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ABSTRACT In solar active regions, over extended periods of time 
the plasma-magnetic field configuration evolves quasistatically through a 
sequence of nearly force-free equilibrium states. This evolution may be 
understood as the continual distortion of an existing equilibrium by wave
like disturbances propagating upward from the photosphere and subsequent 
fast relaxation to a new, neighbouring equilibrium. In the present paper 
the build-up of magnetic energy, which is presumably necessary for flares 
and other explosive events, during a quasistatic evolution is considered. 
If during the slow evolution the magnetic energy is increased, then the 
relaxation processes represent inverse cascades of energy. We study the 
conditions under which such cascades are possible within the framework 
of mean-field MHD. In contrast to the convection zone, where the dynamo 
for the global magnetic field of the Sun works, the solar atmosphere is 
convectively stable and the first order smoothing approximation justified. 
It turns out then that current helicity (B • V x B) is an important quantity 
decisive for whether magnetic energy can be built up. 

INTRODUCTION 

In the theories of the solar magnetism a particular topological property of the 
magnetic and velocity fields, namely helicity, which is thought to arise as a 
consequence of the rotation of the Sun, is of fundamental importance. With v, 
B, A and j denoting fluid velocity, magnetic induction, magnetic vector potential 
and electric current density, the densities per unit volume of kinetic, magnetic 
and current helicity are defined by 

#K = v - V x v ; HM = A-B; # c = B - V x B . (1) 

It is generally accepted that rotation is the cause for the global magnetic 
field of the Sun. The solar rotation also may be the ultimate cause for the 
generation of dc currents in the atmosphere. Such currents are presumably the 
energy source for flares and also may play a role for the non-flare heating of the 
atmosphere. 

In this paper the particular role of current helicity is considered. It proves 
to be an important quantity for the build-up of currents in the solar atmosphere. 
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QUASISTATIC EVOLUTION OF THE MAGNETIC FIELD 

The photosphere can to some extent be considered as a rigid wall for the 
superphotospheric layers of the atmosphere, since the Alfven velocity of the 
medium above the photosphere is much higher than that of the deeper layers. 
Since, in addition, the magnetic energy dominates over all other energies, the 
plasma-magnetic field configuration above the photosphere evolves, except for 
times of explosive events, slowly through a sequence of force-free equilibrium 
states, characterized by the equation 

V x B = a / / B , (2) 

where ajf denotes a pseudo-scalar which in general depends on position. The 
current helicity and Q / / are related by the equation 

Hc = a / / B 2 . (3) 

The slow evolution may be understood as a continual distortion of the 
equilibrium by disturbances propagating upward from the photosphere and 
subsequent fast relaxation to a new, neighbouring equilibrium. The relaxation 
leads to a state of minimum energy under given photospheric boundary 
conditions and further constraints following from the nature of the relaxation 
process. Without resistivity, i.e., if the magnetic field is frozen into the plasma, 
the relevant variational problem is 

(V X A)2dV = minimum, (4) 

< A x n = 0 on dV, (5) 

SA = 6£ X (V x A) for some 6( in V, (6) 

where n is the normal on the surface dV of the considered volume V and 
<5£ the displacement of a fluid element. Equation (6) expresses the frozen-in
field condition, Equation (5) fixes the distribution of the photospheric flux, 
and Equations (5) and (6) together fix the photospheric end points of magnetic 
field lines (the "field line connectivity"). This problem leads to the necessary 
condition 

j x B = 0. (7) 

The magnetic field relaxes to a general force-free state, in which the factor Q// 
in general is not spatially constant and the relaxation takes place on the short 
Alfven time-scale. 

If there is a small amount of resistivity, the system may relax further, 
namely by Taylor relaxation (Taylor 1974). The corresponding variational 
problem is given by Equations (4) and (5) and the condition that the total 
magnetic helicity is conserved, 

/ A-(V x A)dV = const. (8) 

/ 
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The final state is force-free with spatially constant ot/f- Taylor relaxation, 
involving magnetic reconnection, takes place on a reconnection time-scale, which 
is intermediate between the Alfven and diffusive time-scales. 

RELAXATION AS INVERSE CASCADE 

If during the slow evolution the magnetic energy is increased, then, obviously, 
the relaxation processes represent inverse cascades of energy. Such cascades 
can be described within the framework of mean-field MHD, in which it is 
usual to decompose all quantities into mean and fluctuating parts. Accordingly 
the mean value of the current helicity can be represented as the sum of the 
two contributions resulting from the mean and fluctuating magnetic fields, 
respectively, 

< B • V x B > = < B > -Vx < B > + < B ' • V x B ' > . (9) 

Angular brackets always indicate averages and a prime fluctuations. 

Magnetic and velocity fluctuations lead to a mean electromotive force 

£ = < v ' x B ' > , (10) 

which for a wide range of assumptions can be written in the form 

£ = a < B > - /?Vx < B > (11) 
with coefficients a and /3 which are in general tensors. The first term describes 
the a-effect, the second a turbulent diffusivity. 

The coefficients a and /3 are usually evaluated by applying the first order 
smoothing approximation (FOSA) (cf. Moffatt 1978, Krause and Radler 1980). 
This approximation is justified if 
(a) Rm C 1 or 
(b) |v'| < A/r = S or 
(c) |B ' | « | < B > |. 
Here Rm is the magnetic Reynolds number, A and r are length- and time-scales 
typical of the fluctuations, and S is the Strouhal number. Clearly, condition (a) 
is not satisfied in the solar plasma. With respect to the Strouhal number one 
has to distinguish between conventional turbulence and wave turbulence: 5 « 1 
for conventional turbulence and 5 -C 1 for wave turbulence. In the latter case 
a disturbance does not lead to the onset of convection but only to a wave. So 
S ~ 1 in the convectively unstable convection zone and 5 <C 1 in the convectively 
stable atmosphere. Condition (c) finally seems to be satisfied in individual active 
regions, whereas on the global scale (and the time-scale of the activity cycle) the 
mean field is possibly even small compared to the fluctuations. So FOSA seems 
to be much more justified for the atmosphere than for the convection zone, to 
which it usually is applied in the context of dynamo theory. 

Now let FOSA be valid in the atmosphere and let the photosphere be 
a perfectly conducting rigid wall with respect to the mean field (the mean-field 
Poynting flux is assumed to vanish), so that electromagnetic energy can penetrate 
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the photosphere only on the scale of the fluctuations. Then (Radler and Seehafer 
1990, Seehafer 1992)) under the additional assumptions that 
(i) < v >= 0, 
(ii) v ' describes a homogeneous, steady and isotropic turbulence, 
the energy content of < B > in the volume above the photosphere can grow 
(or at least be stationary) only if there is some (sufficiently large) subvolume in 
which 
(1) < B ' • V X B' >?< 0 and < B > -Vx < B > ^ 0, 
(2) < B ' • V x B ' > and < B > V x < B > have opposite signs, 
(3) | < B ' • V x B ' > | > | < B > -Vx < B > |. 
It seems interesting to note that for the inverse cascade not only the small-scale 
but also the large-scale field must possess current helicity (of appropriate sign), 
in order to be able to pick up the energy from the small scale. 

DISCUSSION 

According to a recent study (Seehafer 1990) comparing force-free magnetic fields 
calculated from photospheric magnetograms with chromospheric and coronal 
observations, mainly in Ha and EUV lines, He is predominantly negative in 
the northern and positive in the southern hemisphere. This is just what would 
be expected from the theoretical results presented in this paper. So e.g., in order 
that a significant amount of magnetic energy can be built up within an active 
region, the current helicity of the fluctuations must have a predominant sign 
over a sufficiently long period of time. If this would happen only by chance, the 
energy build-up should not be so typical of active regions as it obviously is. A 
systematic generation of helicity as a consequence of the solar rotation, namely 
by the action of Coriolis forces, seems more likely. Then, however, the current 
helicity should have the same sign in all regions of the same hemisphere and 
opposite signs in northern and southern hemisphere. 

So it seems most interesting to analyse the available longitudinal and vector 
magnetograms in order to confirm or disprove the above sign rule. 

REFERENCES 

Krause, F. and Radler, K.-H. 1980, Mean-Field Magnetohydrodynamics and 
Dynamo Theory, Akademie-Verlag. 

Moffatt, H.K. 1978, Magnetic Field Generation in Electrically Conducting Fluids, 
Cambridge Univ. Press. 

Radler, K.-H. and Seehafer, N. 1990, in Topological Fluid Mechanics, ed. H.K. 
Moffatt and A. Tsinober, Cambridge Univ. Press, p. 157. 

Seehafer, N. 1990, Solar Phys., 125, 219. 
Seehafer, N. 1992, Solar Phys., submitted. 
Taylor, J.B. 1974, Phys. Rev. Letters, 33, 1139. 

https://doi.org/10.1017/S0252921100029560 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100029560



