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Abstract

In this paper we obtain an approximation for the duration distribution of the excursion
set generated by the minimum of two independent F random processes above a high
threshold u. Moreover, we obtain a closed-form approximation for the mean duration of
the conjunction of these twoF processes. As an illustration, we conduct a simulation study
to compare the performances of the approximated distribution and the exact distribution.
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1. Introduction

Random processes such as Gaussian and F processes are widely used in modeling many
random responses in various areas of applications, such as engineering. This paper is motivated
by a problem in communication engineering where F processes are considered to be flexible
models for the load of communication systems. An extreme value of the communication load
of a system indicates that the system is unavailable. As a result, the probability that the load
of a system exceeds a given threshold is considered to be one of the main communication
quality measures. Another significant measure for system quality is the time of unavailability,
which is defined as the period of time (duration) that the load spends above a given threshold u

after an upcrossing at u (see Figure 1). Leadbetter et al. (1983) studied the problem that
involves one Gaussian process and discussed the duration distribution of such a process. To
elaborate more on this idea, we assume that X1(t) and X2(t) are the loads of two independent
communication systems. We define the duration of unavailability of both systems as the duration
of the process W(t) = min(X1(t), X2(t)). The problem of deriving an approximation to the
duration distribution of W(t) above the threshold u when both processes are independent F

processes is an interesting problem that will be discussed in the sequel. Similar ideas and
applications can be found in medical, industrial, and other areas of research.

To this end, we assume that X(t), t ∈ [0, A], is a stationary and differentiable random
process with first derivative Ẋ(t). Accordingly, X(t) will have an upcrossing of u at t0 ∈ [0, A]
if X(t0) = u and Ẋ(t0) > 0. Similarly, X(t) will have a downcrossing of u at t0 ∈ [0, A] if
X(t0) = u and Ẋ(t0) < 0.
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Figure 1: The duration of the conjunction of two random processes.

The length of the interval between an upcrossing and the subsequent downcrossing of a
level u is called the duration of the excursion of X(t). Moreover, the conjunction of the two
random processes X1(t) and X2(t), t ∈ [0, A], is defined by X∗(t) = min(X1(t), X2(t)),
which happens to be another random process. Many authors have discussed the theory of
random processes and the conjunction of two or more Gaussian processes (see Worsley and
Friston (2000) and Alodat (2004)). In Figure 1 we clearly show that the excursion set of the
conjunction above the threshold u is the intersection of the excursion sets of the processes X1(t)

and X2(t) above u. In this paper we obtain an approximation to the duration distribution of the
excursion of X∗(t) when X1(t) and X2(t) are two independent F random processes. The paper
is structured as follows. In Section 2 we useWorsley’s (1994) definition of the F random process
and present some of the main results of Cao (1999) in order to obtain an approximation of the
duration distribution of the process. In Section 3 we derive approximations to the durations of
two F processes, F1(t) and F2(t); moreover, we obtain the formula that gives the duration of
the excursion set of F ∗(t) = min(F1(t), F2(t)) above u. In Section 4 we obtain a closed-form
approximation for the mean value of the duration of F ∗(t). In Section 5 we use a simulation
to check the validity of our work by comparing the empirical distribution functions with our
approximation.

2. Approximating the duration of F(t)

Suppose that X1(t), X2(t), . . . , Xn(t) and Y1(t), Y2(t), . . . , Ym(t) are two independent sets
of independent, stationary, and real-valued Gaussian random processes with mean 0 and
variance 1. We further assume that the Gaussian random processes used to define F(t) are twice
differentiable such that λ = var(Ẋi(t)) = var(Ẏj (t)), i = 1, 2, . . . , n and j = 1, 2, . . . , m.
We use Ẋ(t) and Ẍ(t) to denote the first and second derivatives of X(t), respectively. Also, we
assume that X1(t), X2(t), . . . , Xn(t) and Y1(t), Y2(t), . . . , Ym(t) are ergodic and satisfy the
condition that

E |Ẍ(t) − Ẍ(0)| ≤ c|t |2
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for some c > 0 and t in some neighborhood of 0. Furthermore, Worsley (1994) defined the F

random process as

F(t) =
∑n

i=1 X2
i (t)/n∑m

j=1 Y 2
j (t)/m

. (1)

For a large threshold u, the excursion set of a smooth and stationary F random process is a
union of disjoint intervals or clusters (see Cao (1999)). Hence, each duration equals the length
of one of these intervals. On the other hand, Worsley (1994) gave the following stochastic
representation of Ḟ (t):

Ḟ (t) = 2

√
m

n
F 1/2(t)

(
1 + n

m
F(t)

)
W 1/2(t)Z(t), (2)

where F(t) is a Fisher random variable with n and m degrees of freedom, W(t) ∼ χ2
m+n and

Z(t) ∼ N(0, λ) such that F(t), W(t), and Z(t) are all independent. According to the result
given in (2) and assuming that G(t) = (n/m)F(t), we easily see that

Ḟ (t) = m

n
Ġ(t) = m

n
[2G1/2(t)(1 + G(t))W−1/2(t)Z(t)].

For convenience and since F(t) is stationary, we drop the argument t in the rest of the paper.
Note that the variance of the random variable Ḟ = Ḟ (t) is obtained as follows:

var(Ḟ ) = E(Ḟ 2) − (E(Ḟ ))2

= E

(
4
m2

n2 G(1 + G)2W−1Z2
)

−
[

E

(
2
m

n
G1/2(1 + G)W−1/2Z

)]2

= 4
m2

n2 E(G(1 + G)2) E(W−1) E(Z2).

Since G, W and Z are independent, it is easy to see that E(Z2) = λ and, consequently, we have

E(W−1) = �((m + n)/2 − 1)

2�((m + n)/2)
.

On the other hand, we may write var(Ḟ ) as

var(Ḟ ) = 4
m2

n2 λ E(G(1 + G)2)
�((m + n)/2 − 1)

2�((m + n)/2)

= 2
m2

n2 λ E

(
n

m
Fn,m

(
1 + n

m
Fn,m

)2)(
�((m + n)/2 − 1)

�((m + n)/2)

)

= 2
m

n
λ E

(
Fn,m

(
1 + n

m
Fn,m

)2)(
�((m + n)/2 − 1)

�((m + n)/2)

)
. (3)

The expectation in (3) requires some numerical computations in order to be evaluated. Cao
(1999) introduced the following two theorems concerning the F random process.

Theorem 1. Let F(t) be an F process with a local maximum at t = 0 and height F = F(0)

exceeding u. Then, for a given 0 < y < 1,

lim
u→∞ P(F > (1 − y)−1u | F > u, Ḟ = 0, F̈ < 0) = (1 − y)(m−1)/2.
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Theorem 2. Conditional on F = F(0), with probability approaching 1 as u → ∞, F(t) has
the following representation over the cluster of the excursion set containing 0:

Fu(t) = mAF

mA + nBt2F
+ o(u),

where F , A, and B are all independent such that A ∼ χ2
m+n−1 and B/λ ∼ χ2

m+1.

Using Theorem 2, we can approximate the cluster of F(t) that contains 0 as follows:

Bu = {t : Fu(t) ≥ u},
≈

{
t : mAF

mA + nBt2F
≥ u

}
,

= {t : mAF ≥ mAu + nBt2Fu},
=

{
t : t2 ≤ mAF − mAu

nuBF

}
,

=
{
t : |t | ≤

√
mA(F − u)

nuBF

}
. (4)

The interval on the right-hand side of (4) approximates the cluster of F(t) that contains 0,
where Y = (F − u)/F . Thus, if R = √

mAY/nuB then Bu = [−R, R]. In the sequel, we
address the problem of obtaining the probability density function (PDF) of R.

3. Approximating the duration of F ∗(t)

To accomplish the mission of approximating the duration of F ∗(t), we divide our work into
two parts. Steps 1–3 describe the details of obtaining the PDF of R = √

mAY/nuB, while
step 4 reveals how we obtain the duration of the excursion set of F ∗(t) above u.

Step 1: approximating the durations of F1(t) and F2(t). Let F1(t) and F2(t), t ∈ [−L, L],
be two F processes such that Fi(t) has a local maximum at ti , i = 1, 2. Since Fi(t) is stationary,
we may assume that ti = 0. Then Fi(t) has the following representation near ti :

Fi,u(t) = mAiFi

mAi + nFiBit2 + o(u).

As in (4), we approximate the durations by the intervals [−R1, R1] and [t2 − R2, t2 + R2],
where

Ri =
√

mAiYi

nuBi

.

The conjunction F ∗(t) of F1(t) and F2(t) occurs when the two intervals overlap (see Figure 1).
Applying the results of Cao (1999) with N = 1, � = λ, and det(bi) = bi gives the joint
horizontal window conditional distribution of Ai and Bi given that Fi(t) has a local maximum
which exceeds u at t0 = 0. In other words,

fAi,Bi
(ai, bi | Fi = u, Ḟi = 0, F̈i < 0)

∝ a
[(m+n−N)/2]−1
i e−ai/2 det(bi)

(m+1−N−1)/2e−tr(−�−1bi )/2,
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which reduces to

fAi,Bi
(ai, bi | Fi = u, Ḟi = 0, F̈i < 0) = αa

(m+n−3)/2
i e−ai/2b

(m−1)/2
i e−bi/2λ,

where ai > 0, bi > 0, and α is a normalizing constant.
Step 2. Relying on Theorem 1, we derive the cumulative distribution function (CDF) and,

hence, the PDF of Yi = (Fi −u)/Fi , which represents the excess height of Fi(t) above u. Note
that, for 0 < y < 1, we have

P(Yi ≥ y | Fi > u, Ḟi = 0, F̈i < 0) = P

(
Fi ≥ u

1 − y

∣∣∣∣ Fi > u, Ḟi = 0, F̈i < 0

)
.

This allows us to conclude that

lim
u→∞ P(Yi ≥ y | Fi > u, Ḟi = 0, F̈i < 0) = 1 − (1 − y)(m−1)/2,

which means that the CDF and PDF of Yi are respectively

FYi
(y) =

⎧⎪⎨
⎪⎩

0, y < 0,

1 − (1 − y)(m−1)/2, 0 ≤ y < 1,

1, y ≥ 1,

and fYi
(y) =

⎧⎨
⎩

m − 1

2
(1 − y)(m−3)/2, 0 < y < 1,

0, otherwise.

Step 3: finding the PDF of Ri . To achieve our goal, we first note that

Ai

Bi

= (m + n − 1)

λ(m + 1)
Wi, where Wi = Aiλ(m + 1)

Bi(m + n − 1)
.

Also, it is well known that Bi/λ ∼ χ2
m+1 is equivalent to Bi ∼ �((m+1)/2, 2λ), which allows

us to conclude that Wi ∼ F(m+n−1,m+1), the Fisher random variable with m+ n− 1 and m+ 1
degrees of freedom. Consequently, we can rewrite Ri as

Ri =
√

YiWi

m

nu

(m + n − 1)

λ(m + 1)
= c

√
YiWi, where c =

√
m

nu

(m + n − 1)

λ(m + 1)
.

Secondly, we need to find the joint PDF of Yi and Wi , where the PDF of Wi is given by

fWi
(w) = kw(m+n−3)/2

(
1 + m + n − 1

m + 1
w

)−(2m+n)/2

, 0 ≤ w < ∞,

where

k = �((2m + n)/2)

�((m + n − 1)/2)�((m + 1)/2)

(
m + n − 1

m + 1

)(m+n−1)/2

.

Moreover, since Yi and Wi are independent, their joint PDF can be written as

f (y, w) = k

(
m − 1

2

)
(1 − y)(m−3)/2w(m+n−3)/2

(
1 + m + n − 1

m + 1
w

)−(2m+n)/2

for w > 0 and 0 < y < 1, while fYi,Wi
(y, w) = 0 otherwise.
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Now, we introduce a variable transformation from (y, w) to (q, r), where q = y and
r = c

√
yw, with Jacobian equal to |J | = 2r/c2q. Thus, the joint PDF of Ri and Qi appears as

g(q, r) = c̃2r(1 − q)(m−3)/2
(

r2

c2q

)(m+n−3)/2(
1 + m + n − 1

m + 1

r2

c2q

)−(2m+n)/2

,

where 0 < q < 1, r > 0, and

c̃ = �((2m + n)/2)

�((m + n − 1)/2)�((m + 1)/2)

(
m − 1

2

)(
m + n − 1

m + 1

)(m+n−1)/2

.

Hence, the marginal PDF of Ri is obtained by integrating q out. In other words,

gRi
(r) =

∫ 1

0
g(q, r) dq = c̃1

1

rm+2 �

(
m + 3

2
, m + n

2
, m + 1,

−m

r2uλ

)
,

where r > 0,

c̃1 = 2m(m−1)/2�((m + 3)/2)�(m + n/2)

(uλ)(m+1)/2�(m)�((m + n − 1)/2)
, �(a, b, c, z) =

∞∑
i=0

(a)i(b)i(z)
i

i! (c)i ,

and (a)i = a(a + 1)(a + 2) · · · (a + i − 1).
Step 4: deriving the duration of the excursion set of F ∗(t) above u. Suppose that H denotes

the distance between the centers of the two intervals I1 and I2, where I1 = [−R1, R1] and
I2 = [t2 − R2, t2 + R2], t2 ∈ [−L, L], are given in step 1. Knowing that the excursion sets
of stationary processes are well modeled by a Poisson point process (see Aldous (1989)), then
H is uniformly distributed on the interval [−L, L]. Accordingly, the conjunction F ∗(t) occurs
if and only if the two intervals overlap, i.e. if the event G = {0 ≤ H ≤ R1 + R2} occurs.
Therefore, the duration of the excursion set of F ∗(t) above u is approximated by

S = 2R(1)1[0,R(2)−R(1)](H) + (R(1) + R(2) − H)1[R(2)−R(1),R(1)+R(2)](H),

where R(1) = min{R1, R2}, R(2) = max{R1, R2}, and 1A(·) denotes the indicator function
of A. Note that the PDF of H given R1 = r1, R2 = r2, and G is

fH (h | R1 = r1, R2 = r2, G) = 1

r1 + r2
1[0,r1+r2](h), (5)

while the probability of G given that R1 = ν1 and R2 = ν2 is

P(G | R1 = ν1, R2 = ν2) = ν1 + ν2

L
.

Bearing in mind that R1 and R2 are independent and identically distributed, we easily get

P(R1 ≤ r1, R2 ≤ r2, G) =
∫ r1

0

∫ r2

0
P(G | R1 = ν1, R2 = ν2)gR1

(ν1)gR2
(ν2) dν1 dν2.
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Consequently, we obtain the probability of G as follows:

P(G) =
∫ ∞

0

∫ ∞

0
P(G | R1 = ν1, R2 = ν2)g(ν1)g(ν2) dν1 dν2,

=
∫ ∞

0

∫ ∞

0

ν1 + ν2

L
g(ν1)g(ν2) dν1 dν2,

=
∫ ∞

0

ν1

L
g(ν1) dν1 +

∫ ∞

0

ν2

L
g(ν2) dν2

= 2

L

∫ ∞

0
ν1g(ν1) dν1

= 2

L

∫ ∞

0
ν1c̃1

1

νm+2
1

�

(
m + 3

2
, m + n

2
, m + 1,

−m

ν2
1uλ

)
dν1,

which leads directly to

P(G) = c̃1

L

√
π(uλ)m/2�(m)�((m + n)/2)

mm/2�((m + 3)/2)�(m + n/2)
. (6)

So, the joint CDF of R1 and R2 given G is

K(r1, r2 | G) = P(R1 ≤ r1, R2 ≤ r2, G)

P(G)
,

and the joint PDF of R1 and R2 given G is

k(r1, r2 | G) = (P(G)L)−1(r1 + r2)g(r1)g(r2).

Having the joint PDF k(r1, r2 | G) in the palm of our hands, we focus our attention on simulating
from this PDF. In order to carry out this proposed idea, we rewrite k(r1, r2 | G) as

k(r1, r2 | G) = r1g(r1)g(r2)

P(G)L
+ r2g(r1)g(r2)

P(G)L
.

Then, substituting P(G) = (2/L)
∫ ∞

0 r1g(r1) dr1 into the joint PDF k(r1, r2 | G) and using (6)
allows us to write this joint PDF in the form

k(r1, r2 | G) = r1g(r1)

2
∫ ∞

0 r1g(r1) dr1
g(r2) + r2g(r2)

2
∫ ∞

0 r2g(r2) dr2
g(r1).

Finally, we use (5) to write the joint PDF of R1, R2, and H given G as

D(r1, r2, h | G) = f (h | R1 = r1, R2 = r2, G)k(r1, r2 | G)

= 1

r1 + r2
1(h)[0,r1+r2]k(r1, r2 | G).

4. Duration mean

In this section we rely on the notation and results presented in step 4 to obtain the mean value
of the duration S. To proceed in this direction, we assume that I1 and I2 are two intervals with
lengths 2l1 and 2l2, respectively, such that I1 is fixed. On the other hand, I2 moves uniformly
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around I1 such that I2 meets I1. From the classical geometric probability theory, the mean
value of the overlap length of I1 and I2 is

2l1l2

l1 + l2
.

In our case, l1 = R1 and l2 = R2 are considered to be random variables. To find E(S | G), we
first condition on R1 and R2, and then we take the expectation with respect to R1 and R2. If
I1 = [−R1, R1] and I2 = [t2 −R2, t2 +R2], as described in Section 3, then we use the iterated
expectations to obtain

E(S | G) = ER1,R2(EH (S | R1, R2, G))

= ER1,R2

(
2R1R2

R1 + R2

∣∣∣∣ G

)

= (P(G)L)−1
∫ ∞

0

∫ ∞

0

2r1r2

r1 + r2
(r1 + r2)g(r1)g(r2) dr1 dr2

= 2(P(G)L)−1
∫ ∞

0
r1g(r1) dr1

∫ ∞

0
r2g(r2) dr2

= 2

L P(G)

( ∫ ∞

0
r1g(r1) dr1

)2

=
∫ ∞

0
r1g(r1) dr1

=
∫ ∞

0
r1c̃1

1

rm+2
1

�

(
m + 3

2
, m + n

2
, m + 1,

−m

r2
1 uλ

)
dr1,

which allows us to conclude that

E(S | G) =
√

π

muλ

�((m + n)/2)

�((m + n − 1)/2)
.

5. Simulation study

To check the validity of our approximation, we compare the empirical distribution functions
of two large samples, one of which is obtained from the approximation and the other from
the exact distribution. Since the exact duration distribution is unknown, we obtain a large
sample from it by simulating a Gaussian process. We generate 5000 samples that correspond
to different values of the threshold, u = 1, 2, 3, 4, 5, 6, and 7. Finally, we design the following
algorithm to simulate from the distribution of S.

1. Simulate (R1, R2) from k(r1, r2 | G).

2. Simulate H from fH (h | R1 = r1, R2 = r2, G).

3. The random vector (R1, R2, H) is distributed according to D(r1, r2, h | G).

4. Obtain S = 2R(1)1[0,R(2)−R(1)](H) + (R(1) + R(2) − H)1[R(2)−R(1),R(1)+R(2)](H).

To conduct our simulation in step one, we use the Metropolis algorithm (see Robert and Casella
(1999)). This algorithm focuses on simulating from the density h(x) by following the steps
listed below.
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1. Select an initial value θ0.

2. Generate ζ uniformly in a neighborhood of θ0.

3. The new value of θ is updated in the following manner:

θ1 =
{

ζ with probability ρ = min{exp(�h/T ), 1},
θ0 with probability 1 − ρ,

where �h = h(ζ ) − h(θ0).

Tables 1–3 show the exact and approximate means of S, and Figures 2–7 illustrate the empirical
distribution functions of both samples.

Table 1: The exact and approximate means when n = 3 and m = 10.

u Exact E(S | G)

1.0 1.1147 0.5944
2.0 0.5169 0.4203
3.0 0.3600 0.3432
4.0 0.2910 0.2972
5.0 0.2522 0.2658
6.0 0.2225 0.2427
7.0 0.2061 0.2247

Table 2: The exact and approximate means when n = 5 and m = 10.

u Exact E(S | G)

1.0 1.2055 0.5487
2.0 0.5799 0.3880
3.0 0.3952 0.3168
4.0 0.3138 0.2743
5.0 0.2582 0.2454
6.0 0.2327 0.2240
7.0 0.2100 0.2074

Table 3: The exact and approximate means when n = 7 and m = 10.

u Exact E(S | G)

1.0 0.6077 0.6369
2.0 0.4134 0.4503
3.0 0.3677 0.3691
4.0 0.3308 0.3677
5.0 0.3043 0.2848
6.0 0.2763 0.2600
7.0 0.2550 0.2407
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Figure 2: The exact CDF (solid line) and the approximation CDF (dashed line) of S when u = 1, 2, 3,
n = 3, and m = 10.
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Figure 3: The exact CDF (solid line) and the approximation CDF (dashed line) of S when u = 4, 5, 6, 7,
n = 3, and m = 10.
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Figure 4: The exact CDF (solid line) and the approximation CDF (dashed line) of S when u = 1, 2, 3,
n = 5 and m = 10.
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Figure 5: The exact CDF (solid line) and the approximation CDF (dashed line) of S when u = 4, 5, 6, 7,
n = 5, and m = 10.
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Figure 6: The exact CDF (solid line) and the approximation CDF (dashed line) of S when u = 1, 2, 3,
n = 7 and m = 10.
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Figure 7: The exact CDF (solid line) and the approximation CDF (dashed line) of S when u = 4, 5, 6, 7,
n = 7 and m = 10.
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The simulation results in Tables 1–3 as well as the distribution functions shown in Figures 2–7
show that the approximation works well for large values of u; moreover, we note that our
approximation approaches the exact approximation as the values of u and n increase.
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