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COMBUSTION WAVES WITH REACTANT DEPLETION

J. GRAHAM-EAGLE1 and D. A. SCHULT2

(Received 11 November, 1998)

Abstract

A simple model for the propagation of a combustion wave is proposed and the speed of
propagation is predicted. It is assumed that the reactant ignites at a specified temperature
and then burns until depleted with reaction rate dependent on temperature and reactant
concentration. The exact solution and linear stability are determined in the case of constant
heat generation and a numerical scheme is developed to generate traveling wave solutions in
the more general case. This numerical method is applied to the case where the temperature
dependence of the reaction rate is modeled by the Arrhenius function.

1. Introduction

Combustion waves are of both theoretical and practical interest as they represent the
spread of a reaction through a material. In the combustion literature such waves are
often approximated by one dimensional models in which spatial variation in only one
direction is considered—see for example Williams [11] and Frank-Kamenetskii [3J.
The approximation is usually justified by considering spatial averages of the tempera-
ture and reactant distribution across the burning layer. Recently Mercer and Weber [7]
published a numerical study of the validity of this simplification in a simple case and
found good agreement in the cases of small heat loss to the environment or large layer
thickness.

Previous work provides estimates of propagation speeds for one dimensional trav-
eling waves with heat loss to the surrounding environment ignoring the effects of
reactant consumption. Gray and Kordylewski [4] discuss monostable reaction func-
tions in which two spatially homogeneous equilibrium solutions exist, only one of
which is stable. Traveling wave solutions effect a transition from the unstable to the
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stable state. These same authors in [5] analyzed the more complicated bistable case
in which combustion waves can take the system from one stable state to another (in
either direction) or from an unstable state to either of two stable states. More recent
papers by Mercer and Weber [6] and Weber and Watt [10] extended this work to a
more complete range of parameter values.

The methods used in the above analyses fail when reactant consumption is included
in the model because the equilibrium points (cold unburned fuel and cold burned fuel)
have the same temperature. If reactant consumption is modeled with external heat
loss ignored then traveling waves can be found which effect transitions from cold
(unburned) material to hot (in which the reactant has been consumed) material. Bush
and Fendell [2] and Weber et al. [9] have determined asymptotic approximations of
traveling waves in this case.

When both reactant consumption and heat loss are allowed, traveling waves of the
type discussed above no longer exist. Mercer et al. [8] investigate the existence of
pseudo-waves which propagate with slowly changing form, but eventually such waves
are extinguished. In this paper we propose a modified model for the propagation of
a reaction through a solid fuel (such as a forest fire). The reactant is modeled as a
homogeneous combustible slab and the reaction is assumed to propagate as a plane
wave. Both heat loss to the environment and reactant concentration are included in the
model. A combustion wave solution propagates as heat is generated in the reaction
and carried forward by diffusion to the fresh fuel.

Traveling wave solutions only exist when the fuel far ahead of the flame does not
react. This is known in combustion theory as the "cold boundary difficulty" (see
Williams [11]) and is circumvented by introducing an ignition temperature in the
reaction rate function. We assume the reactant does not burn until a specified ignition
temperature is attained, and then the reaction proceeds with general temperature de-
pendence until the reactant is completely consumed. Special cases of constant reaction
rate and Arrhenius function dependence on temperature are treated explicitly. Our
treatment of the cold boundary difficulty differs slightly from the approach mentioned
by Williams [11, p. 146] inasmuch as we allow the reaction to proceed even after the
temperature has dropped below the ignition temperature. Physically this is reasonable
if the ignition inhibiting process is changed by the fire, for example drying of fuel, or
creation of catalysts.

In Section 2, we present the mathematical model and in Section 3 we describe
basic properties of traveling wave solutions. Sections 4 and 5 consider existence
and stability of solutions respectively for the special case of constant reaction rate.
Existence of solutions for general reaction rate dependence is discussed in Section 6
while extended results and numerical calculations for the special case of the Arrhenius
reaction function are presented in Section 7.
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2. The model

In this section, we present a model of one-dimensional combustion wave propaga-
tion in a solid fuel (wood for example) including the effects of reactant consumption
and heat loss to the environment. Writing x for the coordinate in the direction of
propagation of the wave and / for time, the temperature T (as measured from am-
bient) and reactant (unburned wood) concentration V, are supposed to satisfy the
nondimensionalized equations (see Aris [1])

dT d2T
— = — -hT + SR(V,T), (2.1)

^ = -08R(V,T). (2.2)
at

Here h and ft are positive constants measuring the rate of heat loss to the atmosphere
and the rate at which the fire consumes wood respectively and the Frank-Kamenetskii
parameter S > 0 measures the rate at which the reaction produces heat. Because
the wood is stationary, (2.2) has no diffusion term, and oxygen is supposed to be
replenished sufficiently rapidly that its concentration is constant. First order reaction
dependence on the reactant concentration is imposed, although generalizations to plh

order are described where relevant.
The reaction rate R( V, T) is assumed to be zero when T < To and V — 1—the

temperature has not yet climbed sufficiently high to ignite the reactant and there is no
heat production. Otherwise, it takes the form

R(V, T)= Vf(T) (2.3)

where we assume only that/ is continuously differentiable and positive. Our primary
interest is however in the cases of constant / and the classical Arrhenius forcing
function

f(T) = exp (j^f) • T > 0. (2-4)

in which the parameter e is inversely related to the (typically large) activation energy
of the reaction.

The goal for our analysis is to give conditions under which traveling wave solutions
exist and to determine the speed c of propagation of the combustion wave as a function
of the ignition temperature To for various values of the Frank-Kamenetskii parameter 8,
the heat loss parameter h, and the consumption rate p\
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3. Traveling waves

We seek traveling wave solutions of (2.1) and (2.2) which propagate with speed
c > 0 to the left. Substituting

T(x,t) = 0(x + ct) and V(x,t) = v(x+ ct) (3.1)

into (2.1), (2.2) we obtain two coupled ordinary differential equations in terms of
z=x + ct,

9" - c9' -h9 + SR(v, 9) = 0, (3.2)

0), (3.3)

where ' is d/dz. Ahead of the ignition point (z < 0), the wood is not burning so
v(z) = 1 and R = 0. The rise in temperature in this region is due only to diffusion
of heat from the approaching fire. Assuming an ignition temperature To > 0 at which
the reaction begins, we find that for z < 0

6" - cO' - he = 0, 6(0) = To, 6(z) ->• 0 as z -> - o o . (3.4)

The solution of this equation is found to be

0(z) = Toe
m+\ z < 0, (3.5)

with

m+ = ]- (y/c2 + Ah + c) . (3.6)

We impose continuity of v, 6, 9' at the ignition point z = 0. This is justified
by integration across an infinitesimal interval containing z = 0. Behind the wave
(z > 0), the temperature 9 and reactant concentration v satisfy (3.2), (3.3) subject to

0(0) = 7b, 9'(0) = m+T0, u(0) = 1. (3.7)

The first two conditions ensure continuity of 6 and its derivative across the interface.
The third condition ensures continuity of reactant concentration. Since / is a differ-
entiable function it follows easily that the initial value problem (3.2), (3.3), (3.7) has
a unique solution (which may or may not exist for all z > 0).

DEFINITION. A solution 6 of (3.2), (3.3), (3.7) is a traveling wave if 9(z) -> 0 as
z -*• oo.
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We proceed to identify conditions under which traveling waves exist by reformu-
lating the problem in terms of 9 alone. A straightforward integration of (3.3) together
with the initial condition in (3.7) shows that

viz) = <Mz) = exp (-^- j~f(9tf))d$) , (3.8)

and since / is positive it follows immediately that <t>g is strictly decreasing and
0 < &e(z) < 1 on its domain. Moreover, if 6 is bounded then <t>g(z) —> 0 as z —*• oo.

REMARK. For a reaction of order 0 < p ^ 1,(3.3) is replaced by cv' = -P8vpf(9)
and (3.8) becomes

. (3.9)

This has little effect and indeed the results of the following sections remain valid as
stated. Note that if p < 1 then <t>e may vanish in finite time, in which case it remains
zero thereafter.

Equations (3.2), (3.3), (3.7) can be reformulated as a single initial value problem
for z > 0 of nonlocal type

6" - c6' -h6 + <S>gf (6>) = 0, 6>(0) = To, 0'(O) = m+T0. (3.10)

We now proceed to consider existence and stability of solutions for the special case
when / (9) = 1. Further treatment of general f (0) appears in Section 6.

4. Constant heat generation

Suppose the forcing function / is constant, / (9) = 1. Then (3.8) reduces to

<t>6(z) = e-
az with a = p8/c (4.1)

and the general solution of (3.10) which decays at infinity is easily found to be

9 (Z) = A e-m'z + - - e~"z, (4.2)

where
1 / / \

(4.3)
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6.0

0.5 _. 0.60.0 0.1 0.2 0.3 0.4

FIGURE 1. Wave speed c versus ignition temperature To (f &s 1, fi — 0.5, A = 1.0, S shown on graph).

The initial condition 0(0) = To determines A which gives

8

-a 2 /h — ca — a2 J ' h — ca - a2

and to satisfy the second initial condition$'(0) = m+T0 requires

28c

az, z>0,

nt- — a

4h + c2 + 2/38) '

(4.4)

(4.5)

REMARK. In the resonant case w_ = a the above exponentials are equal and the
solution 0 contains a factor linear in / but is unchanged in character. In this case it is
straightforward to verify that also h - ca - a2 - 0 and the final expression in (4.5)
shows that the singularity is removable. Thus (4.5) defines To as a smooth function
of c.

For large and small c it follows immediately from (4.5) that

To as c

and

To ~ S/c2 as c —>• oo.

Figure 1 shows graphs of (4.5) for various values of 8.

(4.6)

(4.7)
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FIGURE 2. Temperature profile for traveling waves (f = I, fi = 0.5, h = 1.0, S = 5.0, c shown on
graph).

There exists a critical value of the ignition temperature TOcr with the property
that there are two traveling waves (of differing speeds) for To < TOsr and none for
To > T0,cr. With S = 5.0 and for each of the values c = 0.5, 1.0, and 3.0, (4.5) gives
the corresponding values of To as 0.386, 0.543, 0.335. This gives all the information
required to plot the corresponding traveling waves in Figure 2. The label on the curves
indicates the speed of propagation of the wave.

A formula can be derived for the wave speed c corresponding to the critical ignition
temperature To. To obtain this relation, we treat To as a function of c in (4.5) and
differentiate logarithmically to obtain

To c (c2 + Ah) (c-Jc2 + Ah + c2 +
(4.8)

The left-hand side is zero at the turning point of the solution curve so setting the
right-hand side to zero yields an expression for c at the critical point. Implicitly we
have

2c2h. (4.9)

Since the right-hand side of this equation increases monotonically with c it is clear
that the critical initial temperature is unique.
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FIGURE 3. Stable wave temperature profiles: t = 0,0.5, 1.0,... (f = 1, yS = 0.5, h = 1.0, S = 5.0,
c = 1.88).

5. Stability of the traveling wave

For a given ignition temperature, Figure 1 shows that there are two traveling waves
of different speeds, one slow and one fast. This raises the question of stability of these
waves, that is, for suitable initial conditions does the solution of (2.1), (2.2) tend to
the traveling wave solution or does it die out (or do something else) as time increases?
Linear stability analysis shows that the upper branch is stable and the lower unstable,
and this is borne out by numerical experiments. Figures 3 and 4 show the evolution
of the solution of (2.1), (2.2) for the two values c = 0.785 and 1.88, one below and
the other above the critical value of 1.24 (obtained by using a simple explicit forward
difference formula to solve (2.1), (2.2) with / = 1, Ax = 0.1 and At = Ax2/6).
Both correspond to an ignition temperature of To — 0.5 < rOcr = 0.557. In the
first diagram a square wave initial temperature (initial reactant concentration is 1 for
x < 0, 0 for x > 0) tends quickly to the traveling wave, while in the second an initial
condition very close to the traveling wave solution (in both temperature and reactant)
is quickly extinguished.

For linear stability, we consider the time dependent problem in the moving coor-
dinate and perturb the steady solution found above, linearizing in the perturbations.
There are two methods for perturbing the ignition point of the solution. We can either
(1) allow the moving coordinate to vary in such a way that the ignition point always
occurs at z = 0, or (2) we can hold the moving coordinate system at a fixed speed
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-5.0 10.0

FIGURE 4. Unstable wave temperature profiles: t = 0, 0.2, 0 . 4 , . . . (f = 1, /3 = 0.5, h = 1.0, S = 5.0,
c = 0.785).

and allow the ignition point to be perturbed from zero. Both methods arrive at the
same dispersion relation for the growth rate of the perturbations. Here we present the
second method. The time dependent problem for/ (7) = 1 can be written

dT dT d2T 0

dt c dz ~

z<Z,

z > Z,

z < Z,

\-psv z> z,

zmZ = o, [ r ] z = z = o, [V]z=z = o,

(5.1)

(5.2)

(5.3)

where z = Z is the ignition point where T = To and [ ]z=z denotes the jump of the
contained quantity at the point z = Z. Note that Z = 0 for the steady traveling wave
solution.

Perturbing the variables T, V and Z as follows:

(5.4)

(5.5)

we obtain, by linearizing in e, equations for r, v, £ and the growth rate

f0 z < 0,
(h + fi)x + ex1 - r" -

\Sv z > 0,
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(ji. + Sfi)v + cv' = 0, (5.6)

[r] = 0, [v] = - f [v1] = f ^ / c , (5.7)

[T'] = - f [0"] = f I (m2
+ - mi) 70 + (mi -a2)). (5.8)

( h — ca — a2 x ' J

Here [ ] denotes the jump of the contained quantity at z = 0. In addition, the
definition of Z gives the relation r(0) + £0'(O) = 0 or

r((T) = Hr"J+r0. (5.9)

The solutions r and v after forcing boundedness as z —>• ±oo are

fo z < 0,
v = I (5.10)

fle-<»+M/<>* z > 0,

T =

Aer+Z z < 0,
8Be-(a+ll/c)l (5.11)

Ce~r-Z H z > 0,
h — ca — a2 — 2a fi/c — /n2/c2

where

r± = - (v/c2 + 4A + 4M ± cj . (5.12)

The constants A, B, C, £ and ^ are to be determined by the conditions (5.7), (5.8),
(5.9). Using (5.7) and (5.9) we can write A, B and C in terms of f:

A = -t;m+T0, (5.13)

B = fa, (5.14)

_ j } ,
a — 2afi/c — fiz/cz J

(5.15)

where a = h - ca — a1. Using these we can eliminate A, B and C from (5.8) and
obtain

— m i - r_m+ — r+m+) + — (mi — a 2 ) I= 0.

(5.16)

Nontrivial solutions (f ^ 0) exist only if the square brackets are zero. This solvability
condition gives the dispersion relation between the growth rate /x and the parameters
of the problem.
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W e simplify the dispers ion relat ion by subst i tut ing for To us ing (4.5) rewrit ten
here as

To m_-« ( 5 1?)
( 5 1? )

<5 (m_ + m+)a
Dividing (5.16) by Z;8, using (5.17) and noting that (m+ + a) (m_ — a) = a, we
obtain the dispersion relation

m+(a - m_)(r+ + r_)+i+ « ( « + * - r . ) Q ( 5 j g )

(m++m_)a

Eliminating m± and r±, writing the square roots as d\ = ^/c2 + 4/i + 4/z and rf =
\/c2 + 4/i and forming a common denominator yields

{(c + d)(c - d + 2a)d, + Ada) (a - 2 ^ - 4 ) + 4<taa (a + * + ^ )
J ± L = 0.

Ada (a-2a-f- £ )

(5.19)

Traveling wave solutions are invariant to translations. This symmetry implies that
there will always be perturbation solutions corresponding to zero growth rate. (Here
the solution is r = 0, v = 0, £ = 1, /x = 0.) We do not wish to consider those
perturbations when discussing stability so we factor /x from the dispersion relation.
Setting the numerator to zero and collecting terms with fx we obtain

a(d-dl)(Ah-2ac)=afx\ — + ̂ +dt (-Ah + 2a (c+d)) (^ + - ^
[ c cl \ca cla

(5.20)

Multiplying both sides by d2 + dd\, dividing by /x and retaining the denominator from
(5.19) yields

Equation (5.21) is the dispersion relation we study to investigate the stability of the
traveling wave solutions. To facilitate the exposition, we identify parameter groups
which simplify the relation. Introducing the quantities

H = h/c2; y=a/c = p8/c2; D = d/c;

Dx=dx/c; y = H-y-y2=a/c2;
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the relation (5.21) becomes

4H-2y + (D2 + DDX) \y + Q + § (Zi!±£i _ H) (2y + fl)|
L L — o (5 231

y - 2yQ - & ~ P >
The stability result of primary interest is that the turning point of the solution curve

in Figure 1 is a stability boundary with stable solutions for larger values of c and
unstable solutions for lower values of c.

To show this, we use (4.9) for the turning point of the curve and show that solutions
of this equation satisfy the dispersion relation with £2 = 0. Rewriting (4.9) in the
scaled variables and using the fact that AH ~ (D + l)(D — 1), we have

D + 1 + 2H D + l , c ^
Y = -^IT- = 2TFTT)- (5"24)

Setting Q = 0 and thus D, = D in (5.23) yields

2y)(y2 + y- H)+4yD2 (H - |(1 + D))

(H-y-y2)2

which can be rewritten by factoring the top and bottom and writing H in terms of D
as AH = (D + 1 ) ( D - 1),

(y - e?)2 (r + W
The common factor y — (D — l ) /2in numerator and denominator corresponds to the
resonant case in (5.5) where a = 0, and does not affect stability. The only other factor
that can be zero for positive parameter values is the last which is zero precisely at
the turning point given by (5.24). We have shown that the turning point is a stability
boundary. By solving the dispersion relation numerically on either side of this point,
we show that low values of c correspond to unstable solutions.

As a result of the linear stability analysis, we conclude that for given values of
the parameters there is a minimum propagation speed of the traveling wave which
occurs at the maximum possible ignition temperature 7J>iCr. As this ignition temper-
ature falls (due to drying of the wood for example) the propagation speed increases.
Figure 5 shows the critical speed and ignition temperatures as a function of the Frank-
Kamenetskii parameter 8.

6. Existence of traveling waves-the general case

We return to the case of general / . Suppose henceforth that 9 solves (3.10). We
begin with the main result of this section.
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FIGURE 5. Critical c and To values versus S (f = \, fi = 0.5, h = 1.0).

THEOREM 1. Suppose 9 is bounded. Then 0 < 9(z) < l/Pforall z andO(z) -+ 0
as z —> oo, that is, 9 is a traveling wave.

PROOF. First, suppose 9 < 0 somewhere and let z0 > 0 be the first point at which
this happens. Then 9'(z) < 0 for all z > Zo for if 9' were to vanish then at this point
9" > 0 and the left side of (3.10) would be positive. Rearranging (3.10) as

(9' - c9)' = h9 - 8<S>ef (9) (6.1)

it becomes clear that the right side of this is negative for z > Zo and therefore 9' — c9
is decreasing there. Since 9 is decreasing, it follows that 6' is also, and hence
9{z) —*• — oo as z —> oo, contradicting boundedness of 9. It follows that 9{z) > 0.

Now consider the case 9 > 0. If 9 is not eventually monotone then it must
have a sequence zn —> oo as n —• oo of maximum points. At each of these points
9' = 0 and 9" < 0 so using (3.10) and the remark following (3.8) 0 < hO(zn) <
5*e(z«)/ (9(zn)) -*• 0 as z -> oo so that 9(z) -*• 0 as z -> oo. On the other hand if
9 is eventually monotone and 9(z) -*• L > 0 then again from (3.10) it follows that
9"(z) - c9'(z) > hL/2 for all z > some Z\. Integrating this inequality over (z\,z)
shows that 9'(z) —> oo as z —> oo and this contradicts the boundedness assumption.
Hence 9(z) - • 0 as z -> oo.

There remains only to establish the bound 9(z) < 1//J. Since #'(0) > 0 and we
now know 9(z) -> 0 as z —> oo, 9 must have a maximum point at some zm > 0.
Dividing (3.3) by /? and adding to (3.2) gives j-z (9' - c9 - cv/fi) = hd. Integrating
gives

- c9(z) - ^v(z) = •f
Jo

9(z)dz (6.2)
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and at zm this reduces to

\ T\ \^v(zm) + T0 + rO(z)dz] . (6.3)
P IP c c Jo J

Since the quantity in square brackets is positive, the result follows and the proof is
completed.

REMARK. NO traveling wave can exist if the ignition temperature To > l/fi. Phys-
ically this means that high temperatures can be attained only if the reactant is not
consumed too fast.

COROLLARY. For fixed values of all the other parameters there exists a value of
To e (0, l//3)for which 9 is a traveling wave.

PROOF. This follows from the continuous dependence of the solution of (3.2),
(3.3), (3.7) on the initial values, the fact that the solutions corresponding to To < 0 or
To > l/P tend respectively to —oo or +oo, and the result of the theorem that 9 need
only be bounded to be a traveling wave.

REMARK. It would be nice to show that this value of To is uniquely defined. This is
certainly the case in the previous section and all the numerical experiments performed
on the system (3.2), (3.3), (3.7) support this conclusion, but a proof seems elusive.
We do however have the following special case.

THEOREM 2. IfO < f'(6) < h/SforO < 9 < 1//3 then a traveling wave exists for
only one value of To.

PROOF. Suppose to the contrary that 9\ and 92 are traveling wave solutions of (3.10)
with different initial temperatures but the same values of the remaining parameters.
We may assume^i(O) < 92(0) and it follows from (3.10) that also 0,'(O) < 9'2{Q). Since
both 9\(z) and 92(z) -> 0 as z —• oo it follows that 92 — 9\ has a positive maximum
point. Let zm > 0 be the first such point. Since #,(z) < 92(z) for 0 < z < zm, (3.8)
shows that <J>9, (z) > ^ ( z ) on this same interval. Now use (3.10) with 9\ and 92 and
subtract to obtain

{92-9x)" -c(,92-9x)' -h(62-9x)

+ S^ (f(92) -fm+Sftft) (^ - 4>9]) - 0. (6.4)

At zm the first term here is not positive, the second vanishes and the last is negative. It
follows that

h{92-9x) < S<t>92(f(92) - / (# , ) ) < 8(f(92) -f(9l)), (6.5)
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the last inequality following from 0 < ^ < 1 and the monotonicity of/ . Therefore

> (6.6)
92-9x 8

and the mean value theorem then contradicts the assumption f'(9) < h/8.

REMARK. In the case of constant/ the conditions of Theorem 2 are clearly satisfied
and the conclusion is supported by the previous section. For the Arrhenius function,
f'{9) = (1/(1 +<r(9)2)exp(6>/(l + e0)) < el/e for 9 > 0 so uniqueness of traveling
waves is guaranteed for el/e < h/8.

7. Numerical experiments

In the case of general/ the analytic solution of (3.10) is no longer obtainable and
a numerical approach must be found. For fixed values of 8, ft and h (and e in the case
of the Arrhenius function) the value of the ignition temperature To of the traveling
wave for given c can be determined by solving (3.2), (3.3), (3.7) using a numerical
scheme for initial value problems and shooting for the limiting condition 9(z) —> 0 as
z —> oo. As soon as the solution leaves the interval 0 < 9 < 1/jS the shooting variable
To can be updated and the required value found by bisection. In this way Figure 6
was computed for several values of 8 using the standard fourth-order Runge-Kutta
algorithm with a step length of 5 x 10~3.

As in Section 4 it appears that traveling waves corresponding to low ignition
temperature must travel very slowly or very fast. This is proved in general as follows.

THEOREM 3. To ->• 0 as c -*• 0+ or c -*• oo.

PROOF. Write (6.3) in the form

\ - (— - l ) To = 9{zm) + ^v(zj + - f 9(z)dz > 0 (7.1)
P \ c / /3 c Jo

=> TQ < — > 0 as c ->• 0+. (7.2)

For the second result, let 8f (9) - h9 < K for 0 < 9 < \/fi. Clearly K > 0
depends only on h, 8 a n d / and not on either c or To. From (3.2),

^(9'-c9)>-K (7.3)

and integrating gives 9'(z) — c9 > (m+ — c)T0 — Kz. Rewrite this as

£ {e-et0(z)) > «m+ -c)TQ- Kz) e~n (7.4)
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F I G U R E 6. Wave speed c versus ignition temperature T0 (e = 0.3, f} = 0.5, h = 1.0, S shown on graph), 

and integrate again, this time over all z > 0, to obtain 

-T0 > - (m+ - c) T0 - o To<— (7.5) 
c c1 cm+ 

and the second result is proved. 

REMARK . The expression occurring in (7.5) has the same asymptotics as (4.5) using 
K = S. For (7.2) this is not true because of the crude inequality f£" 6dz > 0 (in fact 
it differs by a factor of 2). 
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