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THE G-FUNCTION OF MACRAE 

DAVID E. RUSH 

I n t r o d u c t i o n . Let R be a commuta t ive ring with identi ty. A finitely 
generated i^-module M is called a torsion module if the annihilator of M con
tains a non zero-divisor. In [18] M a c R a e proved the following 

T H E O R E M . If R is a noetherian ring then there is a map G with the following 
properties from the class of torsion R-modules of finite homological dimension to 
the set of integral invertible ideals of R. 

(i) If M is a finitely generated torsion R-module with homological dimension 
S 1 then G(M) = F(M), the first Fitting ideal of M. 

(ii) If S is a multiplicative subset of R then G(Ms) — G(M) s-
(iii) If 0 —* L —> M —> N —» 0 is an exact sequence of torsion modules of finite 

homological dimension then G(M) = G(L)G(N). 

MacRae also showed t h a t the function G, when applied to a cyclic torsion 
module R/I, gives the greatest common divisor of / , whenever R/I has a 
finite resolution by finitely generated free modules, and observed t h a t this 
implies unique factorization in regular local rings. In sections 1 and 2 of this 
note we obtain a version of the above theorem for a rb i t ra ry commuta t ive rings 
with identi ty. In section 3 we show t h a t when G(M) is defined it is the smallest 
invertible ideal containing F(M), and therefore G (R/I) is the greatest common 
divisor of / whenever R/I is a torsion module having a finite free resolution. 

In section 4 we use the function G to obtain information about certain types 
of resolutions. In part icular we obtain a version of Burch 's theorem on the 
s t ructure of cyclic modules M of homological dimension 2 over a local (noe
ther ian) ring R, for the case t h a t R is an a rb i t ra ry domain and M is a finitely 
generated torsion i?-module having a finite free resolution of length 2. We 
conclude with some remarks generalizing the unique factorization of regular 
local rings. 

Throughou t this note R denotes a commuta t ive ring with ident i ty and 
7^-mod denotes the category of i?-modules. We write T(R) for the total quot ien t 
ring of R. A torsion i?-module is an i?-module M such t h a t T(R) 0 R M = 0. 
If M is finitely generated this means t h a t rM = 0 for some non zero-divisor r 
of R. We let (A : B)c = j x f C\xB C A} whenever this makes sense. If A is 
a subset of an jR-module then Ann (^4) denotes the annihi la tor of A. By a 
fractional ideal of R we mean an i^-submodule A of T(R) containing a regular 
element of R and such t h a t r A C R for some regular r Ç R. If A is fractional 
ideal of R, (R : A) T{R) is also and is denoted A~l. A fractional ideal / of R is 
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called integral if I C R. We let J ^ P ) , J(R), and 0> (R) denote the sets of 
fractional ideals, invertible fractional ideals, and principal fractional ideals of 
R respectively. 

The author wishes to thank Jack Ohm for his help on this paper. 

1. Euler maps. Let R be a ring and let Û be a full subcategory of the 
category of projective P-modules. Assume that € is closed under finite direct 
sums and contains the zero-module. We say that an P-module M has an 
^-resolution if there exists an exact sequence . . . —> Pn —+ . . . —» P 0 —» M —-> 0 
with each P{ (E ©. If there exists such a resolution with P 2 = 0 for every 
i > n, we say that M has an ^-resolution of length n. Let 

Res œ (^ ) D Res (û) D Resw(^) 

be the full subcategories of P-modules having ^-resolutions, finite ^-resolu
tions, and ^-resolutions of length n respectively. If i f G Res00(^>) we define 
the ^-dimension of M, d0(M), to be the minimal length (possibly infinite) of 
an ^-resolution of M. 

We can define an equivalence relation ^ on the objects of P-mod by 
Mx ~ Mi if there exists Pi , P 2 G € such that Mx 0 Px ^ M2 © P2 . Let Û* 
be the full subcategory of P-mod with objects {M £ R-mod\M ^ 0}. Then 
^ C ^ * and ^** - ^* . 

It follows that Res (^ ) = Res(^*) ; and if M Ç Res{€) then dG{M) = 
de*(M) if d^iM) 9* 0, and 0 g ^ ( M ) ^ 1 if 4*(ikf) = 0 [21, 2.2 and 2.3]. 
Also if 

. . . > Pw+1* A t i p / > . . . p0* >M > 0 

is an ^-resolut ion for M, and M £ Res„(^*), then ker fn^ £ <^* ([21, 
Corollary 2.5] or [1, p. 37]). The following two theorems show that Û*-
dimension behaves like the usual homological dimension, and in fact is the usual 
homological dimension whenever the (^-dimension is defined and finite. 

1.1 DIMENSION THEOREM. Let 0 —> A —> P —* C -+ 0 be an exact sequence of 
R-modules. If two of the modules A, B, and C, have &*-resolutions, then so does 
the third and in this case d&*(B) ^ max {d&*(A), d&*(C)}. If this inequality is 
strict then 

d6*(C) = d&*(A) + 1. 

Proof. See [1, p. 39, Proposition 6.8]. 

1.2 THEOREM. If M £ Res(^*) , then d€*(M) = d(M), where d(M) denotes 
the usual homological dimension of M. 

Proof. The proof is essentially the same as [19, p. 162, Lemma 4.3], so we 
omit it. 
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Let *$ be a subcategory of jR-mod. An Euler map from *$ to an abelian group 
G is a m a p / from the objects of ^ to G such that/(^4 ) + f(C) = f(B) for each 
short exact sequence 0 —> A —> B —> C —» 0 in ^f. 

Let °tt and ^~ be the full subcategories of i^-mod whose objects are the 
finitely generated projective modules and the torsion i?-modules respectively. 
Let Res (°U, *T ) = Res (<%) C\$~ and R e s , ( ^ , £T ) = R e s , ( ^ ) C\3T. 
The following theorem is found in [21, Theorems 3.3 and 3.4], and is basic to 
what follows. 

1.3 THEOREM. / / / : Resi(^,J^~) —>G is an Euler map, then f extends uniquely 
to an Euler map f : Res {%' ,3f ) —» G. 

Let 2£ (Res i ( ^ , ^~ ) ) denote the Grothendieck group of R e s i ^ J 7 " ) , i.e. 
the group with generators {[ikf]|JkT G Resi(^,J^~ )}, and relations 

{[̂ 4] + [Q = [B]\Q —» A —> B —> C —» 0 is an exact sequence in 

ResiCar,^")}. 

Then the Euler maps / : Res i ( ^ , 3T ) —> G correspond to the group homo-
morphisms / ' : i£ (Res i (^ , 3T )) —» G and it is easily seen that the above 
theorem is equivalent to the assertion that the canonical map i ^ (Res i ( ^ , ^~ )) 
—> i£ (Res (^ , &~ )) is a group isomorphism. Further, i £ (Res i (^ , 37~ )) be-
becomes a pre-ordered group if we take for the positive elements 

{[M]\M e ResxC^ jT)} 

(and similarly for i £ ( R e s ( ^ , ^ ~ ))) , and the isomorphism i £ ( R e s i ( ^ , ^ ~ )) -> 
i£ (Res (^ , $~ )) is order preserving (but not in general an isomorphism of 
ordered groups). 

2. The MacRae function. In [18], MacRae obtained for any noetherian 
ring R, an Euler map G from Res(^,J^"" ) into the group *f (R) of invertible 
ideals of R and showed that G(M) is always an integral ideal of R. He then 
showed that if M is cyclic then G(M) is the greatest common divisor of the 
annihilator of M. In this section we apply Theorem 1.3 to obtain this Euler 
map for an arbitrary commutative ring. In the next section we discuss the 
relationship of G to greatest common divisors. 

Let *f be the full subcategory of R-mod whose objects are the finitely 
generated free modules. If M is a finitely generated i^-module let F(M) denote 
the first Fitting ideal of M. (We are using Kaplansky's numbering here [11, 
p. 145]. This is called the zero-th Fitting ideal in [18].) We collect the facts 
we need about F in the following theorem. 

2.1 THEOREM. Let M, A, B, C be finitely generated R-modules, and let She 
a multiplicative subset of R. 

(a) F(M)s = F(Ms). 
(b) If M can be generated by n elements, then Ann(M)n C F(M) C Ann(M). 
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(c) If 0 -> A -> B -> C -> 0 is exact and C G R e s i ( ^ , ^ ~ ), *Aew F{A)F{C) 
= F(B). 

(d) If M £ R e s i ( ^ , ^ ), /Aéra ^(ikf) is <m (integral) invertible ideal of R. 
(e) / / M e R e s x C ^ , ^ ), /A*n F(Jlf) £ &(R). 

Proof, (a), (b), and (c) are proved in [18]. To prove (d) note that the 
hypothesis implies that F(M) contains a regular element and is finitely gener
ated. Thus (d) follows from [18, p. 158, Lemma 2.9]. (e) is straightforward. 

2.2 THEOREM. There exists a unique Euler map G : R e s ( ^ , $" ) —> J (R) 
such that if M e Resi(^T, ^ " ) , then G(M) = F(M). Further, if M G 
R e s ( ^ , ^ " ), then G(M) G SP{R). 

2.3 COROLLARY. If M G R e s ( ^ , $~ ) and S is a multiplicative subset of R, 
then G (M) s = G(MS). 

Proof. This is immediate from the uniqueness of G. 

2.4 Note. The proof of [15, Satz 5] extends easily to show that, if R is a 
domain, the group homomorphism G : K(R.es(y,^~ )) -+SP{R), induced by 
G, is an isomorphism (of ordered groups). 

In order to show that G(M) is actually an integral ideal of R for each 
M G R e s ( ^ , ^ ~ ) we use the following lemma. If A C R we write A% for the 
intersection of the prime ideals of R containing A. 

2.5 LEMMA. Let Rbea quasi-local ring with maximal ideal m = ( (a1}..., an) :b)* 
where a±, . . . , an is an R-sequence. Then R e s ( ^ ) = Resw($Q. 

Proof. We use induction on n. If n = 0 then each finite subset of m has 
non-zero annihilator [16, p. 93, Corollary 1.14] and the assertion follows by 
[11, Theorem 191]. If n > 0, let M G R e s ( ^ ) and let 0 -> K -> F -> M -> 0 
be exact with ^ G ^ ( = f / ) . For each i?-module A let A* = A/axA and let 
^ * = {finitely generated projective P*-modules}. Since a± is a regular element 
it follows that K* G Res(^*) , and d%*(K*) = dm(K) by the same argument 
as [26, p. 663]. Also, R* is quasi-local with maximal ideal w* = 
((a2*, . . . , &w*) : b*)* and it follows from [11, Theorem 116] that a2*, . . . , an* 
forms an P*-sequence (where x* is the image of x in R/aiR). Thus by induction 
we have that d<%(K) = d<%*(K*) ^ n — 1 and therefore doU(M) ^ n. 

2.6 THEOREM. G(M) C P/tff *w* M G Res(^r,^~ ). 

Pnw/. We use induction on n = dm(M). If n = 1 then G(ikf) = P(Af) C R; 
so assume n > 1. Then there exists an exact sequence 0 —> K —> L —> M —>0 
with K,L G R e s „ _ i ( ^ , ^ ) . T h e n G ( M ) = G(L)G(K)~l and by the induction 
hypothesis G(L), G(K) C R. Let G(L) = J and G(K) = J . To show that 
I J-1 CR it suffices to show that (J : I)R = R. If ( / : I) ^ R let P be a 
minimal prime divisor of J : I. Then JP : IP = (J : 7 ) P P ^ P p and we may 
reduce to the case that R is quasi-local with maximal ideal (J : I)1. But in 
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this case I and / are principal, and thus by Lemma 2.5 d^(M) ^ 1. But then 
G (M) = F (M) implies I = JF(M) C / , a contradiction. 

3. Greatest common divisors. Let i be a fractional ideal of R. We 
define the divisorial ideal A corresponding to A as 

A = n {i e &(R)\A ci}. 

Let A~l = (R : A)T{R) and let A = {x G A\x is regular in T(R)}. If A C R 
and A is principal, then A is the greatest common divisor of A. For domains 
we always have A = (^4-1)-1. Thus for domains, invertible ideals are divisorial 
and hence A = O {I G J' {R)\A C I)- For general commutative rings we 
have the following 

3.1 PROPOSITION. A = R : R : A for each fractional ideal A of R. 

Proof. For x G T(R) we have x G R : R : A if and only \i xp d R for every 
regular £ G -K : A if and only if x G ̂ - 1 i? for every regular p G ^T(î ) such that 
A C £ - 1 ^ if and only if x G A. 

It follows from 3.1 that A = (A~l)~l for every fractional ideal A of R if i^ 
satisfies the following property. 

(P) Every regular ideal of R is generated by regular elements. 

Rings with this property have been studied by Jean Marot who has shown that 
R satisfies (P) if T(R)/Q* is absolutely flat [19]. Thus coherent rings of finite 
weak global dimension [22, p. 270, Corollary 3] as well as noetherian rings and 
domains satisfy (P). The following result includes [18, p. 167, Proposition 5.5]. 
[15, p. 480, Satz 1], and [23, p. 881, Theorem]. 

3.2 THEOREM. If M G Res {%',3?~ ), then G (M) is an invertible ideal containing 
F(M), and is contained in every other invertible ideal containing F{M). 

Proof. To show F(M) C G(M) suppose there exists a G F(M)\G(M), and 
let P be a minimal prime divisor of (G(M) : a) R. Then PRP = (G(M)P : aRP)*, 
and since G(M)P is RP4ree, MP G R e s i ( ^ , ^ ) by Lemma 2.5. Hence 
aRP C F(M)P = G(M)p, a contradiction. Thus F(M) C G(M). 

Now suppose / is an invertible ideal of R containing F(M). If G(M) Çj_ J 
let P be a minimal prime divisor of (J : G(M))R. Since / and G(M) are invert
ible, it follows as above that MP G R e s i ^ , ^ 7 " ), and hence JP D F(M)P = 
G(M)Pi a contradiction. Thus G(M) C / . 

I t follows that if M G Res(3^, «^" ), then G(M) is the greatest common 
divisor of the elements of F(M), and in particular, if R/I G R e s ( ^ , ^ ), then 
G(R/I) is the greatest common divisor of I. x -»_ ' 

If R satisfies (P) and M G R e s ( ^ , ^ ~ ), then G(M) = F(M) = (F(M)~l)-\ 

and hence F(M) = {F{M)~l)~l is invertible. In fact, in this case F(M)~l is 
invertible. 
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3.3 COROLLARY. If R is a ring satisfying (P) , and M Ç R e s ( ^ , 3T ) , then 
F(M)~l is an invertible fractional ideal of R. 

Proof. F{M)~l = ((F(M)-1)-1)-1 = G(M)~\ 

3.4 COROLLARY. / / R satisfies (P) and M G R e s ( ^ , ^ ~ ), ^erc the following 
properties of M are equivalent: 

(i) F(M) is divisorial. 
(ii) F(M) is invertible. 

(iii) M G R e S i C ^ j T ) . 

P / w / . T h e hypotheses imply t ha t G(M) = F(M) = ^ ( M ) " 1 ) - 1 ^ (i) <=»(ii) 
is clear. T h e implication (ii) => (iii) follows from [17, p . 423, Lemma 1], and 
(iii) =» (ii) since (iii) implies F(Af) = G(M). 

4. App l i ca t ions . The first result in this section was shown by D. Buchsbaum 
in the case t ha t R is a unique factorization domain [4, Lemma 3.3], and its 
Corollary 4.2 was proved by H . Kramer for noetherian domains [15, Satz 2]. 
T h e proof given here of 4.1 is a modification of Kramer ' s argument . 

4.1 T H E O R E M . Let R be a ring and let 

be exact with M a torsion module. If (atj) is the matrix representing f with respect 
to the standard bases of Rn+1 and Rn, and if Ak is the determinant of the matrix 
obtained by deleting the k-th column from {atj)y then ( — Ai, A2, . . . , ( —l)w+1Aw+i) 
generates a free submodule of Rn+1 and 

k e r / = F(M)~i(-Au A2, . . . , ( - l ^ A ^ ) . 

Proof. Let {eu . . . , en+i} and {ei,...,en'}be the canonical bases for Rn+l 

and Rn respectively. Let 

n 

hj =f(ej) = H Vi^i' 

Then 

k e r / = | (À!, . . . , Xn+1) € Rn+1 | £ W, = Of, 

and 

F(M) = £ AtR. 
i=l 

T h u s the first assertion follows from 2.1(b) . 
Let ji and j 2 be integers satisfying 1 ^ ji < j 2 S n + 1 and let A Rn be 

the exterior algebra of Rn. Mult iplying the relation ^tiXjhj = 0 in ARn by 
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hi A . . . AhJl A . . . A hh . . . A hn+i (where ht means delete ht) we get 

( - 1 ) ^ X ^ 1 A . . . A hj2 A . . . A K+1) 

+ (-\)}^\H(hY A . . . A hn A . . . A K+1) = 0. 

Writing the h} in terms of the e/ and simplifying we get 

(*) ( - i v % , A i 2 + (-îyt-^Aj, = o. 

Let L be the submodule of Rn+1 consisting of all solutions to (*). Thus L = 
{(Xlf . . . , \n+1) 6 i ^ K - l ) ' ^ ^ + ( - 1 ) ^ - % . ^ = 0 for all J!, j 2 such 
that 1 ^ 7i < j*2 ^ n + 1}. Now we show that L = ker / . Since ker / C L 
it suffices to show the reverse inclusion. Let (Xi, . . . , A^+i) 6 L and let h = 
X ^ i i ^ r We must show h = 0. But 

w+l rc+1 / n \ n (n^ \ 

j=i j=i \ i=i / i=i \ j=i / 

and so it suffices to show 

n+l 

bi = E ^jaij = 0 for i = 1, 2, . . . n. 
3=1 

Since (Xi, . . . , \n+i) G L we have ( — l^X^A* = ( — l ^ X ^ for every pair 
j , k Ç {1, 2, . . . ,w + l j . T h u s 

«+i 

E 
i = l 

rc+l w+l 

6,A* = £ «<iXA = Z ( - l ) " " * 1 ^ ^ * = A* E (-l)"""*'^^,. 
j=l 3=1 

But ]C*ii( — l ) " ' " * 1 ^ * ^ is» except possibly for sign, the determinant of the 
matrix 

#11 #12 

an\ an2 

ain+l 

(lln+l 

&nn+1J 

and hence is zero. Thus bt £ Ann (F(M)) for each i, and since F(M) contains 
a regular element by 2.1(b) we get bt = 0 for each i. Therefore h = 0 and 
L = ker/. 

If x € F(M)-1 then ( -*Ai , xA2, . . . , (-l)n+1xAn+1) G L since if 1 ^ j i < 
J2 ^ n + 1, then 

( _ l ) n ( ( _ l ) n x A . i ) A . 2 + ( _ l ) ^ - i ( ( - l ) ^ A , 2 ) A ; i = 0. 

Now choose a regular element b = S^ii^A* in F(M). Then for (Xi, . . . , Xn+i) G 
Lle t t t = £ ï î ( - l ) ^ X * . T h e n 

n+l n+l 

«A, = £ (-1)'/,X,A, = £ ( - l ) ^ A ^ = ( - l ) 'AA 

https://doi.org/10.4153/CJM-1974-080-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-080-2


G-FUNCTION OF MACRAE 861 

Therefore with x = u/b we have 

(Xi, . . . , X»+i) = (-*A l f . . . , (-l)n^xAn+1). 

4.2 THEOREM. Let Rn+l -* Rn -* M ~-> 0 be exact with M a torsion R-module. 
If R satisfies (P) then the following properties of M are equivalent. 

(i) F(M)~X is an invertible fractional ideal, 
(ii) Me Res2(W,3r). 

(iii) Me Res(f%,&~). 

Proof, (i) => (ii) by 4.1, and (ii) => (iii) is trivial, (iii) => (i) by 3.3. 

Remark. Property (P) was needed only for the implication (iii) =» (i) above. 

The noetherian case of the following corollary was shown by MacRae in [18] 
although it was not explicitly stated. 

4.3 COROLLARY. Let Rbea ring satisfying property (P) and let A be an ideal of 
R that can be generated by 2 elements. If R/A G Res iffy, ^ ) then R/A £ 
R e s 2 ( ^ , ^ ) . 

Theorem 4.1 is related to the following result which is sometimes called 
Burch's theorem. Theorem 4.4 was first stated in this generality by Kaplansky 
[11, p. 148, Exercise 8], though several special cases have been known pre
viously [10, pp. 239-240; 7, Theorem 5; 24, Proposition 1; 14, Lemma 2; 4, 
Theorem 3.4]. We have added the last sentence to Kaplansky's statement for 
completeness. The hypothesis in Theorem 4.4 that / is regular is redundant if 
R is noetherian [11, p. 141, Theorem 196], though not in general [27, Example]. 

4.4 THEOREM. Let I be a regular ideal of R with a resolution 

0 -> Rn A Rn+1 -L I -> 0. 

Let (bij) be the matrix of g with respect to the canonical bases of Rn and Rn+l and 
let Xi be the image under f of the i-th basis element of Rn+1. If dt is the determinant 
of the matrix obtained by deleting the i-th row from (bij), then xt = ( — Vj^idfor 
i = 1, 2, . . . , n + 1 for some d G R. Further, if some xt is regular then dR = 
G(R/I). 

Proof. We need only prove the last statement. Assume Xi is regular and 
apply the function G to the sequence 0 —•> I/xiR —> R/xiR —> R/I —> 0 and get 
G(I/xiR)G(R/I) = XiR. I t follows that GfJ/xxR) = F(I/xxR) = d±R, and 
hence x±R = dxG(R/I) = ddxR =» G (R/I) = dR. 

The following result generalizes 4.4 in the case that R is a domain by re
placing the cyclic torsion module R/I with an arbitrary torsion module M. 
Much more can be said if R is noetherian [5, Theorem 1]. The proof of 4.5 is 
similar to an argument of S. Moen [20, Proposition 1.2]. 
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We need the following nota t ion of [5]. We use a non-negative integer n to 
denote the set {1, 2, . . . , n). If <p : Rni —> Rn2 is a homomorphism then we 
identify <p with the matr ix of <p with respect to the canonical bases of Rni and 
R*2. IiuC.ni and v C n2, then we write [<p, u, v] for the minor of <p with 
columns u and rows v. Of course we write [<p, u, v] only if u and v have the same 
number of elements. Also, if w C n we let | \w\ | denote the sum of elements of w. 

4.5 T H E O R E M . Let R be a domain and let 

be exact with M a torsion R-module. Then there exists d £ R such that 

[<pu u, n0] = ( - 1 ) 1 i»*u"d[<p2, «2, n\u] 

for each subset u of n\ having n0 elements. Further dR = G(M) and thus F(M) = 

G(M)Fm+l(ker<p0)-

Proof. Since i f is a torsion module, tensoring with the quot ient field T(R) 
shows t h a t rt\ = nQ + n2. Le t {e/}"Li be the canonical basis for Rni, i = 0, 1, 2, 
and let <pi = {atj), and <p2 = (ftu). Firs t we show t h a t [<pi, u, n0]R = 
G(M)[<p2, n2, n\u] for each subset u of n± having no elements. For simplicity 
assume u = {1, 2, . . . , n0}, and let A = [<ply u, n0] = [<pi, n0, n0]. If A ^ 0 let 
N be the submodule of <p1(R

ni) generated by <pi(eil), <pi(e2
l), • • . , <pi(em

l), a n d 
let <pi be the composite m a p 

R»i -> <pi(Rni) -> <Pi(Rni)/N. 

Then 
WO 

ker £>! = ker <?i + X R-ei-

This sum is direct for if x + X i ^ i ^ * 1 = 0 with x £ ker^i and rt £ R, then 
X ^ i ^ ^ i C ^ * 1 ) = 0, and A ^ O implies by Cramer ' s rule t h a t r\ = r2 = . . . = 
rno = 0. T h u s ker ipi is free of r ank wi and it follows t h a t G(<pi(Rni)/N) = 
F(<pi(Rni)/N) = [<p2, n2, n\n0]R. Now from the exact sequence of torsion 
modules 

0 -> <p!(Rni)/N -> Rn»/N -> Rn»/<pi(Rn^) -> 0, 

we get |>2 , »2, »i\»o] G ( i f ) = G(Rn»/N) = F(Rn«/N) = AR. If A = 0, 
then there exists rly r2, . . . , rno £ R, not all zero, such t h a t X T = i r ^ i ( ^ / ) = 0. 
T h u s 

no no ni 

X r ^ / € Im<£2; X ^ / = X SI<P(CI2) 
j=l j=0 1=1 

U2 / n\ \ n\ I ni \ 

= Z ^ ( Z A^*1) = X v X ^ftJ^1' 
1=1 \ jc=i / /c=l \ 1=1 / 

Therefore [<p2y n2, n\no\ = 0. 
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Now let d generate G(M). We have shown that there exist units su G R such 
that [<pu u, n0] = sud[<p2, n2, n\u\ for each subset u of n\ having n0 elements. 
To show that su = ( — l)Wn\uWs for some s £ R which does not depend on u, 
we may pass to the quotient field T(R) of R, and then the lemma [20, p. 5, 
Lemma] applies. 

The following corollary is due to H. Kramer in the case that R is a noetherian 
domain [15, Satz 4]. 

4.6 COROLLARY. If R, m is a quasi-local domain and 0 —> Rnz —» Rni —» Rn° —> 
M —> 0 w exact with the nt minimal, and M is a torsion module, then F(M) C 

Proof. This is immediate from 4.5. 

Remark. If M in 4.6 is cyclic, then the assumption that R is a domain is not 
needed; for then 4.4 applies. 

We conclude this paper by using the function G to obtain characterizations 
of rings in terms of the homological properties of certain ideals. 

If M G Res(3^), then M has a finite free resolution 0 —> Fn —> . . . -» F0 - • 
ilf —» 0, and the integer 

x M = Z (-i)V*(/?0 

is independent of the resolution of M and is called the Euler characteristic of 
M [11, p. 137]. We need a result of Vasconcelos [27], which we generalize 
slightly. For an i?-module M let ak(M) = Ann (AkM), the ^th invariant 
factor of Af. The proof of the following theorem and corollary are similar to 
those in [27] (of the case k = 1), so we omit them. We also note that both of 
these results hold (same proofs) with the invariant factors replaced by the 
Fitting ideals, thus furnishing a non-noetherian version of [11, p. 146, Theorem]. 

4.7 THEOREM. Let M £ R e s ( ^ ) with X(M) = m. 
(a) If k ^ m then ak(M) = 0. 
(b) If k > m then Ann (ak(M)) = 0. 

4.8 COROLLARY. If M £ Res ( ^ ) , then Ann (ak(M)) is generated by an 
idempotent for each k ^ 1. 

Applying 4.7 to i^-modules of the form R/aR we get that a ring R is an 
integral domain if and only if aR G R e s ( ^ ) for each a £ R. Similarly, apply
ing 4.8 to such i^-modules we get the following. Recall that a ring R is called 
a p.p. ring if each principal ideal is projective, or equivalently, if T(R) is 
absolutely flat and Rm is a domain for every maximal ideal m of R [8]. 

4.9 THEOREM. A ring R is a p.p. ring if and only if aR G Res(7^) for every 
a e R. 
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Some special cases of 4.9 are found in [22, p. 270, Corollary 3], and [2, 
Theorem A], 

We switch attention to ideals generated by two elements. Recall that a 
GCD-domain is an integral domain in which any two elements have a greatest 
common divisor [11, p. 32]. 

4.10 THEOREM. The following properties of a ring R are equivalent. 
(i) R is a G CD-domain; 

(ii) R is a domain in which the intersection of any two principal ideals is 
principal; 

(iii) (x, y) has an FFR of length one for every x, y £ R; 
(iv) (x, y) G Res Çf) for every x, y Ç R. 

Proof, (i) => (ii) Let d be the greatest common divisor of x and y. Then 
x = dxf and y = dyf with x', y' G R and x' and y' have greatest common 
divisor 1. We will show that (x) H (y) = (c) where c = dx'y'. Since c = dx'y' 
= xy' = x'y, then (c) C (x) r\ (y). Let ax = by G (x) P\ (y). Then ax' = 
by' and thus b G (V) since 1 is the greatest common divisor of x' and y [11, 
p. 41, Exercise 7]. Writing b = #'&' with b' £ R we get ax = by — b'x'y = b'c, 
and therefore (x) H (y) C (c). 

(ii) =*• (iii) Consider the exact sequence 0 —» X —> i£2 —> (x, y) —> 0. Then 
K Ç= (x) r\ (y) (unless x = 0 = y) and the result follows. 

(iii) => (iv) This is trivial. 
(iv) => (i) This follows from the remarks following 4.8 and the remarks 

following 3.2. 

The above theorem includes the unique factorization of regular local rings 
as well as the generalization of this fact given by Quentel [23]. If we switch from 
i^ to °tt we have the following. 

4.11 COROLLARY. If Ris a ring with (x, y) G Res ( ^ ) for every (x, y) C R, 
then R is integrally closed. 

Proof. Since T(R) is absolutely flat by 4.9, we may check integral closure of 
R locally [9, p. 112, Proposition 5]. But R is locally a GCD-domain by 4.10, 
and GCD domains are integrally closed [11, p. 33, Theorem 50]. 

An analogue of (iii) <=> (iv) of 4.10 does not hold for ideals generated by 
three elements. A theorem originally due to Burch [6] and extended in [13, 
Theorem A] says that if A is any finitely generated module over a noetherian 
ring R, then there is a triply generated ideal I or R such that d(R/I) = d(A). 
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