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OPTIMAL DIVIDEND PAYMENTS UNTIL
RUIN OF DIFFUSION PROCESSES WHEN
PAYMENTS ARE SUBJECT TO BOTH FIXED
AND PROPORTIONAL COSTS

JOSTEIN PAULSEN,∗ University of Bergen

Abstract

The problem of optimal dividends paid until absorbtion at zero is considered for a rather
general diffusion model. With each dividend payment there is a proportional cost and a
fixed cost. It is shown that there can be essentially three different solutions depending
on the model parameters and the costs. (i) Whenever assets reach a barrier y∗, they are
reduced to y∗ −δ∗ through a dividend payment, and the process continues. (ii) Whenever
assets reach a barrier y∗, everything is paid out as dividends and the process terminates.
(iii) There is no optimal policy, but the value function is approximated by policies of one
of the two above forms for increasing barriers. A method to numerically find the optimal
policy (if it exists) is presented and numerical examples are given.
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1. Introduction and model formulation

In this paper the classical problem of maximizing the discounted value of dividends paid
out from an income process is addressed. To get the mathematical formalism right, let
(�, F , (Ft )t≥0, P) be a probability space satisfying the usual conditions, i.e. the filtration
(Ft )t≥0 is right continuous and P-complete. In this setup the income process without dividends
is assumed to follow the dynamics

dXt = µ(Xt) dt + σ(Xt ) dWt,

where W is a Brownian motion on the probability space and µ and σ are functions defined on
[0, ∞).

From this income process dividends can be paid out to the owners, but at a cost. Total
dividends paid out until time t is given by Dt and associated costs are given by D̄t . If the
processes D and D̄ are nondecreasing, adapted, and right continuous with left limits (RCLL)
then we say they are admissible.

The capital Y retained in the company then has the dynamics

dYt = µ(Yt ) dt + σ(Yt ) dWt − dDt − dD̄t , (1.1)

with Y0− = y. Time of ruin is defined as τy = inf{t : Yt < 0} with τy = ∞ if Yt ≥ 0 for all t .
If D is the set of all admissible dividend policies with associated admissible costs, our task is
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to find

V ∗(y) = sup
D

Ey

[∫ τy

0−
e−rt dDt

]
, (1.2)

where r is a properly chosen discount factor. Here, Ey is the expectation with Y0− = y.
Furthermore, if it exists, we also want to find the optimal policy D∗ ∈ D .

In this paper it is assumed that the cost process D̄ consists of a fixed cost d0 for each payment,
independent of the size of the payment, plus a part that is proportional to the size of the payment.
Of course, when there is a fixed cost for every dividend payment, there can only be a finite
number of such payments on any finite time interval, since ruin will occur after a finite number
of payments due to the cost with each payment. Therefore, we can write

D̄t = d0

∑
s≤t

1{�Ds>0} +d1Dt, (1.3)

where d1 ≥ 0 is the proportionality factor, 1{·} denotes the indicator function, and �Ds =
Ds − Ds−. Clearly, this D̄ is admissible whenever D is. From (1.1) and (1.2) it trivially
follows that

�Yt = −(1 + d1)�Dt − d0 1{�Dt>0},

�Dt = (−�Yt ) − d0 1{�Dt>0}
1 + d1

.
(1.4)

The first of these equations gives the negative of the amount the assets are reduced with in order
to pay �Dt in dividends, and the second gives the dividends received when assets are reduced
with �Yt .

A more general cost function is in principle possible, but at the expense of a much more
delicate analysis.

Under the assumptions given in Section 2, when d0 = 0 this problem was solved by Shreve
et al. (1984). They showed that the optimal dividend process, if it exists, is a singular process.
We shall return to their solution in Section 2. The special case when X is a Brownian motion
with drift, i.e. when µ and σ are constants, was dealt with in, for example, Asmussen and
Taksar (1997), Gerber and Shiu (2004), and Jeanblanc-Picqué and Shiryaev (1995) (the latter
also solved the case where d0 > 0). In Cadenillas et al. (2007), d0 is again positive and X

is a special Ornstein–Uhlenbeck process. Cadenillas et al. also allowed a more general cost
function. When d0 > 0, the optimal dividend process is a jump process, since dividends are
paid in lumps whenever the capital reaches a barrier. This kind of solution is called an impulse
control solution. Some other particular solutions when d0 = 0 can be found in Paulsen and
Gjessing (1997) and Cai et al. (2006). Lungu and Øksendal (1997) considered the problem of
optimal harvesting of renewable resources until extinction, and they provided a solution for a
diffusion growth model when d0 = 0. Their model was not covered by the general model in
Shreve et al. (1984), but again the optimal control is singular. In Paulsen (2003) the general
model of Shreve et al. (1984) was analyzed in the context of solvency constraints on capital
until dividends can be paid.

Alvarez (2004a) considered a rather general diffusion model with a more general cost
function then (1.3). However, in his model Y is reduced to a fixed y0 whenever payments
(or harvesting) are made. In Alvarez (2004b) this kind of problem was analyzed in the context
of deciding optimal harvesting of timber. This is in fact a classical problem; seeAlvarez (2004b)
for references.
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A topic we shall not enter here is optimal dividend payments combined with optimal choice
of the size of the business and riskiness of investments. References here are Højgaard and
Taksar (2004) and Choulli et al. (2003), when d0 = 0, and Cadenillas et al. (2006), when
d0 > 0. The models studied in these papers are linear Brownian motions subject to control
of exposure and possibly also compounded with another linear Brownian motion. Different
extensions can be found in Décamps and Villeneuve (2007) where dividend payments were
combined with an optimal stopping problem to decide when investments should be done, and
in Grandits et al. (2007) where the objective was to maximize expected exponential utility of
dividends paid. Again, in both these papers X is a Brownian motion with drift and d0 = 0.

The purpose of this paper is to give a complete solution to the optimal dividend problem for
the general model presented by Shreve et al. (1984) when d0 > 0, thus extending the results of
Jeanblanc-Picqué and Shiryaev (1995) and, with a less general cost function, those of Cadenillas
et al. (2007). It turns out that several cases can occur, giving different solutions (Jeanblanc-
Picqué and Shiryaev overlooked one case that is relevant for their problem). Numerical issues
to find solutions are also addressed, and examples are given showing that numerical solutions
actually can be found without too much effort.

2. Results

We start with a list of assumptions.

Assumption 2.1. We have the following assumptions:

(a) |µ(y)| + |σ(y)| ≤ K(1 + y) for all y ≥ 0 and some K > 0,

(b) µ and σ are continuously differentiable and the derivatives µ′ and σ ′ are Lipschitz
continuous for all y ≥ 0,

(c) σ 2(y) > 0 for all y ≥ 0,

(d) µ′(y) ≤ r for all y ≥ 0.

The operator L is defined as

L f (y) = 1
2σ 2(y)f ′′(y) + µ(y)f ′(y) − rf (y)

for f ∈ C2(0, ∞), the space of twice continuously differentiable functions on (0, ∞). Note
that under Assumption 2.1(b) and (c), any solution to L f (y) = 0 has f ∈ C3(0, ∞) and f ′′′(y)

is Lipschitz continuous; see, e.g. Krylov (1996, Theorem 6.5.3).
Let g1 and g2 be two independent solutions of Lg = 0, chosen so that g(y) = g1(0)g2(y)−

g2(0)g1(y) has g′(0) > 0. Any such solution will be called a canonical solution. Then any
solution of LV (y) = 0 and V ′(0) > 0 is of the form

V (y) = κg(y), κ > 0. (2.1)

Remark 2.1. Assumption 2.1(d) may seem a bit unnatural and restrictive. Consider the special
case

dXt = µXt dt + σ(Xt ) dWt, X0 = x.

Here, µ′(x) = µ and also
E[e−rtXt ] = xe(µ−r)t .
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If µ ≤ r this stabilizes, but if µ > r it grows to ∞ and therefore it is clearly better to wait. The
right quantities to compare are therefore µ′(x) and r , one representing the geometric growth
rate and the other the geometric discounting rate. The condition µ′(x) ≤ r just states that
in no state should growth rate exceed discounting rate. In a financial context this is a natural
condition, since values are typically calculated under an equivalent martingale measure. In
a harvesting context this is a less natural assumption, but dropping it leads to a much more
complicated problem, and solutions are then probably best found on a case by case basis.

Before we continue let us briefly recapitulate the general solution when d0 = 0 given by
Shreve et al. (1984, Theorem 4.3). According to this result we should look for a solution to
L V(y) = 0, y > 0, and a y∗ that satisfy

V (0) = 0, V ′(y∗) = 1

1 + d1
, and V ′′(y∗) = 0. (2.2)

For y > y∗, set

V (y) = V (y∗) + y − y∗

1 + d1
.

The optimal solution is singular control at barrier y∗, and V = V ∗ is the value function.
Furthermore, if (2.2) has no solution then there is no optimal control, but the value function

is the limit of singular controls at barrier ȳ for increasing ȳ.
We now consider the case in which d0 > 0.

Definition 2.1. A lump sum dividend barrier strategy at ȳ and jumpsize δ ∈ (0, ȳ] satisfies, for
Y0− = y,

�D0 = y − (ȳ − δ) − d0

1 + d1
1{y≥ȳ}, �Dt = δ − d0

1 + d1
1{Yt−=ȳ} .

If δ < ȳ it is called a continuation strategy, and if δ = ȳ it is called a ruin strategy. In
either case, the corresponding value function is denoted by Vȳ,δ(y). Also, we set Vȳ,δ(ȳ)(y) =
supδ∈(0,ȳ] Vȳ,δ(y), so that δ(ȳ) is the optimal jumpsize with a lump sum dividend barrier strategy
at ȳ.

A ruin dividend barrier strategy at ȳ thus pays out everything in dividends whenever Yt− is
equal to or is larger than ȳ.

The following assumptions are needed for solving the optimality problem for a given barrier.

Assumption 2.2. We have the following assumptions.

(a)
L V(y) = 0, 0 < y < ȳ,

V (0) = 0,

V (y) = V (ȳ) + y − ȳ

1 + d1
, y > ȳ,

(b)

V (ȳ) = V (ȳ − δ̄) + δ̄ − d0

1 + d1
, δ̄ ∈ (0, ȳ),

V ′(ȳ − δ̄) = 1

1 + d1
,
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(c)

V (ȳ) = ȳ − d0

1 + d1
.

For a lump sum dividend barrier strategy at ȳ, we may only consider the case where ȳ > d0
since otherwise costs are higher than income, and this is uninteresting in an optimality context.

The proof of the following result is given in Appendix A.

Proposition 2.1. Assume that Assumption 2.1 holds and that the process Y is a strong solution
to (1.1) with D̄ as given in (1.3). Assume that d0 > 0 and let ȳ ≥ d0.

(a) If Assumption 2.2(a) and (b) have a solution for unknown V and δ̄, then this solution
is unique and V (y) = Vȳ,δ(ȳ)(y) for all y ≥ 0 so that the optimal lump sum dividend
strategy is a continuation strategy.

(b) If Assumption 2.2(a) and (b) do not have a solution then Assumption 2.2(a) and (c) have
a unique solution, V . Furthermore, V (y) = Vȳ,ȳ (y) for all y ≥ 0, i.e. δ(ȳ) = ȳ, so in
this case the optimal lump sum dividend strategy is a ruin strategy.

The first equation in Assumption 2.2(b) (or the equation in Assumption 2.2(c)) just states
that the total value before payout should equal the total value after payout plus dividends
received, cf. the second part of (1.4). The last equation in Assumption 2.2(a) is actually only
a definition. It states that for y > ȳ, the value V (y) is equal to V (ȳ) plus the value of the
excess y − ȳ. Note that there is no subtraction of d0 here, since in reality the assets will be
reduced directly to ȳ − δ̄ (or to 0), and the fixed cost d0, only to be counted once, is included in
the first equation of Assumption 2.2(b) (or in Assumption 2.2(c)). Finally, the second equation
in Assumption 2.2(b) is just a ‘smooth-fit condition’. Its economic interpretation is that the
marginal value of receiving one more unit in dividends in excess of δ̄ is equal to the marginal
decrease in the value of the company.

In order to present the main result of this paper, we need the following set of assumptions
similar to Assumption 2.2.

Assumption 2.3. We have the following assumptions.

(a)
L V(y) = 0, 0 < y < y∗,
V (0) = 0,

V (y) = V (y∗) + y − y∗

1 + d1
, y > y∗,

(b)

V (y∗) = V (y∗ − δ∗) + δ∗ − d0

1 + d1
, δ∗ ∈ (0, y∗),

V ′(y∗) = 1

1 + d1
,

V ′(y∗ − δ∗) = 1

1 + d1
,

(c)

V (y∗) = y∗ − d0

1 + d1
, V ′(y∗) = 1

1 + d1
.
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Note that Assumption 2.3(a) is only Assumption 2.2(a) with ȳ replaced by y∗, while Assump-
tion 2.3(b) and (c) are Assumption 2.2(b) and (c) with ȳ replaced by y∗ plus the ‘smooth-fit
condition’ V ′(y∗) = (1 + d1)

−1. The latter is needed to localize the optimal barrier. The
economic interpretation is that at y∗ the marginal value of keeping money in the company is
equal to the marginal value of paying them out as dividends.

It follows, easily from Lemma 2.2(b), below, that if Assumption 2.3(a) and (b) have a
solution, then Assumption 2.3(a) and (c) cannot have a solution.

Theorem 2.1. Assume that Assumption 2.1 holds and that the process Y is a strong solution to
(1.1) with D̄ as given in (1.3) and d0 > 0.

(a) If Assumption 2.3(a) and (b) have a solution for unknown V , y∗, and δ∗, then this solution
is unique and V ∗(y) = V (y) = Vy∗,δ∗(y) for all y ≥ 0. Thus, an optimal policy is a
lump sum dividend barrier continuation strategy at y∗ with jumpsize δ∗.

(b) If Assumption 2.3(a) and (c) have a solution for unknown V and y∗, then this solution is
unique and V ∗(y) = V (y) = Vy∗,y∗(y) for all y ≥ 0. Thus, an optimal policy is a lump
sum dividend barrier ruin strategy at y∗.

(c) In all other cases there does not exist an optimal policy, but

V ∗(y) = lim
ȳ→∞ Vȳ,δ(ȳ)(y)

and this limit exists and is finite for every y ≥ 0. In terms of a canonical solution,

V ∗(y) = 1

1 + d1

1

limȳ→∞ g′(ȳ)
g(y).

The proof of this result is rather lengthy, and most of the technical details are postponed to
Appendix A. However, in order to actually solve a concrete problem, it is necessary to gain
more insight into the three different cases. In doing so we will also prepare the ground for
the full proof. In addition, the investigation below will provide an algorithm for a numerical
solution.

We start with the following result, taken from Lemma 4.2 in Shreve et al. (1984).

Lemma 2.1. Let µ and σ satisfy Assumption 2.1(a)–(d) and let f be a solution to Lf (y) = 0.
Consider the interval [0, ∞).

(a) If f has a 0 on [0, ∞), then f ′ has no 0 on [0, ∞).

(b) If for some ỹ ∈ [0, ∞), f ′(ỹ) > 0 and f ′′(ỹ) ≤ 0, then f is a concave function on
[0, ỹ).

Lemma 2.2. Letµandσ satisfyAssumption 2.1(b)–(d) and letV satisfy L V(y) = 0, V (0) = 0,
and V (ŷ) > 0 for some ŷ > 0.

(a) The function V is strongly increasing.

(b) There exists a yc ≥ 0 (possibly taking the value ∞) so that V is concave on (0, yc) and
convex on (yc, ∞). In particular, yc = 0 if and only if µ(0) ≤ 0 and trivially V ′′(yc) = 0
when 0 < yc < ∞.
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Proof. Part (a) follows directly from Lemma 2.1(a). For part (b), note that 1
2σ 2(0)V ′′(0) =

−µ(0)V ′(0); hence, µ(0) ≤ 0 is equivalent to V ′′(0) ≥ 0 and so V is convex on [0, ∞) by
Lemma 2.1(b). If µ(0) > 0 then we can define yc = sup{y > 0 : V ′′(y) ≤ 0}. If yc < ∞
then, by part (a) and Lemma 2.1(b), V ′′(y) ≤ 0 for all y ∈ (0, yc] and, by the definition of yc,
V ′′(y) > 0 for y ∈ (yc, ∞). For yc = ∞, the proof is given at the beginning of the proof of
Theorem 4.2 of Shreve et al. (1984).

Let g be a canonical solution; see (2.1). By Lemma 2.1(a), g′(y) > 0 for all y. Let yc be as
given in Lemma 2.2(b). If yc = 0, so that g is convex, or yc = ∞, so that it is concave, it is
clear that Assumption 2.3(a) and (b) cannot have a solution.

Assume, therefore, that 0 < yc < ∞. In order to have a solution of Assumption 2.3(a)
and (b), it is clear that y∗ − δ∗ < yc < y∗. Let κ1 < κ2, and set Vi(y) = κig(y), i = 1, 2.
Furthermore, let yi and δi satisfy V ′

i (yi − δi) = V ′
i (yi) = (1 + d1)

−1 or, equivalently,

g′(yi − δi) = g′(yi) = 1

κi(1 + d1)
.

From this it follows that

y1 − δ1 < y2 − δ2 < yc < y2 < y1.

Furthermore,

δ1

1 + d1
− (V1(y1) − V1(y1 − δ1)) =

∫ y1

y1−δ1

((1 + d1)
−1 − κ1g

′(y)) dy

>

∫ y2

y2−δ2

((1 + d1)
−1 − κ1g

′(y)) dy

>

∫ y2

y2−δ2

((1 + d1)
−1 − κ2g

′(y)) dy

= δ2

1 + d1
− (V2(y2) − V2(y2 − δ2)).

From these considerations, it follows that if there is a solution, this solution is unique. Further-
more, we are provided with a method to find the optimal κ∗ and the corresponding y∗ and δ∗
so that, if possible, Assumption 2.3(a) and (b) are satisfied.

1. Let g be a canonical solution and find yc so that g′′(yc) = 0. If yc = 0 or yc = ∞ then
there is no solution. By Lemma 2.2(b), yc = 0 is equivalent to µ(0) ≤ 0, so this case is
easy to establish. If yc = ∞, then again by Lemma 2.1(b), Theorem 2.1(c) applies.

2. Choose x1 < yc and let κ1 = 1/g′(x1)(1 + d1). Then V ′
1(x1) = κ1g

′(x1) = (1 + d1)
−1.

3. Find (if possible) a y1 > yc so that g′(y1) = 1/κ1(1 + d1). If this is not possible, try
with a larger x1 until it is satisfied.

4. Let δ1 = y1 − x1 and calculate

δ1

1 + d1
− κ1(g(y1) − g(y1 − δ)).

If this is larger than d0(1 + d1)
−1 increase κ1, i.e. increase x1. Otherwise, decrease x1.
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5. Repeat the process until a solution is obtained, or until it is clear that there is no
solution.

Proposition 2.2. Assume that Assumption 2.1(b)–(d) holds. Then Assumption 2.3(a) and (b)
have no solution if and only if either

(i) for all y, g(y) > g′(0)(y − d0),

(ii) for all y0 and y1 with y0 < y1, so that

g(y1) − g(y0) = g′(y0)(y1 − y0 − d0),

it holds that g′(y0) > g′(y1).

Proof. We will first show that part (i) is equivalent to

g(y1) − g(y0) > g′(y0)(y1 − y0 − d0), 0 ≤ y0 < y1. (2.3)

Clearly, (2.3) implies part (i). If y0 ≥ yc then (2.3) is always satisfied, so assume that y0 < yc.
Then we obtain

g(y1) − g(y0)

g′(y0)
− (y1 − y0) =

∫ y1

y0

(
g′(y)

g′(y0)
− 1

)
dy

≥
∫ y1

y0

(
g′(y)

g′(0)
− 1

)
dy

≥
∫ y1

0

(
g′(y)

g′(0)
− 1

)
dy

= g(y1)

g′(0)
− y1

> −d0,

which shows the other implication.
For a solution to Assumption 2.3(a) and (b), V (y∗ − δ∗) = κ∗g(y∗ − δ∗), implying that

κ∗ = 1/(g′(y∗ − δ∗)(1 + d1)); hence, V (y∗)−V (y∗ − δ∗) = (δ∗ − d0)/(1 + d1) is equivalent
to

g(y∗) − g(y∗ − δ∗) = g′(y∗ − δ∗)(δ∗ − d0),

which is impossible by (2.3). Therefore, there can be no solution.
Assume that part (ii) holds and that a solution exists. The same arguments with κ∗ as above

gives

g(y∗) − g(y∗ − δ∗) = δ∗ − d0

κ∗(1 + d1)
.

But then 1/(κ∗(1 + d1)) = g′(y∗ − δ∗) > g′(y∗), a contradiction, and so there cannot be a
solution.

It is not hard to be convinced, using the arguments for finding a solution given above, that
these are the only cases for which there is no solution.

Remark 2.2. (a) In Theorem 2.1(c), the approximating Vȳ,δ(ȳ) can (at least in theory) be of
both the nonruin type (δ(ȳ) < ȳ) and the ruin type (δ(ȳ) = ȳ). When the canonical solution
g is concave, they will be of the nonruin type. The nonruin type is described in Lemma A.5,
while the ruin type is described in Lemma A.4.
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(b) If Proposition 2.2(i) applies, then the above search process to find y∗ and δ∗ breaks down
at the left-hand tail, i.e. the search will decrease x1 to negative values. In this case, either
Theorem 2.1(b) or (c) applies. This happens, for example, when yc = 0, i.e. when µ(0) ≤ 0.

(c) When Proposition 2.2(ii) applies, then the search will increase y1 to ∞, bringing us to
Theorem 2.1(c). This happens, for example, when yc = ∞, i.e. when g is concave.

(d) Numerically it is Theorem 2.1(c) that is the most difficult to work with since in principle
the search should go on to ∞, and there is no obvious way to tell when to stop unless this can
be done analytically.

(e) If limy→∞ g′(y) = ∞, then Theorem 2.1(a) or (b) apply.

(f) If g is concave then Theorem 2.1(c) applies.

To decide whether an optimal policy exists, i.e. whether Theorem 2.1(a) or (b) applies, the
following comparison result may be useful, possibly in conjunction with Remark 2.2(e).

Lemma 2.3. Assume that Assumption 2.1(b) and (c) holds and let fi(y), i = 1, 2, solve

1
2σ 2(y)f ′′

i (y) + µi(y)f ′
i (y) − rfi(y) = 0, y ≥ 0,

where µ1(y) > µ2(y) for all y ≥ 0 and

fi(0) = f0 and f ′
i (0) = f1 ≥ 0, i = 1, 2.

Then f ′
1(y) < f ′

2(y) for all y > 0, which trivially implies that f1(y) < f2(y) for all y > 0.

Proof. From 1
2σ 2(0)f ′′

i (0) = rf0 − µi(0)f1 it follows that f ′′
1 (0) < f ′′

2 (0). By continuity,
there exists an ε > 0 so that f ′′

1 (y) < f ′′
2 (y) for all y ∈ [0, ε]. Integration from 0 then gives

f ′
1(y) < f ′

2(y) and f1(y) < f2(y) for y ∈ (0, ε]. Let

y0 = inf{y > ε : f ′
1(y) = f ′

2(y)}.
Assume that y0 < ∞ and set f ′

i (y0) = c. Clearly, f1(y0) < f2(y0) and from

1
2σ 2(y0)f

′′
i (y0) = rfi(y0) − µi(y0)c, i = 1, 2,

it follows that f ′′
1 (y0) < f ′′

2 (y0). But, f ′′
1 (0) < f ′′

2 (0) as well, and for this to be possible there
must exist a y1 < y0 so that f ′

1(y1) = f ′
2(y1), a contradiction. Hence, y0 = ∞ and the result

is proved.

From the general discussion above and the nature of the problem, the following result is
rather trivial.

Proposition 2.3. In Theorem 2.1(a) or (b), y∗ is increasing in d0 and, in addition, in Theo-
rem 2.1(a), y∗ − δ∗ is decreasing in d0. In both cases, y∗ and y∗ − δ∗ are constant with respect
to d1, while κ∗ is decreasing with respect to both d0 and d1. Finally, y∗ is decreasing in r . For
given y, V ∗(y) is decreasing in all of d0, d1, and r; in fact, V ∗(y) is proportional to (1+d1)

−1.

Example 2.1. Let µ(y) = µ and σ(y) = σ . Then a canonical solution is

g(y) = e−θy sinh(βy),
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Table 1: Values of y∗, y∗ − δ∗, and a normalized κ∗ for various values of d0 when σ 2 = µ = 1 and
r = d1 = 0.1.

d0 0 0.1 1 5 10 20 22.33 30 40

y∗ 2.82 4.11 7.02 13.71 19.85 30.46 32.82 40.48 50.47
y∗ − δ∗ 2.82 2.12 1.59 1.02 0.65 0.11 0.00 0.00 0.00

κ∗ 1.00 0.92 0.70 0.37 0.21 0.07 0.06 0.03 0.01
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Figure 1: The value function V ∗(y) from Example 2.1 plotted as a function of y for d0 = 0, d0 = 1, and
d0 = 5. The other parameters are the same as in Table 1.

where

θ = µ

σ 2 and β = 1

σ 2

√
2rσ 2 + µ2.

This also gives
g′(y) = e−θy(β cosh(βy) − θ sinh(βy)),

g′′(y) = e−θy((β2 + θ2) sinh(βy) − 2βθ cosh(βy)).

Since β > θ , it follows, from Remark 2.2(e), that there is an optimal solution.
Table 1 gives values of y∗, y∗ − δ∗, and a normalized κ∗ for various values of d0 when

σ 2 = µ = 1 and r = d1 = 0.1. Remember that when d0 = 0, y∗ = yc. The scaling factor κ∗
was normalized in order to better see the effect of V ∗(y) for increasing d0.

Table 1 was computed in R® using the search process outlined above. Note the rather large
value of d0 and corresponding y∗ before a ruin dividend strategy is better than a nonruin one.

In Figure 1, V ∗(y) is plotted as a function of y for d0 = 0, d0 = 1, and d0 = 5. The other
parameters are the same as in Table 1.

Jeanblanc-Picqué and Shiryaev (1995) studied this particular model with d1 = 0. However,
they claimed that Assumption 2.3(a) and (b) always have a solution, which is not correct. From
Table 1 we see that when d0 > 22.33, Assumption 2.3(a) and (b) have no solution while
Assumption 2.3(a) and (c) have, and the optimal policy is a ruin dividend policy.

Example 2.2. For general µ(y) and σ(y) the Runge–Kutta method was implemented to pro-
duce a numerical solution to Lg(y) = 0 with g(0) = 0 and g′(0) = 1. From this g′ and g′′ were
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calculated and all three were linearly interpolated in order to have functions of all arguments,
not only the gridpoints. Then, using these functions, the same search routine as in Example 2.1
was implemented to find y∗, δ∗, and κ∗. All this was programmed in R®. As a test case, the
program was used with the same parameters as in Example 2.1 and with a stepsize 0.01 in the
Runge–Kutta solution. The results obtained were for all practical purposes identical with those
in Example 2.1. We return to this procedure in Example 3.1, below.

Example 2.3. Let the income process without dividends follow

dXt = (α(ρ − Xt) − β) dt + σ dWt, α, β, ρ ≥ 0.

This is the mean reverting cash reservoir model suggested by Cadenillas et al. (2007) who
conjectured that an optimal solution exists. Here, µ(y) = α(ρ − y) − β and µ′(y) = −α < r .
Therefore, Assumption 2.1 is satisfied. Let f1(y) and f2(y) satisfy Lifi(y) = 0 together with
fi(0) = f0 and f ′

i (0) = f1 > 0, where

Lifi(y) = 1
2σ 2f ′′

i (y) + µi(y)f ′
i (y) − rfi(y)

with
µ1(y) = αρ + ε and µ2(y) = α(ρ − y) − β,

for some ε > 0. It follows, from Lemma 2.3, that f ′
2(y) > f ′

1(y); hence, an optimal solution
exists by Example 2.1 and Remark 2.2(e). This verifies the conjecture of Cadenillas et al.
(2007) for the case with a linear cost function. Again, the general method of Example 2.2 can
be used to find a numerical solution.

3. A financial example

As in Example 2.1, the income process without dividends is assumed to be a linear Brownian
motion with drift µ and diffusion σ , but now money can be invested in risk free assets with
return r . However, there are investment costs and they are incurred with rate α(Yt ). The
dynamics, (1.1), then become

dYt = (µ + (r − α(Yt ))Yt ) dt + σdWt − (1 + d1) dDt − d0 1{�Dt>0}, Y0− = y. (3.1)

For this model, µ(y) = µ + (r − α(y))y and so µ′(y) ≤ r for all y ≥ 0 if and only if

α(y) + α′(y)y ≥ 0, y ≥ 0. (3.2)

The total cost of investment intensity is α(Yt )Yt , and a reasonable assumption is that this consists
of a fixed part α0 and a part α1 that is proportional to the amount invested, i.e.

α(y) = α0

y
+ α1.

Clearly, (3.2) is satisfied, and (3.1) becomes

dYt = (µ0 + (r − α1)Yt ) dt + σ dWt − (1 + d1) dDt − d0 1{�Dt>0}, Y0− = y, (3.3)

where µ0 = µ − α0. We shall assume that µ0 > 0 and 0 ≤ α1 < r . When α1 = r , this is
Example 2.1 with µ0 replacing µ.
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This problem with d0 = d1 = 0 was solved by Cai et al. (2006), but for completeness we
start from scratch. Our choice of g1 and g2 is also slightly different from that of Cai et al.

To find a canonical solution we need to solve

Lg(y) = 1
2σ 2g′′(y) + (µ0 + (r − α1)y)g′(y) − rg(y) = 0.

Substituting z = −k(y) and f (z) = g(y) with

k(y) = r − α1

σ 2

(
y + µ0

r − α1

)2

,

brings it into the confluent geometric form, i.e.

zf ′′(z) +
(

1

2
− z

)
f ′(z) + r

2(r − α1)
f (z) = 0.

Using the forms y3 and y5 (see Slater (1960, p. 5)) gives

g(y) = e−k(y)(U(a, b, k(0))F (a, b, k(y)) − F(a, b, k(0))U(a, b, k(y))),

where

a = 1 + α1

2(r − α1)
, b = 1

2
,

and F and U respectively denote the first and second forms of Kummers solution with integral
representations

F(a, b, x) = �(b)

�(b − a)�(a)

∫ 1

0
ext ta−1(1 − t)b−a−1 dt, 0 < a < b,

U(a, b, x) = 1

�(a)

∫ ∞

0
e−xt ta−1(1 + t)b−a−1 dt, a > 0.

In our case, 0 < b < a; but, using the recursion

F(a, b, x) = (b + 1)(b + x)F (a, b + 1, x) − (b + 1 − a)F (a, b + 2, x)

b(b + 1)

iteratively m times until b + m > a, solves the problem. Standard differentiation rules

F ′(a, b, x) = a

b
F(a + 1, b + 1, x) and U ′(a, b, x) = −aU(a + 1, b + 1, x)

allow us to solve the relevant equations of Assumptions 2.2 and 2.3.
Consider first the case with α1 = 0, i.e. investment costs are constant. Then a = 1 and

furthermore g1(y) = ry + µ0 is a solution, so

g(y) = e−k(0)U(a, b, k(0))(ry + µ0) − µ0e−k(y)U(a, b, k(y)))

is a canonical solution. Straightforward differentiation gives

g′′(y) = µ0e−k(y)[(k′′(y) − (k′(y))2)(U(a, b, k(y)) − U ′(a, b, k(y)))

+ (k′(y))2(U ′(a, b, k(y)) − U ′′(a, b, k(y)))].
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Trivially, for the mth derivative,

sgn(U(m)(a, b, k(y))) = (−1)m,

and for all sufficiently large y, (k′(y))2 > k′′(y); hence, g′′(y) < 0 for all sufficiently large y.
But it then follows, from Lemma 2.2(a), that g is concave, and therefore no optimal policy
exists by Remark 2.2(f). However, by Slater (1960, p. 60), asymptotically as y → ∞,

e−k(y)U(a, b, k(y)) ∼ e−k(y)(k(y))−a,

and therefore
lim

ȳ→∞ g′(ȳ) = re−k(0)U(a, b, k(0)),

giving

V ∗(y) = 1

1 + d1

(
y + µ0

r

)
− µ0

r
e−(k(y)−k(0)) 1

(1 + d1)U(a, b, k(0))
U(a, b, k(y)).

Here the first term is the value if instead of ruin, money could be invested without costs when
reaching 0, and the second term is a reduction in this value due to the possibility of ruin.

Now assume that 0 < α1 < r . By Slater (1960, p. 60), asymptotically as y → ∞,

e−k(y)F (a, b, k(y)) ∼ �(b)

�(a)

(
r − α1

r

)r/2(r−α1)
(

y + µ0

r − α1

)r/(r−α1)

. (3.4)

Consequently, by Remark 2.2(e), either Theorem 2.1(a) or (b) apply. Theorem 2.1(b) applies
if and only if, for all y > 0,

U(a, b, k(0))F (a, b, k(y)) − F(a, b, k(0))U(a, b, k(y))

>

(
a

b
U(a, b, k(0))F (a + 1, b + 1, k(y)) + aF(a, b, k(0))U(a + 1, b + 1, k(y))

)
(y − d0).

When α(y) has a more complex structure, there will be no analytical solution to Lg(y) = 0,
but setting g(0) = 0 and g′(0) = 1, a numerical solution is readily found. This is outlined
in Example 2.2, but before attempting to use this procedure it is useful to know if an optimal
strategy exists. To this end, the following result may be helpful.

Proposition 3.1. Assume that Assumption 2.1 holds and let α(y) satisfy (3.2). Furthermore,
assume that α(y) ≥ α1 for all y ≥ 0, where α1 > 0. Then an optimal dividend strategy
exists.

Proof. Let

µ1(y) = µ1 + (r − α1)y and µ2(y) = µ + (r − α(y))y,

where µ1 is chosen large enough so that µ1(y) > µ2(y) for all y ≥ 0. Let gi solve Lgi (y) = 0
with gi(0) = 0 and g′

i (0) = 1, i = 1, 2. By Lemma 2.3, g1(y) < g2(y) for all y ≥ 0, and
by (3.4) asymptotically

g1(y) ∼ C

(
y + µ1

r − α1

)r/(r−α1)

for some C > 0. Therefore, g2 is ultimately convex and limy→∞ g′
2(y) = ∞. Consequently,

Theorem 2.2(c) cannot apply by Remark 2.2(e).
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Table 2: Values of y∗, y∗ − δ∗, and κ∗ for various values of d0, when σ 2 = µ0 = 1, r = d1 = 0.1, and
α = 0.02.

d0 0 0.1 1 5 10 20 30 40 100

y∗ 3.44 6.73 16.63 43.86 72.75 126.8 179.1 230.7 535.4
y∗ − δ∗ 3.44 2.52 2.08 1.76 1.62 1.50 1.42 1.37 1.21

κ∗ 1.00 0.96 0.86 0.73 0.66 0.58 0.54 0.51 0.41
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Figure 2: The value function V ∗(y) from Example 3.1 plotted as a function of y for d0 = 0, d0 = 1, and
d0 = 5. The other parameters are the same as in Table 2.

Example 3.1. In this example, Y is given by (3.3) with µ0 = 1, σ = 1, d1 = 0.1, r = 0.1,
and α = 0.02, i.e. the same as Example 2.1, but now money in the company earns interest at a
rate r minus costs incurred at a rate α. The program described in Example 2.2 with a stepsize
in the Runge–Kutta method equal to 0.01 was used, and the results are given in Table 2. Note
the slow decrease in y∗ − δ∗ meaning that the value of d0 so that a ruin strategy is preferred is
very high. In fact, increasing d0 to over 200 led to numerical difficulties and so the critical d0
could not be found.

In Figure 2, V ∗(y) is plotted as a function of y for d0 = 0, d0 = 1, and d0 = 5. The other
parameters are the same as in Table 2. This can be compared with Figure 1.

Appendix A. Proof of Proposition 2.1 and Theorem 2.1

Throughout the appendix the function g is a canonical solution as defined before (2.1). The
point yc is defined in Lemma 2.2(b).

Lemma A.1. Under the conditions of Proposition 2.1(a) or Proposition 2.1(b), we have

V (ȳ) − V (x) ≥ ȳ − x − d0

1 + d1
, 0 ≤ x ≤ ȳ.

Proof. Consider first the case of Proposition 2.1(a), i.e. with δ(ȳ) ∈ (0, ȳ), and for simplicity
we write δ = δ(ȳ). It is clear that ȳ − δ < yc since otherwise

V (ȳ) − V (ȳ − δ) > V ′(ȳ − δ)δ = δ

1 + d1
.
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Let

h(x) = V (ȳ) − V (ȳ − x) − x

1 + d1
, 0 ≤ x ≤ ȳ. (A.1)

Then

h(0) = 0, h(δ) = − d0

1 + d1
, h′(x) = V ′(ȳ − x) − 1

1 + d1
, h′′(x) = −V ′′(ȳ − x).

Therefore, h′(δ) = 0 and h′′(δ) > 0. Furthermore, h′(x) > 0 for δ < x ≤ ȳ and, since
h′(x) = 0 has at most two roots, it follows that h takes its minimum at x = δ. Uniqueness is
obvious and the result follows.

Assume that no such δ(ȳ) exists, i.e. the case of Proposition 2.1(b), but, for any given δ,
choose κδ such that

κδg
′(ȳ − δ) = 1

1 + d1

⇒ κδ = 1

g′(ȳ − δ)(1 + d1)
.

Then, with V δ(y) = κδg(y), y ≤ ȳ,

k(δ) := 1

κδ

(
V δ(ȳ) − V δ(ȳ − δ) − δ − d0

1 + d1

)
= g(ȳ) − g(ȳ − δ) − g′(ȳ − δ)(δ − d0)

has k(0) = g′(ȳ)d0 > 0. Since k(δ) = 0 has no solution, k(δ) > 0 for all δ. In particular, with
δ = ȳ,

g(ȳ) > g′(0)(ȳ − d0) 
⇒ V (ȳ) = ȳ − d0

1 + d1
> V ′(0)(ȳ − d0)


⇒ V ′(0) <
1

1 + d1
. (A.2)

Let h(x) be given by (A.1) and note that h(ȳ) = −d0/(1 + d1). By (A.2), h′(ȳ) < 0 and,
furthermore, h′(x) = 0 has at most one root (two roots would imply that h′(ȳ) > 0), and since
h(0) = 0, h takes its minimum at x = ȳ and the result follows.

Proof of Proposition 2.1. Using Lemma A.1, Proposition 2.1 is proved much like, but
slightly simpler than, Theorem 2.1(a) and (b), below, and we omit the details.

Lemma A.2. Under the assumptions of Theorem 2.1(a), we have

(a) LV (y) ≤ 0 for all y > 0,

(b) V (y) − V (x) ≥ (y − x − d0)/(1 + d1), 0 ≤ x ≤ y,

(c) y∗, δ∗, and V are uniquely given.

Proof. First note that since V ′(y∗) = V ′(y∗ − δ∗), by Lemma 2.1(b), y∗ − δ∗ < yc < y∗.
Therefore, V ′′(y∗−) ≥ 0, and so, by continuity, we have

rV(y∗) = 1
2σ 2(y∗)V ′′(y∗−) + µ(y∗)V ′(y∗) ≥ µ(y∗)(1 + d1)

−1.
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Let y > y∗, then we obtain

L V(y) = µ(y)

1 + d1
− r

(
V (y∗) + y − y∗

1 + d1

)

= (1 + d1)
−1(µ(y) − µ(y∗) − r(y − y∗)) + µ(y∗)(1 + d1)

−1 − rV(y∗)

≤ (1 + d1)
−1

∫ y

y∗
(µ′(x) − r) dx

≤ 0.

To prove part (b), set η∗ = y∗ − δ∗. From the observation at the beginning of the proof,
V ′(y) ≥ (1 + d1)

−1 on (0, η∗) and V ′(y) ≤ (1 + d1)
−1 on (η∗, ∞). Therefore,

V (y) − V (x) − y − x

1 + d1
=

∫ y

x

(V ′(u) − (1 + d1)
−1) du

is smallest for x = η∗ and y ≥ y∗, and then it is equal to −d0/(1 + d1). Part (c) is proved in
connection with the algorithm preceding Proposition 2.2.

Lemma A.3. Under the assumptions of Theorem 2.1(b), the results of Lemma A.2 hold (with
δ∗ = y∗).

Proof. First note that y∗ > yc since, if y∗ ≤ yc then

V (y∗) =
∫ y∗

0
V ′(y) dy ≥

∫ y∗

0
V ′(y∗) dy = y∗

1 + d1
,

which contradicts Assumption 2.3(c). Therefore, part (a) follows as in Lemma A.2(a). By
(A.2), with y∗ = ȳ,

y∗ − d0

1 + d1
= V (y∗) > V ′(0)(y∗ − d0),

and therefore V ′(0) < (1 + d1)
−1 = V ′(y∗). But then V ′(y) ≤ V ′(y∗) for all y > 0

(V ′(y) = V ′(y∗) for y ≥ y∗). This gives, for 0 ≤ x ≤ y ≤ y∗,

V (y) − V (x) − y − x

1 + d1
=

∫ y

x

(V ′(u) − (1 + d1)
−1) du

≥
∫ y∗

0
(V ′(u) − (1 + d1)

−1) du

= V (y∗) − y∗

1 + d1

= − d0

1 + d1
,

which proves part (b) since if y∗ ≤ x ≤ y, then V (y) − V (x) = (y − x)/(1 + d1).
Again uniqueness follows from the iteration procedure preceding Proposition 2.2.

Lemma A.4. Assume that case (i) of Proposition 2.2 holds and that for any V that satisfies
Assumption 2.2(a) the problem

V (ȳ) = ȳ − d0

1 + d1
and V ′(ȳ) = 1

1 + d1
(A.3)
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has no solution for any ȳ > 0. Then, for d0 < ȳ1 < ȳ2,

Vȳ1,δ(ȳ1)(y) < Vȳ2,δ(ȳ2)(y), y ≥ 0,

and
V (y) = lim

ȳ→∞ Vȳ,δ(ȳ)(y) = κg(y)

exists for

κ = 1

1 + d1
lim

ȳ→∞
1

g′(ȳ)
.

Furthermore,

(a) V (0) = 0,

(b) LV (y) = 0, y > 0,

(c) V (y) − V (x) > (y − x − d0)/(1 + d1), 0 ≤ x ≤ y.

Proof. For notational simplicity, we write Vy(x) for Vy,δ(y)(x) throughout the proof. For
V (ȳ) = κg(ȳ) to be a solution of (A.3) is equivalent to

g(ȳ) = g′(ȳ)(ȳ − d0). (A.4)

Now, h(y) := g(y) − g′(y)(y − d0) has h(0) > 0 and, since (A.4) has no solution, we must
have

g(y) > g′(y)(y − d0), y > 0. (A.5)

Let d0 < ȳ1 < ȳ2 and set Vȳi
(y) = κig(y) for y ≤ yi , i = 1, 2. Consider a barrier ȳ > d0. If

Assumption 2.2(a) and (b) have a solution then

g(ȳ) − g(ȳ − δ(ȳ)) = g′(ȳ − δ(ȳ))(δ(ȳ) − d0),

but that contradicts (2.3). Therefore, it is optimal to use a ruin barrier strategy, and so

Vȳ2(ȳ1) − Vȳ1(ȳ1) = (κ2 − κ1)g(ȳ1) = ȳ2 − d0

1 + d1

g(ȳ1)

g(ȳ2)
− ȳ1 − d0

1 + d1
.

Proving that this is positive is equivalent to proving that h(ȳ2) is positive, where

h(y) = g(ȳ1)

ȳ1 − d0
− g(y)

y − d0
.

But h(ȳ1) = 0 and

h′(y) = g(y) − g′(y)(y − d0)

(y − d0)2 ,

which is positive by (A.5). Therefore, κ1 < κ2, implying that Vȳ1(y) < Vȳ2(y) for y ≤ ȳ1.
Letting ȳ1 < y < ȳ2 gives

Vȳ2(y) − Vȳ1(y) = ȳ2 − d0

1 + d1

g(y)

g(ȳ2)
− y − d0

1 + d1
,

but this was just proved to be positive.
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Let {ȳn} be increasing to ∞ and let κn be given by Vȳn(y) = κng(y), y ≤ ȳn, we can then
define κ = limn→∞ κn. By (A.5), we have

κn = ȳn − d0

(1 + d1)g(ȳn)
<

1

(1 + d1)g′(ȳn)
.

Since yc < ∞, it is necessary that limn→∞ g′(ȳn) > 0; hence, {κn} is bounded so κ is finite. In
fact, since g is ultimately convex, κ is as given in Lemma A.4. With V (y) = κg(y), it is clear
that V (0) = 0 and LV (y) = 0 for all y. Furthermore, with 0 ≤ x < y and Vy(x) = κyg(x),
we have

V (y) − V (x) = κ(g(y) − g(x)) > κy(g(y) − g(x)) = Vy(y) − Vy(x) ≥ y − x − d0

1 + d1
,

where the last inequality comes from Lemma A.1.

Lemma A.5. Assume that case (ii) of Proposition 2.2 holds. Then the results of Lemma A.4
hold.

Proof. We will first prove that limy→∞ g′(y) ≤ g′(0). Assume the contrary and let (x1, y1)

satisfy case (ii) of Proposition 2.2. Clearly, x1 < yc and therefore g′(x1) ≤ g′(0), and by
assumption g′(x1) ≥ g′(y), x1 < y < y1. This gives

−d0 =
∫ y1

x1

(
g′(y)

g′(x1)
− 1

)
dy ≥

∫ y1

0

(
g′(y)

g′(0)
− 1

)
dy.

By assumption, eventually g′(y) > g′(0), and therefore there exists a y2 > y1 so that
∫ y2

0

(
g′(y)

g′(0)
− 1

)
dy = −d0.

But then g′(y2) > g′(0), contradicting case (ii) of Proposition 2.2. Hence, limy→∞ g(y) ≤
g(0).

Again, let (x1, y1) satisfy case (ii) of Proposition 2.2 and let y2 > y1 be arbitrary. Then, by
what we have already proved, we have

−d0 =
∫ y1

x1

(
g′(y)

g′(x1)
− 1

)
dy ≥

∫ y2

0

(
g′(y)

g′(0)
− 1

)
dy.

Increasing the lower limit of integration together with the argument of g′ in the denominator,
we see that there will exist an x2 > 0 so that g(y2) − g(x2) = g′(x2)(y2 − x2 − d0). Assume
that x1 ≥ x2. Then

−d0 =
∫ y2

x2

(
g′(y)

g′(x2)
− 1

)
dy <

∫ y1

x1

(
g′(y)

g′(x2)
− 1

)
dy <

∫ y1

x1

(
g′(y)

g′(x1)
− 1

)
dy = −d0,

which is a contradiction. To conclude, we have proved that if case (ii) of Proposition 2.2 applies
and the pair (x1, y1) satisfies g(y1) − g(x1) = g′(x1)(y1 − x1 − d0) then, for any y2 > y1,
there exists an x2 > x1 so that (x2, y2) also satisfies this equation.

For y ≤ yi , let Vyi
(y) := Vyi,δ(yi )(y) = κig(y), i = 1, 2, be the value function of an optimal

dividend barrier strategy at yi with jumpsize δi = yi − xi , where (xi, yi) are as above. Then,

κi = 1

g′(xi)(1 + d1)
,
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and therefore κ1 < κ2, which implies that Vy1(y) < Vy2(y), y ≤ y1. Next, let y ∈ (y1, y2).
We will show that Vy1(y) < Vy2(y) here as well. To do so it is sufficient to show that
Vy1(y2) < Vy2(y2) since then Vy1(y) < Vy(y) < Vy2(y). We have

Vy2(y2) − Vy1(y2) = Vy2(x2) + y2 − x2 − d0

1 + d1
− Vy1(x1) − y2 − x1 − d0

1 + d1

= 1

1 + d1

(
g(x2)

g′(x2)
− g(x1)

g′(x1)
− (x2 − x1)

)
.

Let

h(x) = g(x)

g′(x)
− g(x1)

g′(x1)
− (x − x1).

Then h(x1) = 0 and

h′(x) = −g(x)g′′(x)

(g′(x))2 > 0, x1 ≤ x ≤ x2,

since x2 < yc. This gives the result.
Now assume that y0 ∈ (d0, y1) is so that g(y0) − g(x) = g′(x)(y0 − x − d0) has no

solution for x ∈ [0, y0], meaning that an optimal barrier strategy at y0 is a ruin strategy. Then
g(y0) > g′(0)(y0 − d0) and by Proposition 2.1 with Vy0(y) = κ0g(y), 0 ≤ y ≤ y0, we have

(κ1 − κ0)g(y0) = Vy1(y0) − Vy0(y0)

= g(y0)

1 + d1

(
1

g′(x1)
− y0 − d0

g(y0)

)

>
g(y0)

1 + d1

(
1

g′(x1)
− 1

g′(0)

)

> 0.

Furthermore, in this case

Vy1(y1) − Vy0(y1) = 1

1 + d1

(
g(x1)

g′(x1)
− x1

)
> 0,

since g is concave on [0, x1]. We have therefore proved that when case (ii) of Proposition 2.2
applies with d0 < ȳ1 < ȳ2, we have

Vȳ1(y) < Vȳ2(y).

The rest of the proof is now identical to the last part of the proof of Lemma A.4. The only
thing to observe is that for (x̄n, ȳn) to satisfy the conditions of (xi, yi) above, it is necessary
that limn→∞ g′(x̄n) = limn→∞ g′(ȳn), and so κ is as given in Lemma A.4.

Proof of Theorem 2.1. Since V is twice continuously differentiable and D has finite varia-
tion, the general Itô formula gives

e−r(t∧τy)V (Yt∧τy ) = V (y) +
∫ t∧τy

0
e−rsLV (Ys) ds +

∫ t∧τy

0
e−rsσ (Ys)V

′(Ys) dWs

− (1 + d1)

∫ t∧τy

0
e−rsV ′(Ys) dDc

s −
∑

s≤t∧τy

e−rs(V (Ys−) − V (Ys)),

(A.6)
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where Dc denotes the continuous part of D. But since there is a fixed cost with each payment,
Dc ≡ 0. Letting ρn = inf{t : Yt ≥ n}, by (A.6) and Lemmas A.2–A.5, we obtain

e−r(t∧τy∧ρn)V (Yt∧τy∧ρn) ≤ V (y) +
∫ t∧τy∧ρn

0
e−rsσ (Ys)V

′(Ys) dWs

−
∑

s≤t∧τy∧ρn

e−rs(V (Ys−) − V (Ys− + �Ys))

≤ V (y) +
∫ t∧τy∧ρn

0
e−rsσ(Ys)V

′(Ys) dWs

−
∑

s≤t∧τy∧ρn

e−rs (−�Ys) − d0

1 + d1

= V (y) +
∫ t∧τy∧ρn

0
e−rsσ(Ys)V

′(Ys) dWs −
∑

s≤t∧τy∧ρn

e−rs�Ds.

Taking expectations gives

V (y) ≥ Ey

[∫ t∧τy∧ρn

0
e−rs dDs

]
+ Ey[e−r(t∧τy∧ρn)V (Yt∧τy∧ρn)] ≥ Ey

[∫ t∧τy∧ρn

0
e−rs dDs

]
.

Finally, letting t → ∞ and n → ∞ gives, by monotone convergence,

V (y) ≥ Ey

[∫ τy

0
e−rs dDs

]
.

For the strategies given in Theorem 2.1(a) and (b), Y and V ′ are bounded and LV (Ys) = 0 for
all s since Ys ≤ y∗. Therefore, by Lemmas A.2 and A.3, we have

V (y) = Ey

[∫ t∧τy

0
e−rs dDs

]
+ Ey[e−r(t∧τy)V (Yt∧τy )].

Letting t → ∞ and using monotone convergence on the first term on the right-hand side and
dominated convergence on the second term on the right-hand side together with V (0) = 0 gives
the result for parts (a) and (b).

Now assume that the assumptions of Theorem 2.1(a) and (b) do not hold, and let D∗ be an
optimal strategy. Let D′ be ‘the more generous payout’

�D′
s = V (Ys−) − V (Ys− + �Ys) > �D∗

s when �D∗
s > 0,

where the inequality follows from Lemmas A.4 and A.5. Therefore,

P(D′
t∧τy

> D∗
t∧τy

) > 0

for sufficiently large t (if not Ey[∫ τy

0− e−rs dD∗
s ] = 0, and D∗ is not optimal). Consequently, as

in the first part of the proof, we have

V (y) ≥ Ey

[∫ τy

0−
e−rs dD′

s

]
> Ey

[∫ τy

0−
e−rs dD∗

s

]
.
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Let

ε = V (y) − Ey

[∫ τy

0−
e−rs dD∗

s

]
.

By Lemmas A.4 and A.5, there exists a ȳ so that V (y) − Vȳ,δ(ȳ)(y) < ε, and so D∗ cannot
be optimal. It follows, from Lemmas A.4 and A.5, that V (y) = limȳ→∞ Vȳ,δ(ȳ)(y). This
completes the proof.
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