]). The co-spectrum of a closed ideal / of L^iG), is defined by

cosp(/) = {y eG: f(y) = 0 for all / e / } .

In this paper we introduce a new method for studying the asymptotic behaviour of
strongly continuous representations T : J -> X. In particular, the results are applied
to unbounded solutions of the Cauchy problem on the half-line R+. There are three
major ingredients of this method. Firstly we introduce the notion of tu-ergodicity for
unbounded functions. For weights satisfying (1.4) many results for bounded ergodic
functions have analogues for u>-ergodic functions (see Section 2). Note that while
the spaces BCW(J, X) and LX

W{G) are unchanged if w is replaced by an equivalent
weight, this is not the case for spaces of uj-ergodic functions. Secondly we introduce
the reduced Beurling spectrum of unbounded functions <p relative to certain function
classes &. This spectrum is used to determine membership of &. As a consequence,
we reduce the study of the asymptotic behaviour of <j> relative to & to that of (j>/w
relative to &/w. Thirdly we employ the method used by the first author in [6] to unify
the study of homogeneous and inhomogeneous equations for the Cauchy problem on
the half-line.

The structure of this paper is as follows. In Section 2 we study some translation
invariant closed subspaces & of BCW(J, X) that will be used in the applications.
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These spaces have an additional property that we call J?(/Cw-invariance. Our main
examples are the spaces EW(J, X) of ui-ergodic functions. Though other authors use
different characterizations of ergodicity, usually for bounded functions (see [7]), we
use that of Maak [25, 26] because of its simplicity and wide applicability. See also
[20, 21] and references therein. (We thank Hans Giinzler for pointing out that Maak
[25] preceded Isekii [20] cited in our paper [7]). In particular, we obtain conditions
on a subspace & of BCW(J, X) under which a w-ergodic function belongs to &
whenever its differences belong to &'. Important examples of iu-ergodic functions
are certain orbits T()x of strongly continuous representations T : J ->• X (see
Theorem 2.6, Theorem 2.7) and <p *f whenever <j> e BUCW(G, X), f e Ll

w(G) and
/ ( I ) = 0 (see Corollary 3.2).

Beurling algebras play an important role in harmonic analysis. In particular a
knowledge of their ideal structure is useful in applications as we shall demonstrate.
However, the identification of the primary ideals of a general Beurling algebra is a
difficult problem. If w is non-quasianalytic, then Ll

w(G) is a Wiener algebra (see
[31, page 132]). Moreover, its maximal ideals are the sets Iw(y) = {/ 6 Ll

w(G) :
f (y) = 0} where y e G, and its primary ideals are those whose co-spectrum is a
singleton. By Wiener's tauberian theorem, all (closed) primary ideals in Ll(G) are
maximal (see [32, 7.2.5, 7.2.6]). This is not the case for general Ll

w(G). For example,
if G = K, then

n = tJf(t)dt = O for 0 < ; < k

defines a chain of primary ideals (see Gurarii [17]). Moreover, for a weight of
polynomial growth N, the primary ideals of L^iZ) are the sets Ik — [f e Ll

w(Z) :
/ y ) ( l ) = 0 for 0 < j < k], where 0<k<N (see [8, Theorem 3.1]). In Section 3
we obtain two characterizations of the minimal primary ideals of Lx

w{G) when w
has polynomial growth—one in terms of differences and one in terms of w-spectral
synthesis (see Theorem 3.6 and Corollary 3.7). This is achieved using polynomials
p : G -*• X, a study of which was commenced in [8, Theorem 2.4]. In particular,
for weights of polynomial growth, polynomials are the 10-bounded functions with
Beurling spectrum {1}. Moreover, functions in BCW(G,X) with finite Beurling
spectra are sums of products of characters and polynomials. We also characterize the
maximal ideals in terms of differences when w is non-quasianalytic (see Theorem 3.1).

In Section 4 we define the spectrum sp^(0) relative to the class & c B Cw(J, X)
of a function <j> 6 BCW(G,X). We prove (Theorem 4.3) a generalization of Wiener's
tauberian theorem, characterizing functions for which sp^(0) = 0 as those for which
4>\j e &. In turn, this is used to characterize functions for which sp^(0) is finite.
We also generalize a tauberian theorem of Loomis (Theorem 4.7) for the case that

is residual. An application to convolution operators appears in Section 5
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(see Theorem 5.1 and its corollaries). In particular, we obtain tauberian theorems of
the form (k * <p)\j e & implies </>|y e &'. Finally, we prove stability theorems for
unbounded solutions of the Cauchy problem (Theorem 5.6) and, more generally, for
the orbits of strongly continuous semigroup representations (Theorem 5.7).

2. Some function classes

We begin by defining a notion of ergodicity that applies to unbounded functions.
This ergodicity differs from both that of Maak [25, 26] and that of Basit and Giinzler
[13, 12]. If J is R or K+, a function <p € LLC(J, X) is sometimes called uniform-
ergodic with mean x e X if limr_>0O(l/ T) f0 <p(s + t) ds = x uniformly in t. For
example, in [2, 3, 5] uniform-ergodicity is used to prove tauberian theorems for
functions in BUC(J, X), whereas in [12] it is used for a similar purpose for certain
unbounded functions and distributions. The definition of uniform-ergodicity extends
readily to functions on semigroups J which possess a F0lner net. See for example [7].
However, Maak [25, 26] introduced a notion of ergodicty that applies for functions on
general semigroups (see also [20, 21]).

Thus a function <j> : J -> X is Maak-ergodic with mean M(<p) = x e X if for each
e > 0 there is a finite subset F c. J with || (1/|F|) E, e F(0, - x) | < £.

We denote by E(J, X) (respectively E0(J, X)) the closed subspace of Maak-
ergodic (respectively Maak-ergodic with mean 0) bounded continuous functions <f> :
J -> X. (Note the difference with our notation in [7, Section 2]; there E(J, X) stands
for the set of all bounded Maak-ergodic functions <j> : J -* X).

It is proved in [7, Corollary 5.2] that for certain semigroups J, a function <p e
BUC(J, X) is uniform-ergodic if and only if it is Maak-ergodic with the same mean.

Also, the space of Maak-ergodic functions E(J, X) is closely related to the differ-
ence space @{BUC(J, X)), the span of the set of all differences

Ah<t>, <p e B U C ( J , X ) , h e J ,

studied by Nillsen [27, pages 1 and 10] for the case J = G, X = C. As in [7,
Corollary 5.2], it can be shown that

Eo(J, X) n BUC(J, X) = ®(BUC(J, X)).

To apply ergodic theory more generally, we introduce a new class EW(J, X),
(respectively EWt0(J, X)), the closed subspaces of B Cw (J, X) consisting of functions
<j> for which <f>/w is Maak-ergodic (respectively Maak-ergodic with mean 0). Such
functions we shall refer to as w-ergodic. In particular, for non-zero real s, the function
(f>(t) = t e'sl is neither uniform-ergodic nor Maak-ergodic on R, but if w(t) = 1 + \t\
then </> is u)-ergodic and M((j>/w) = 0.
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Note that (f>(t) = t sin t2 is uniform-ergodic on R but not Maak-ergodic since

tn-m tn + fti . n

— y^(t + tt) sin(r + u)2 = — Y^ t sin(f + r,)2 + — Y^ tt sin(/ + f,)
m '—' m *—' m ^ ^

1=1 i=i i=i

2

is not bounded for all finite collections tu . . . , tm e R. However, for general <p e
L/̂ CIR, X), if </> is uniform-ergodic, then M\<j>(t) = /0' (p(t + s)ds is bounded and
uniform-ergodic with the same mean (see [12, Proposition 7.1]). Therefore M2<p e
BUC(R, X). It follows that if <f> : R -+ X is uniform-ergodic then M2<j> is Maak-
ergodic with the same mean.

The following proposition gives some useful properties of iu-ergodicity and the
theorem provides a simple but important application of the concept.

PROPOSITION 2.1.

(a) 7/0 6 EW(G, X), then </>\j € EW(J, X) and M((4>/w)\j) =.M(<t>/w).
(b) If G is not compact, then CW$(J, X) C EwQ(J, X).
(c) If<p 6 BCW(J, X) then A,4> € EWi0(J, X)for all t e J.

PROOF, (a) Let x = M(<p/w). Given e > 0 there is a finite set F = {r1;..., tm)
c G such that | (1/m) £ J 1 , {()>/w)(tj +t)-x\ < e for all t e G. Choose u,, Vj e J
such that tj = uj — Vj. Let v = V\ + • • • + vm and set Sj = tj + v. So Sj e J and
1 d /w) E7-i i<t>/w){sj + t) - x I < e for all t e J.

(b) Since G = J — J, J is not compact. Let 0 e CWio(J, X). Given e > 0, choose
m e N such that ||</>(0|| < (me/2)w(t) for all r € 7, and a compact subset K of J
such that ||0(r)|| < (e/2)tu(r) for all ? ^ A". Take any ^ e 7 and for 2 < j < m
choose tj e J inductively such that tj £ U ^ U i + K — K). Then for any t e J,
t + tj e K for at most one j and so

m ^ w(tj m

This shows that 4>/w e EWt0(J, X).
(c) First note that A,(f>/w = A,(<f>/w) + (<p/w),(A,w/w). Given e > 0, choose

m eN such that \\<p(t)\\ < (me/2)w(t) for all r e J. Since

(A,(4>/w))s = Al+s(4>/w) - As(<f>/w),

1 ^ £7=i A ' ( < / > /^)0" ' + « ) | < e for all t,u e J, showing A,(4>/w) e Ewfi(J, X).
By (1.4), (<t>/w),(A,w/w) e Q,(J, X). If G is not compact, then (<p/w),(A,w/w) e
Ew,o(J, X) by part (b). If G is compact, then w = 1 so (4>/w),(A,w/w) = 0. •
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THEOREM 2.2. Let & be any translation invariant closed subspace ofBCw (J, X).
Ifcp e EW(J, X)andA,<t> e & for each t 6 J"andsomen € N, then<j>-M{<t>/w)w €
& + Cw,o(J, X). If also w=l, then </> - M(<f>) € &.

PROOF. Assume firstly that n = 1. For any finite subset F c J, we have

w
-„(*

—
reF t€F

A,

The first term on the right may be made arbitrarily small in norm by suitable choice
of F. The second term is in & by assumption and the third term is in CWt0(J, X)
by (1.4). If w = 1, then A,u> = 0. The result for general n now follows. •

We say that a subspace & of B CW(J, X) is BUCw-invariant whenever it satisfies

(2.1) if 0 e BUCW(G, X) and </>|, e & then <p,\j e & for all r 6 G.

Other conditions that we will sometimes use are

(2.2)

(2.3)

& is closed under multiplication by characters;

if w is unbounded, & 2 CWi0(J, X).

A closed linear subspace
Aw-class.

of BUCW(J, X) satisfying (2.1)-(2.3) will be called a

REMARKS 2.3. (a) It is easy to see that if <p e Ewfi(J, C), 0 > 0 and yjr e
BC(J,X), then (f>\(r e EWi0(J,X)- Hence, Proposition 2.1 (c) and Theorem 2.2
remain valid with CWto(J, X) replaced by Ewfi(J, X) if, instead of (1.4), w satisfies
the weaker condition

(2.4) | A5w| € Ewfi(J, C) for every s e J.

(b) The spaces EW(J, X) and Ewfi(J, X) are BUCW-invariant. Indeed, let (f> e
BUCW(G,X) with 4>\j € EW{J, X). If t e G, then (f>, = A,<p + <j> and so by
Proposition 2.1 (c), <j>,\j € EW(J, X) and M(<p,/w) = Mty/w).
(c) The partial ordering <, defined by s < t whenever t — s e J U [0], makes J a

directed set. We will use this order to define limits here and below. In particular, we
may define

= \(t>eBUCw(J,X) :lim
w{t)

= 0
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Using G = J — 7, it is easy to check that &wfi(J, X) is BUCW-invariant. Moreover,
if G = R or I and 7 = K+ or Z+, then ^ , 0 ( 7 , X) = CW,O(J, X) but in general this
is not the case. For example, &w,o(G, X) = {0}. However, &wfi{J, X) 2 Cwfi{J, X)
if 7 satisfies the following condition:

(2.5) for every compact subset K of 7 there exists t e 7 with K n (r + 7) = 0.

(d) For some semigroups 7 we have ^" D CwS){J, X) for every B(/Cw-invariant
closed subspace & of BCW(J,X). For example, this is the case if Q>(J, X) =
C0(G, X)\j and 7 satisfies

(2.6) for every compact subset K of G there exists t e G with (r + ^ ) n y = 0.

Indeed, any £ € CW,O(J, X) can be extended to a function f e C.otG, X). Since G
is normal (see [18, page 76]) f can be approximated by a function f e CWi0(G, X)
with compact support K say. Choose t e G such that (/ + K) n 7 = 0 and set
4> = \lr-te BUCW(G, X). Then 01, = 0 e ^" so VI; = 4>,\j e J5". As ^ is closed,

(e) Condition (2.6) holds if G = ti£d and 7 = (K+)''. In fact, it holds whenever J
and the interior of —J are disjoint. Indeed, let s € J°, the interior of J, and
choose an open neighbourhood U of 0 in G such that —S+UC.—J". Given a
compact subset AT of G, choose a finite covering {c, + (/ : 1 < j < n) of K. Now
Cy = a, — bj for some a7, bj € J. Setting a = a\ + • • • + an and / = — a — s we find
t + K c U"=i(-« + a; - fy - * + £/) C - 7 ° . Hence (r + K) D 7 = 0.
(f) Translation invariant subspaces of BCW(G, X) are BUCW -invariant. In particular,

Cw,o(G, X) is Sf/C^-invariant as is the class 0c consisting of just the zero function
from G to X.
(g) A class & is a fif/C^-invariant subspace of BUCW(J, X) containing Cwfi(J, X)

if and only if &/w is a fl[/C-invariant subspace of BUC(J, X) containing Co(7, X).
Indeed, if 0 e BUCW(J, X) and / 6 7, then (0,/iu) - (<f>/w), = (4>/w),(A,w/w) e
0,(7, X) by (1.4). The claim follows.
(h) The spaces C ,̂o(G, X) and «^w,o(7, X) are A,,,-classes. By remark (a), the

subspace of Ew0(J, X) defined by

AEwfi(J, X) = {4>€ BUCW(J, X) :\4>\€ Ewfi(J, Q)

is also a A„,-class. Moreover, this class is closed under multiplication by functions
from BUC(J, C).

Many other examples for the case w = 1 are given in [5]. These include almost
periodic, almost automorphic and absolutely recurrent functions. Further examples
for other weights will be discussed in a subsequent paper.
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PROPOSITION 2.4. Let & be any BUCw-invariant closed subspace ofBCw(J, X).
If4>eBUCw(G,X),f eLl(G)and<t>\j e &, then (</> * / ) | , e / .

PROOF. We may assume/ e CC(G), since this space is dense in Ll
w(G) (see [31,

page 83]). Now (<j> *f)(t) = fK4>-s(t)f (s)d^(s) where K is the support o f /
and t e G. By (1.9), the function s -*• <f>s\j : G -*• & is continuous and so the
function F(s) = (j>-s\jf (s) is strongly measurable. This implies that | F | is integrable
and hence the integral fK <f>-s\jf (s) dfi(s) is a convergent Haar-Bochner integral, by
Bochner's theorem [34, page 133], and so belongs to &'. As evaluation at t e J is
continuous on & we conclude that (0 *f)\j e &. •

Since

. A_,io(r)
w \ w (0 w(t)

a proof similar to the last gives

(2.7) — * / - ^—^- e C0(G, X), respectively AE0(G, X),

w ID

for any <p e BUCW(G,X), f e LX
W{G) and w satisfying (1.1) and (1.4), respec-

tively (2.4).

COROLLARY 2.5. If <p e BUCW(G,X), f e Ll
w(G) and <p\j is w-ergodic, then

(4 *f)\j is w-ergodic and M(((4> *f)/w)\j) = M((4>/w)\j)f\l).

PROOF. B y Propos i t i on 2 .4 , (</> *f)\j i s w - e r g o d i c . S o , b y (2 .7 ) , ((4>/w) *f)\j
is M a a k - e r g o d i c a n d M(((<f>/w) *f)\j) = M((<f>*f)/w)\j. B u t ((<j>/w) *f)\j -
M«4>/w)\j)f\l) = ( ( ( 0 / w ) - M«4>/w)\j)) *f)\j 6 E0(J, X ) , aga in b y P r o p o s i -
tion 2.4. The corollary follows from (2.7). •

The next two theorems provide important examples of ergodic functions to be used
in Section 5. Whether or not w is a weight, we say </> : J -> X is w-ergodic if
0/w is uniform-ergodic and totally w-ergodic if y<j> is w-ergodic for all y e G.
Moreover, a representation T : J -> L(X) is dominated by w if | | r(f) | | < cw(t)
for all t e J and some c > 0. The unitary point spectrum of T is given by
ov(T) = {y € G : T(t)x = y(t)x for some x ^ 0 and all t e J} and the dual
representation T* : J -*• L(X*) by (T*(t)x*,x) = (x*, T(t)x) for** 6 X*, x e X.
The dual of a (densely defined) operator A : X -> X is denoted by A* : X* —>• X*
and op (A*) is its point spectrum.

THEOREM 2.6. Let w : J —> [1, oo) be a continuous function satisfying A,w/w e
CQ(J) for all t € J. Let T : J —> L(X) be a strongly continuous representation
dominated by w.
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(a) If I <£ av (T*), then each orbit T()x is w-ergodic with M((l/w) T(-)x) = 0.

(b) If (Tup (T*) is empty, then each orbit T(-)x is totally w-ergodic and

M«y/w)T(-)x) = 0

for ally € G andx e X.

PROOF. Note that {T(h)x -x,x*) = (x, T*(h)x* - x*) for all h e J, x e X and
x* € X*. It follows that 1 i o-up(T*) if and only if span{(7\/0* -x :heJ,xeX)
is dense in X. But if y = T(h)x - x, then T(-)y = AhT(-)x which, by the proof of
Proposition 2.1 (c), is tu-ergodic with M((l/w)T(-)y) = 0. Since the span of such y
is dense in X, (a) is proved and (b) then follows. •

THEOREM 2.7. Let w : K+ ->• [1, oo) be a differentiable function with w'/w €
A £o(^+> Q- l-*t A be the generator of a Co-semigroup of operators T(t), t > 0 on
X which is dominated by w.

(a) If(j>/w € BC(R+, X) and <j>' € L,10C(IR+> X), then <j>'/w is uniformly ergodic
with M(<p'/w) = 0.
(b) Ifx € range(A), then the orbit T(-)x is w-ergodic with M((\/w)T(-)x) = 0.
(c) If op(A*) (1 i'R is empty, then each orbit T{-)x is totally w-ergodic and

M((y/w)T(-)x) = 0 for all y €& andx e X.

PROOF, (a) For each T > 0 and t > 0,

| i

w(t + s) T \_w(t + s) Jo T Jo w(t + s) w(t

But (cp/w)(w'/w) e AE0(^+, X) and hence

— ds = 0 uniformly in t.r l fT<l>'(

(b)lf x = Ay set 0(r) = T(t)y. Then 7\r);c = <p'(t) and the claim follows
from (a).

(c) If ys(t) = eisl, then 5(0 = y~\t)T(t) defines a C0-semigroup with generator
A — is. By (b), £(•)* is w-ergodic with mean 0 for each x 6 range(A — is). Since
ap (A*) D /R is empty, range(A — is) is dense for all s e U. and the claim follows. •

REMARK 2.8. Functions w satisfying the conditions of Theorems 2.6-2.7 arise
very naturally. For example, w = 1. More generally, if w is a weight on R, then
u)(0 = /„' w(t + s)ds is differentiable for t > 0 and u)'(0 = w(? + 1) - w(0-
Moreover, by the Mean Value Theorem, u>(0 = w(t + 0(t)) for some 0 < 0(0 < 1
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and so (l/c)w(t) < w(t) < cw(t) for all t > 0, where c = max{w(s) : 0 < 5 < 1}.
Also

w Jo

Asw w A\W
as and — =

w w w

Soby(lA),(w/w)-l,w'/w e C0((R+). If0 e BCW(R+,X),then(<f>/w)-(<p/w) =
(4>/w)((w/w) — l)(w/w) 6 C0(K+, X). Hence 4> is u>-uniformly continuous if and
only if (0/ui) is uniformly continuous and <f> is io-ergodic if and only if <f> is ii;-ergodic.
Finally, Ahw(t) = f0 Ahw(t + s) ds and so from (1.4) and (1.5) we conclude that
(Ahw/w) e Q(R+,C)andsup,eR+(|AAu>(0l/u>(0) -> Oas h -+ Oin K+.

3. Maximal and minimal ideals

For m e N, t = (tu ..., tm) e Gm and / e Ll
w(G) write A,/ = A(l • • • A,J.

Then for each y e 6 let J™(y) denote the closed span of {yAJ : / 6 Ll(G),
t € Gm}. Since (yA,f) * g = yA,(f * Y~l8) w e n a v e a chain of closed ideals
Jl(Y) 2 ^ ( y ) A 2 • • • • Moreover, if g = y Ah • • • AJ then g(xy) = (r(r,) - 1)
• • • (*Um) — 1)/ (T) which is 0 for all such / and t if and only if r = 1. Hence each
of the ideals J™(y) is primary with co-spectrum {y}. Recall (see [17, page 33]) that
Iw{y) is the maximal ideal in Ll

w(G) with co-spectrum {y}. The following theorem
gives another characterization of these maximal ideals.

THEOREM 3.1. For each y e G, Iw(y) = Jl
w(y).

PROOF.

Jl(Y)x = [<t>e L~(G) : 0 * (yAJ) = 0 for all t e Gand / e OW(G)}

= {<t>e L™(G) : A,(y"V) = 0 for all t e G)

= {4> € L~(G) : y~V is constant) = y C

Hence

^ ( / ) X i = if 6 Li,(G) : 0 * / = 0 for all «/> e J^(y)x}

= {/ eLl(G):y*f =0} = {f e Ll
w(G) : f\y) = 0} = Iw(y).

But Z11 = / for any closed ideal in L^iG) and so the theorem follows. •

As an initial application of Theorem 3.1 we prove an ergodicity result.

COROLLARY 3.2. / / / e Iw(y) for some y e G and <j> e BUCW(G,X), then
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PROOF. Let h = yA,g, where t e G and g e Ll(G). By Proposition 2.1 (c),
y~'(</> * h) = A,(y~x<f> * g) € EW#(G, X). Since / is in the closed linear span of
such functions h and Ew0(G, X) is complete, the result follows. •

Following [8, (2.1), (2.2)] we say that a function p e C(G, X) is a polynomial if
A"+1p = 0 for some n e N and all t e J. Equivalently (see [14]), p(s + mt) is a
polynomial in m e Z+ of degree at most n for all s, t e J. Since A, is a continuous
mapping on B Cw (G, X), the polynomials in B Cw (J, X) form a closed subspace which
we denote by PW(J, X). The following result was proved in [8, Theorem 3.4] under
a slightly stronger assumption than (1.6) and with X = C. The same proof is valid
under the present assumptions. See also [30, Proposition 0.5] for the case G = R.

THEOREM 3.3. Suppose w has polynomial growth and <p e BCW(G, X). Then
sPu,(0) = {yi.---.yn} ' / and only if <p = £ " = 1 YjPj for some non-zero pj e
PW(G,X).

COROLLARY 3.4. Suppose w has polynomial growth of order N and I is a closed
ideal ofLl

w(G) with cosp(/) = {1}. Then A,g e I for all g e Lx
w{G) and t e GN+\

PROOF. Consider the annihilator I1 = {</> e L~(G) :</>*/ = 0 for a l l / € / } ,
a closed translation invariant subspace of L™(G). If 0 e I1 and /„,(</>) = [f 6
Lj,,(G) :</>*/ = 0 } then /„,(<£) 2 / . This implies that cosp(/u,(0)) c cosp(/) = {1}.
By Theorem 3.3, </> € PW(G, C) and so A,tf> = 0 for all t e G"+1. If * e Li,(G)
then <j> * A,g = A,<t> * g = 0, showing A,g e IX1. Since Z1-1- = I the theorem is
proved. •

Finally, we establish relationships between spectral synthesis and minimal primary
ideals. For y € G, let Sw(y) denote the closure of the set of / 6 Z^(G) for which
/ is 0 on a neighbourhood of y. Functions in Sw(y) are said to be of w-spectral
synthesis with respect to {y}.

LEMMA 3.5. For each f e Ll
w(G) the function t \-+ f, : G -> /-^(G) w iu-

uniformly continuous.

PROOF. Let V be a compact neighbourhood of 0 and set c{ = suprev w(t). Given
e > 0 choose g 6 C(G, C) with compact support K such that \\g — f || < e/3c\.
Set c2 = (1 + c O / ^ w(t)d/x(t). As g is uniformly continuous there is a compact
neighbourhood U of 0 in G such that U c V and |g(r) - gn(r)| < e/3c2 for all h e U
and t e G. Hence for each h e U,
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< / -i- w(t) dfi(t) + / ^-w(t-h) dfi(t) < J.
JJC 3c2 y*: 3c2 3

So, for t € G and h e [/ we have

11/, -/,+AII < uKOII/ - M l < w(t)(\\f - g\\ + \\g - ft|| + ||ft - M l )

< w(t) (^-+ ?-+ ̂ -w(h)) <ew(t). D

THEOREM 3.6. For each y e G,we have Sw(y) C p|~=1 7^(y).

PROOF. Since /*(y) = yJ™(l) and S^Cy) = ySw(l), we may take K = 1. For
a fixed g 6 Ll

w(G) satisfying g(l) = 1, choose a compact set AT, c G such that
/G\K \s(^)\w(s)dfi(s) < \/n and set H = ]J™=1 Kn. Let Tg be the operator on
Ll

w(G) defined by

Ju
By Lemma 3.5, the integrand is weakly measurable and separably-valued on H, and
therefore the integral is an absolutely convergent Bochner integral. Moreover, Tg

is bounded and maps L}
W(G) into yj,(l) and J"(l) into J™+1(1) for each m. Note

that/(.<) - / * g(t) = -fH{*-J){t)g{s)dn(s). So for each </> 6 L~(G), the
dual space of L^G), it follows from Fubini's theorem that fG<p(t)Tgf (t)dfx(t) =
/c</>(')(/ - / *«)(r)dA*(O- Hence, TJ =f -f*g.

Now take any / e L{
W(G) with / = 0 on a neighbourhood U of 1. Choose

* € Li,(G) with |(1) = 1 and supp(£) c U. S o / * g = 0 and/ = 7 7 / e 7^(1).
Hence, Sw(l) c 7™(1) for all m 6 N, completing the proof. •

COROLLARY 3.7. Suppose w has polynomial growth of order N and y e G.

(a) 7^+1 (y) w the minimal closed ideal ofLl
w(G) with co-spectrum {y}.

(b) Sw(Y)

PROOF, (a) Since (yA,/) * g = yA,(f * y~xg), 7^+1(y) is a closed ideal. Mini-
mality follows from Corollary 3.4.

(b) Since Sw(y) is an ideal with co-spectrum {y} the result follows from (a) and
Theorem 3.6. •

4. Spectral analysis

In this section we will assume that & is a flf/CVinvariant closed subspace of
BCW(J,X).
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Let <p e BCW(G, X). The set Iw(<j>) = {/ 6 Ll
w(G) :</>*/ = 0} is a closed ideal

of Li,(<j) and the Beurling spectrum of <j> is defined to be sp^O/i) = cosp(/u,(0)).
More generally, following [5, Section 4 ] , set /*(</>) = {/ e ^l(G) : (4>*f)\j € ^ } .
By condition (2.1), 7.^(0) is a closed translation invariant subspace of LX

W(G) and is
therefore an ideal. We define the spectrum ofcp relative to &, or the reduced Beurling
spectrum, to be sp^(0) = cosp(/^(^)). The following lemma may also be found in
[18, page 303], [19, page 298] for the spaces Ma(G), Ll{G).

LEMMA 4.1. For each <$> 6 BUCW(G, X) there is a sequence of approximate units,
that is a sequence (gn) in Ll(G) such that <j> * gn -> <p in BUCW(G, X).

PROOF. Since <p is w-uniformly continuous, there is a compact neighbourhood Vn

of 0 in G such that ||0_, - 0|L>OO < l/n for all s e Vn. Choose gn e CC(G) with
c Vn, gn>0 and fa gn(s) dfi(s) = 1. So gn e L\{G) and for each t e G,

**»(')-0(011 = [<Ht-s)-<P(t)]gn(s)dn(s)
n

D

The following proposition contains some basic properties of these spectra. The
proof is the same as for the Beurling spectrum. See for example [16, page 988]
or [32].

PROPOSITION 4.2. Let<f>,f e BCW(G, X).

(a) sp^(</>,) = sp^(4>) for all t € G.
(b) sp^(0 * / ) c Sp,(0) n supp(f)forallf e Lx

w{G).
(c) sp,(0 + ^r)Csp,(0)Usp^W.
(d) sp^(y0) = y sp^(^), provided & is invariant under multiplication by y € G.
(e) Iff 6 Ll

w(G)andf = 1 on a neighbourhood of spp((j)), then sp#(<p*f —<p)=0.

The following theorem gives our motivation for introducing sp^ (</>).

THEOREM 4.3. Let<p e BUCW(G, X).

(a) sp^(0) = 0 i/a/iJ on/v i /0 | y € ̂ ".
(b) / /Af0 | y e & for all t € G and some k € N, r/ze/i spjr(0) C {1}.
(c) //"it; has polynomial growth of order N, then spp(<j>) c (y, yn} i/and o/i/v

'70 = t + EUi rijYj far some x/r, tjj € BUCW(G, X) withal, 6 ^andA,r]j\j e ^
for each te GN+\

PROOF, (a) Suppose 0|7 € ^". By Proposition 2.4, (0 *f)\j e & for each
/ e L^(G). So /jr(^>) = Ll

w(G) and sp (̂</>) = 0. Conversely, if sp (̂</>) = 0 then
(0 * / ) ! . / € ^ for all / € /.^(G). By Lemma 4.1, 0 has approximate units and so
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(b) Assume Af</»|y e & for all t e G and some k e N. If g e Ll(G) then
(0 * A**)|y = / ^ ( ^ ( A ^ ) ! , ^ * ) e ^ and so A*g 6 1,(4,). But Afg(y) =

- l)kg(y) is zero for all t e G and g e LX
W(G) only when y = 1. So

c {1}.
(c) Firstly, if sp^(0) = {1} then, by Corollary 3.7 (a),

and so (A,<j> * g)\j = {<f> * A,g)\j e &. Taking approximate units we conclude
A,</>|y € & for each t e GN+l. More generally, assume sp -̂(</>) = [yu ..., /„}.
Choosing/y e Ll

w(G) such that / j = 1 in a neighbourhood of {y;} and supp(/ ;) D
sPjrWO = {yj}, set i7; = yf\(l> *fj) and / = / , + ••• + / „ . We find ^ 6
BUCW(G, X), sp^Cfy) = {1} and hence A,fy |y 6 & for each r e G^-^1. Moreover,
/ = 1 in a neighbourhood of spjr(0) and so by (e) above, V = 0 — <P * f £. & •
Also <f> = \(r + 5Z"=1 fy y/ as required. Conversely, for <p of the form stated we
have sp^OW c \J"J=l Yj sp^C^) . But for each t e GN+l and / e ^ i , ( G ) w e

have (r)j * A,f)\j = (A,^ *f)\j e <?, by Proposition 2.4. So, by Corollary 3.7,
Sw(l) 9 /jr (rjj) and therefore sp^(r?;) c {1}. Hence, s p ^ ^ ) c [yu..., yn). D

COROLLARY 4.4. Assume w has polynomial growth and, if w is unbounded, & 5
Cwfi(J,X). If 4* e BUCW(G,X), sp^(0) c {1} and <j>\} e Ew(J,X) then 4>\j -
M(<p/w)w e ^ .

PROOF. By Theorem 4.3 (c), A,4>\j € & for all r 6 Jw+1. Therefore the result
follows from Theorem 2.2. •

LEMMA 4.5. Let & be a Aw-class and <j> e BUCW(G, X). Assume either (a) w has
polynomial growth; or (b) A,(y~x<j>)\j 6 & for all t e Jniy), y e sp^(0) and some
n(y) e N. Also assume that y~x<j> is w-ergodic on J and M((\/w)y~x<j>\j)w e &
for all y e sp^(0). Then sp^(0) contains no isolated points.

PROOF. Suppose y is an isolated point of sp^(<f>). Take an open neighbourhood
[/of y in G such that UD sp^(0) = {y}. Choose/ e Lx

w(G) such that /(y) ^ 0
and supp(/) c U. Then sp^(0 * / ) c {y} and so sp^(y~'(0 * / ) ) c {I}. By
Corollary 2.5, y"'(</> * / ) = (y~'0) * (y"1 /) is u>-ergodic on 7 and

If(a)holds,theny-1(</>*/)|y-M((l/u;)y-1(/>|y)u; e ^" by Corollary 4.4. If(b)holds,
then A,(y-'(0 * / ) ) L 6 <̂ " for all t e Jn(y\ y e sp (̂</>) by Proposition 2.4. By the
difference Theorem 2.2 we again conclude y~l(<P *f)\j — M((l/w)y~1<j>\j)w e &'.
Hence (0 * / ) |y e & which means y ^ sp (̂</>). This is a contradiction and so

) contains no isolated points. •
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Recall that a subset of a topological space is called perfect if it is closed and has
no isolated points. It is residual if it is closed and has no non-empty perfect subsets.
Thus, a subset of the reals (or any locally compact Hausdorff second countable space
[31, page 28]) is residual if and only if it is closed and countable. Moreover, a residual
set without isolated points is empty.

PROPOSITION 4.6. Let & be a BUCw-invariant closed subspace ofBUCw(J, X)
containing CW,O(J, X) and let <p € BUCW(G, X). Then sp#/w(<p/w) C sp#((p), with
equality ifsp^(<f>) is residual.

PROOF. Let / e I*(<p). So (<p * / ) | y € & and by (2.7), ((0/iu) * / ) | , e
Hence/ € I?lw(<l>/w), showing Ip(<p) c I#/w(<p/w) and sp^^/w) c s

Now assume that sp#(<p) = {1}. Given y e G, y ^ 1 there exists / e ^i)
such t h a t / 0 0 ^ 0 and (<f> * / ) | y 6 &. By (2.7), ( ( 0 / w ) *f)\j e (&/w). Hence
Y i sPf,w(<t>/w) showing sp#/w(<p/w) c {1}. But sp^/w((p/w) ^ 0 as </> i &, so

W / O {!}

Finally let y be an isolated point of spjr(</>). Choose/ e L^G) such that/ = 1
in a neighbourhood U of y and supp/) D sp^(<f>) = {y}. Then sp̂ (</> * / ) = {y}
and it follows from the previous paragraph that sp^/w((<f> *f)/w) = (y). Now

By (2.7), sp^/w((<j> *f)/w) — (cp/w) *f) = 0. Moreover, we can choose g e LX{G)
such that g(y) = 1 and supp(£) c U. Hence ((<p/w) * f — (<p/w)) * g = 0 and so
y £ sp(((j>/w) *f— (<p/w)). Thus y e sp#/w(4>/w). If sp^(</>) is residual, then
each of its points is either isolated or a limit of isolated points. Since these spectra are
closed, sp^O/O c spjr^ty/w). D

The following is a generalization of a theorem of Loomis [23], who considered
the case w = 1 and & — AP(G,C), the space of almost periodic functions (see
also [22, page 92]). For the general case of bounded functions, see [5, Section 4]
and [2, 3, 9, 33]. A similar result is proved in [11, Theorem 6.1] under different
assumptions on w and <j>.

THEOREM 4.7. Let & be a Aw-class and 4> € BUCW(G, X). Assume that y~x(j>
is w-ergodic on J and M((l/w)y~l<p\j)w € & for all y e sp^(<p). Ifsp^(<f>) is
residual, then <f>\j e &.

PROOF. By Proposition 4.6, sp^/w(<p/w) is residual. By Lemma 4.5 applied to the
function <p/w, sp^/w(4>/w) contains no isolated points. Hence sp^/w(<p/w) = 0 and
by Theorem 4.3 (a), (<t>/w)\j € &/w giving the result. •
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Before completing this section we compare sp (̂</>) for the case & = C0(K+, X)
and the Beurling specrtra of orbits of representations with spectra used by other
authors. For a strongly measurable bounded function 0 : IR+ -* X, its Laplace
transform </>, defined by <j>(z) = /0°° e~'z<t>(t)dt, is holomorphic for Re(z) > 0. A
point k € iU. is a regular point if 4> has a holomorphic extension to a neighbourhood
of A.. The singular set, or set of points in iK which are not regular points is denoted
cr+(<j>). It is known (see [1,4] and the references therein) that if <f> e BUC(R+, X) and
CT+(0) = 0, then <p € Co(R+, X). Moreover, cr+(0) c a(sp(0)) where a : R -> 0& is
the natural isomorphism given by a(ys) = s, where ys(t) = e'" for s, t e IR.

COROLLARY 4.8. Let (p e BUCW(R,X) and & = CW,O(R+,X).
residual, then a(sp#(<!>)) C <7

PROOF. By Proposition 4.6 it suffices to take w = 1. Again we begin with the case
) = {1}. If 0 i o+(<p\j), then by the Ingham inequality [1, Lemma 3.1, (3.1)],

P<p(t) = JQ<P(S) ds is bounded. By [6, Proposition 2.2], </> is ergodic. Now for each
t 6 D& we have sp^(A,0) c sp^(0) = {1} and so, by Theorem 4.3 (c), A,<p\j e &'.
By Theorem 2.2, 0 6^", contradicting sp^(^) = {1}. Thus 0 = a(l) e cr+(<p\j).

Now let y be an isolated point of sp^($). Choose/ e L'(IR) such that/ = 1 in a
neighbourhood U of y and supp(/) D sp^(^) = {y}. Then, sp^(<p * f) = {y} and
by the previous paragraph, a(y) e a+((</> *f)\j). But

cr+((<P *f)\j) C a(sp(</) * / - 0)) Ua

We can choose g e L ' ( l ) such that g(y) = 1 and supp(£) c U. Hence

(4>*f -4>)*g = 0

and so y £ sp(0 * / —</>). Thus oc{y) e a+{(p\j).
Each y 6 sp^((/>) is either isolated or a limit of isolated points and a+(<p\j) is

closed, so the proposition is proved. •

We have been unable to determine whether in general

However, in using these spectra it is frequently assumed that sp^(^) or a+((j>\j) is
residual. See for example [2, 3, 9] and Section 5 below. In any case, sp^(<f>) is the
optimal spectrum for determining membership of &. It also has the advantage of
being defined for functions on groups more general than R.

Finally let T : G -> L(X) be a strongly continuous representation dominated by
a non-quasianalytic weight w. Following [24] we define the Fourier transform with
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respect to T of a function/ e LX
W(G) at* e X by f(T)x = fGf (s)T(-s)x d/x(s).

Let A\(T) be the smallest closed unital subalgebra of L(X) containing each such
operator/ (T). The maximal ideal space M\(T) of AX(T) is homeomorphically em-
bedded in GU {00} the one point compactification of G. The image of this embedding
is denoted by 0\(T) and is called the ring spectrum of T (see [24, page 132]).

THEOREM 4.9. Let T : G —> L(X) be a strongly continuous representation domi-
nated by a non-quasianalytic weight w. Then spw(T(-)x) c o\{T)for each x e X.

PROOF. Let y e G \o{(T). Choose an open neighbourhood U of y in G such
that V is compact and Z/D ox(T) = 0. Also choose/ € LX

W{G) such that/(y) = 1
and supp(/) C U. Since / is 0 on a neighbourhood of <J\(T), it follows from
[24, Lemma 2.2] that f(T) = 0. Hence 0 = f(T)T(-)x = f * T(-)x showing
/ e Iw(T(-)x). Hence y i spw(T(-)x). •

5. Applications

In this section we apply the results of the previous sections, firstly to the convolution
equations, secondly to the orbits of Co-semigroups of operators and finally to the orbits
of representations. Consider the equation

m

(5.1) k*4> + ^2aj<}>tj =X<p + rjf on G,

w h e r e </>, f € BUCW(G, X), k e Ll
w(G), tj e G a n d a j , k e C .

The convolution operator B : BUCW(G, X) ->• BUCW(G, X) defined by

has characteristic function 0B : G -> C defined by

The inverse image 6g\k) is sometimes called the spectrum of (5.1). See [15], [30,
page 289]. Our aim is to determine the point spectrum ap (B) of B.

THEOREM 5.1. Suppose (5.1) holds and yfr \j e & for some BUCw-invariant closed
subspace & ofBUCw{J, X). Then sp (̂</>) C 0,'(A).
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PROOF. Take any y e G\9gl(k) and choose/ e Ll
w{G) such t h a t / ( y ) ^ 0. If

g = k * / + £;
m

=1 ajftj - kf then by (5.1), 0 * g = f * / . By Proposition 2.4,
{if * g)\j ^ & and so g € Ip{<p)- Since g(y) / 0 we conclude that y ^ sp^(0) . D

The following is an immediate consequence of Theorem 4.3. For the case w = 1,
•^ = C0(G, C), X = 0 and 0 slowly oscillating, part (a) is a classical tauberian
theorem of Pitt [29]. See also [32, 7.2.7].

COROLLARY 5.2. Suppose the conditions of Theorem 5.1 are satisfied.

(a) If6?(k)=0,then4>\je&.
(b) If9B\k) = {y\, • • • ,yn] and w has polynomial growth of order N, then 0 =

f + j^Ui Vj Yj for some i*> 1] e BUCW{G, X) with f\j e & and A,rj; \j e &for
each t e GN+K

In our next application we use 9B{G), the range of 6B. It is well-known that the
closure of k{G) is the spectrum of k as an element of the Banach algebra Ll

w(G).

COROLLARY 5.3. The operator B has point spectrum op{B) = 0B{G). If also w
has polynomial growth and 9gl{k) = {yu . . . , / „ } , then every eigenfunction corre-
sponding to k is of the form </> = Y^j=\ Pi Yj for some polynomials pj e PW{G, X).

PROOF. Suppose B(j> = k<p for some 0 6 BUCW{G, X). Applying Theorem 5.1
with & = {0} we find sp^O/)) c 0~ \ k ) . So if A. £ 9B{G) then the only solution of
B(j> = kcp is <t> = 0, showing ap(B) c 9B(G). But for each y e G, By = 9B(y)y.
So ap{B) = 9B{G). The second assertion follows from Lemma 4.1. •

COROLLARY 5.4. Suppose w has polynomial growth, <f> e BUCW{G, X), k~\0) is
residual and & is a Aw-class. Then (k *<p)\j e & if and only j / s p ^ ( 0 ) C £~'(()).
If also (5.1) holds with aj = 0, k £ 0 and \j/\j € J5", then 0 | y e & if and only if

PROOF. If {k * 4>)\j e & then spJt(</>) c Jt"'(O) by Theorem 5.1. Conversely, if
>) c Jt-'(O) and y e sp#{<p) then it € Iw{y). By Corollary 3.2, y~\k * 0) e

EWi0{G, X). By Lemma 4.5, sp^fc * 0) has no isolated points. But spse{k * 0) c
sp^(0) c ^"'(0) which is residual. So sp#(k * <f>) = 0 showing (£ * 0)|y e &. The
statement concerning (5.1) is now obvious. •

EXAMPLES 5.5. (a) Take G = R, S 0 = k * 0 and w{t) = (1 + | r | )" . If A. e

and k~l(k) = {yu ... ,yn] then every eigenfunction of B corresponding to k is of the

form 0 = X^"=i Pj Yj f° r some polynomials pj (t) = Xw=o
 ay •'*' > ay < e ^ • ^ u t t n e n

j = \ 1=0
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where

N-l

i H-J{ i H j and (tmk)(t) =
m = l ^ '

So <p is an eigenfunction if and only if each bit = 0. It follows that the eigenspace
corresponding to X is a direct sum E(X) — £""_, E{yj) where E(yj) = span{f'yy :

0 < / < m(Yj)} <8> X. Here m(y,) = min(/w - 1, A'), where m is the smallest
positive integer for which (fm/fc)(y,) ¥^ 0- In particular, if dimX = n < oo, then

(b) As a particular example, take X = C and /fc(?) = max(min(l + t, 1 — /), 0) for
r e R. Hence

HYS) = ( jz— ) > where j/s(r) = exp(iir).

So CTp(S) = {X : 0 < X < 1}. It is easy to see that m(y) is always 0 or 1. Also, if
0 < A < 1 then k'^X) is finite and E(X) has a basis consisting of those y for which
k(y) = A and, if N > 1, those ry for which £(y) = A and r£(y) = 0. On the other
hand, E(0) is infinite dimensional. In particular, there are no characters y for which
k * t2Y = Xt2Y- However, k * k * rmy^ = 0 for m = 0, 1, 2, 3.

(c) Suppose (5.1) holds and X i 0B{G). Then 0 € Cwfi(G,X) if and only if
i/r 6 Q 0 ( G , X). Similarly, </>|, 6 ^ , 0 ( y , X) if and only if ^r|y e &W,O(J, X).

(d) Take G = R, J = R+, w(r) = (1 + Irl)^ and ^" = C^,0(R+) X) a A^,-class.
Assume </> e Bt/CW(R, X) and iH(0) is residual. By Corollary 5.4, (k * <f>)\j e & if
and only if sp^(</>) C £~'(0).

Finally, we present the following application of our results. For the case of bounded
semigroups, that is w = 1, part (a) appears in [6, Theorem 4.1 (ii)]. The Beurling-
Domar condition (1.3) is not used in the proof.

THEOREM 5.6. Let w be a weight on R, x e X and A be the generator of a
Co-semigroup of operators T(t), t > 0 which is dominated by w.

(a) Ifa(A)nm is residual and op (A*)n/R is empty, then (l/io) T(-)x e C0(R+, X).
(b) If a (A) n iR is finite, then (l/w)T(-)x = ^ " = 1 r)j Yj, where ^ e BUC(R+, X),

A,r)j e C0(R+, X)for all t € R+ and Yj (0 = ex''for Xj e o(A) n iR.

PROOF. Note first that \\T(t + h)x - T{t)x\\ < cw(t)\\T(h)x - x\\ and so T()x
is iy-uniformly continuous. Now let J = R+, & = C0(J, X) and v = w, where
w : J - • X corresponds to w as in Remark 2.8. Then (l/w) T()x - (l/v) T(-)x e &
and so (l/v)T(-)x is uniformly continuous. Next, we may assume x e D(A2), the
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domain of A2, since this space is dense in X. We define

T{t)x, for t > 0;
4>{t) =

X COS

v(t)
( v'(0)\

t + A — x sin t, for t < 0,

for,>0;

,2...- = - . . »'«»—(1 + A2)x sin f -I —(A sin t — cos 0*- for t < 0.

Then 0, ^ € 5£/C(R, X), <p' = A<p + f on R and ^ | , € •£". By [6, Theorem 3.3]
sp^(0) c a(A) fl iR. For part (a), sp^-(0) is residual and by Examples 5.5 (c),
y<p is ergodic on / with mean 0 for all y e l . Hence, applying Theorem 4.7 with
w — 1 we conclude (j>\j e &'. For part (b), sp -̂(</>) c {yy : 1 < j < n] for some
yj(t) = ek>', Xj 6 o{A) n M. By Theorem 4.3 (c), (j> = f + J™=i i/jYj for some
f, fj € BUC(R, X) with ir\j e & and A,Vo \j e & for each t 6 R. Now replace
V̂ i by Y\X}lr\ a n d s e t ty — (u/u;)(1A;/u(O))ly- The theorem follows readily. D

THEOREM 5.7. Let T : G —*• L(X) be a non-trivial strongly continuous represen-
tation dominated by a weight w satisfying (1.1)-(1.5). Then either the ring spectrum
O\(T) is non-residual or the unitary point spectrum av (7*) is non-empty.

PROOF. Assume cr\{T) is residual and (7^(7*) = 0. Let & = {0}, a A^-class. By
Theorem 2.6, each orbit T(-)x is totally u>-ergodic and M((y/w)T(-)x) = 0 for all
y € G. By Theorem 4.9, spw(T(-)x) C o~i(7) and so sp^(7(-)*) is residual for each
x 6 X. By Theorem 4.7, T(-)x e &, showing that 7 is trivial. •

REMARK 5.8. (a) The assumptions of Theorem 5.6 (b) are readily satisfied in prac-
tice. For example, if X = C2 and A = ['0 ]] then 7 ( 0 = e" []

0 [] is dominated by
w(t) = 1 + \t\ andCT(A) = ap{A*) = {/}. Moreover,

i T(-)x = r,Y, where r,(t) = {^Y~ • J^) and

Clearly, A,»7 e Co(K+, X) for all t 6 K+. In general, if w has polynomial growth
of order /V, then the conclusion of Theorem 5.6 (b) can be strengthened to T(-)x =
EjLityft- w h e r e Vj e BUCW(R+,X), A,r)j e C0(R+,X) for all t e R^+1 and
Yj (t) = (*>' for kj € o-(A) n /R.

(b) A proof of Theorem 5.7, under different assumptions on the weight, is con-
tained in the proof of [11, Theorem 3.2]. In particular, the authors there require that
log w(nt) = o (\/n) as n —> oo for each t e G. Their proof is different from ours—
instead of exploiting ergodicity they use Silov's idempotent theorem and a theorem
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of Zarrabi [35]. The result for representations of groups is then used to prove global
stability for semigroup representations T : J -> L(X) dominated by a weight w
satisfying

(5.2) liminf — > 1 for each s e y
teJ w(t)

The key ingredient is [11, Proposition 3.1] which exploits a method developed by
several authors (see [10, 11, 28]) of associating with T a limit representation which
extends to a group representation U : G -> L(Y) on a different space Y. This
representation is dominated by an associated reduced weight given by

I limsup,e,(w(s + t)/w{t)) forseJ;
W\(S) = \

[inf[wi(t) : t e J,s < t] for s € G.

Applying the same argument with the symmetric reduced weight w2(s) = u>\(s) +
W\ (—s), we obtain the following as a consequence of Theorem 5.7.

COROLLARY 5.9. Let T : J —> L{X) be a strongly continuous representation
dominated by a weight w satisfying (5.2). Suppose w2 satisfies (1.1)—(1.5), the ring
spectrum <J\{T) is residual and the unitary point spectrum cr^iT*) is empty. Then
lim,ey(l/iu(r)) 117(0̂ 11 =0 for each x e X.

(c) Let w(t) = e'P on K+. If 0 < p < 1 then wx(t) = 1 and if p = 1 then
w\(t) = max(l, e'). To our knowledge, no examples have been given of weights
satisfying (5.2) for which the reduced weight is non-quasianalytic and different from 1.
In general, if w satisfies (5.2) and W\ = 1, then lim,eJ(w(s + t)/w(t)) = 1 for each
s e J. So for each e > 0, there exists u e J such that

\w(s + u + t) - w{u + t)\ < ew(u + t) for all t € J.

Hence \(Asw/w)u\ < s. This proves that \Asw\ e Ewfi(J, C), which is condi-
tion (2.4). If also J = R+, then

w(s + t) w(s + t)
hm = urn = 1 for each s e J.
i—oo w(t) <zJ U)(t)

Hence \Asw\ € CW,O(J, Q-
(d) As a final example, consider the weight w(t) = (1 + | sin 11)(1 + |f|) on 1 + .

This satisfies neither (5.2) nor (2.4). However, wt(t) = 1 + \ sin t\ on K+. Moreover,
Asw 6 £„,(!£+, C) for each s € R+, but M((l/w) Asw) is not always 0.
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The authors thank the referee for his critical remarks.
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