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D.S. Henningson3 and A. Hanifi3

1DIME, Universitá degli Studi di Genova, Genoa I-16145, Italy
2DICCA, Universitá degli Studi di Genova, Genoa I-16145, Italy
3FLOW, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden

(Received 12 March 2021; revised 7 December 2021; accepted 6 February 2022)

In the present work, the laminar–turbulent transition of the flow evolving around a
low-pressure turbine blade has been investigated. Direct numerical simulations have been
carried out for two different free stream turbulence intensity (FSTI) levels to investigate
the role of free stream oscillations on the evolution of the blade boundary layer. Emphasis
is placed on identifying the mechanisms driving the formation and breakup of coherent
structures in the high FSTI case and how these processes are affected by the leading-edge
receptivity and/or by the continuous forcing in the blade passage. Proper orthogonal
decomposition (POD) has been adopted to provide a clear statistical representation of
the shape of the structures. Extended POD projections provided temporal and spanwise
correlations that allowed us to identify dominant temporal structures and spanwise
wavelengths in the transition process. The extended POD analysis shows that the structures
on the pressure side are not related to what happens at the leading edge. The results on
the suction side show that the modes defining the leading edge and the passage bases
correlate with coherent structures responsible for the transition. The most energetic mode
of the passage basis is strongly related to the most amplified wavelength in the boundary
layer and breakup events leading to transition. Modes with a smaller spanwise wavelength
belong to the band predicted by optimal disturbance theory, they amplify with a smaller
gain in the rear suction side, and they show the highest degree of correlation between the
passage region and the rear suction side.
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1. Introduction

The aerodynamic efficiency of low-pressure turbine blades (LPT) of modern aeroengines
is significantly influenced by the geometrical and the flow operating parameters since they
alter the evolution of the blade boundary layer and thus loss generation (Denton 1993). The
accurate prediction of the boundary layer development on the different parts of the blade is
very challenging since it can be laminar, transitional, turbulent or even separated. Indeed,
the boundary layer growing on an LPT blade is subjected to different variable external
forcing conditions: strong favourable pressure gradient on the forepart of the suction side
and the pressure side; strong adverse pressure gradient downstream of the peak suction
position; and a continuous change in the pressure distribution and centrifugal forces at the
leading edge (Narasimha et al. 1984). Thus, various types of instability mechanisms can
be encountered along the different surfaces, leading to the formation of different kinds
of coherent structures in the blade boundary layers, as reported in hi-fidelity simulations
(see, e.g. Michelassi, Wissink & Rodi 2002; Sandberg et al. 2015) and experiments (see,
e.g. Stieger & Hodson 2004; Lengani & Simoni 2015). Analysis of the receptivity process
of the boundary layer to external disturbances in the different parts of the blade is one
of the key features required for further advancement in understanding and modelling the
transition process. Indeed, the receptivity affects the formation of coherent structures
inside the blade boundary layer and the consequent transition from laminar to turbulent
flow.

The detailed analysis of the receptivity process of the boundary layer growing on LPT
blades is the main target of the present work. The paper attempts to provide an exhaustive
view of the different structures responsible for transition and their possible interaction
process from the leading edge to the rear part of the suction and pressure sides.

1.1. Leading-edge related phenomena
The leading edge of the blade is the first location for disturbances to penetrate the boundary
layer, with bluntness and smoothness of the curvature representing key geometrical
parameters influencing receptivity (see, e.g. Lin, Reed & Saric 1992). As highlighted in
the theoretical works of Ruban (1984) and Goldstein (1985), even small surface thickness
and curvature variations may trigger strong instability waves in the boundary layer.
The literature dealing with simplified (typically flat plate) configurations with different
leading-edge shapes poses the basis for further analysis. Generally, receptivity to external
disturbances in the leading-edge region becomes larger with increasing adverse pressure
gradient close to the junction between the leading edge and the flat part of the surface,
as shown in Buter & Reed (1994). This process leads to the formation of coherent
structures in the forming boundary layer. In the work of Nagarajan, Lele & Ferziger (2007),
mixed direct and large-eddy simulations of a flat plate with superellipse leading edges
has been carried out. They found that transition usually occurs through the breakup of
low-speed streaks at low free stream turbulence intensity (FSTI) level and sharp leading
edge. Conversely, with increasing bluntness and FSTI level, transition has been found
to be dominated by ‘precursor’ structures due to free stream vortices penetrating the
boundary layer. Similar structures have also been observed by Ovchinnikov, Choudhari
& Piomelli (2008) with direct numerical simulations (DNS) of the flow over a flat plate
with a superelliptic leading edge at elevated FSTI and length scale significantly larger
than the boundary layer thickness. The effects of the bluntness of the leading edge on
the receptivity of a flat-plate boundary layer have also been studied by means of DNS by
Schrader et al. (2010). In their work, a superposition of different Fourier modes is used to
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Receptivity of LPT to external disturbances

prescribe controlled free stream disturbances at the domain inlet (upstream of the leading
edge), thus allowing the inspection of the role played by streamwise, vertical and spanwise
free stream modes on the receptivity process, independently. The authors observed strong
receptivity to the axial vorticity modes, with low sensitivity to the bluntness. Streaky
structures follow the initial stage of receptivity, providing strong analogies with what was
observed due to the continuous action of free stream turbulence in Brandt, Schlatter &
Henningson (2004) and Jacobs & Durbin (2001) (without leading edge).

While the fundamental studies on leading-edge receptivity are well covered in the
literature, the applications and analysis of genuine turbine blades are scarce. In the
recent large-eddy simulation results of Zhao & Sandberg (2020), concerning HPT blade
aerodynamics, free stream fluctuations have been found to first interact with the blunt blade
leading edge, forming vortical structures wrapping around the blade. They also found that
streaky structures observed in the rear part of the suction side at low FSTI level are mainly
induced by the leading-edge vortical structures. The remnant of these structures forcing
transition farther downstream along the suction side of the blade is also observed by Zhao
& Sandberg (2020), similar to results shown in Nagarajan et al. (2007). Additionally, they
show that the streak spacing observed in the rear part of the suction side does not scale
with the boundary layer thickness but rather with the free stream integral length scale and
related vortices forming at the leading edge.

The role that the leading-edge receptivity and the wavelength of the free stream forcing
can play on the overall LPT blade aerodynamics is still not clearly understood and will be
investigated further in the present work by analysis of DNS data at both low and high FSTI
levels. In most of the aforementioned works, selected modes that are expressed in terms
of Fourier expansion are prescribed at the entrance of the domain. In the present work,
a broadband spectrum, close to the realistic operating condition of the turbine blade, is
directly imposed at the computational domain entrance. Thus, a large number of randomly
distributed time and spatial turbulent scales freely evolve while advecting, influencing the
evolution of the boundary layer. The correlation between events or structures growing
in the boundary layer with structures observed in the leading-edge region and the free
stream flow is then clearly documented. This makes the present approach different from
previously cited works.

1.2. Structures in the rear part of the suction side
Structures generated at the leading edge are advected downstream and, after being
accelerated and stretched in the former accelerating part of the suction side, they might
survive and thus affect the transition process in the rear part of the blade. Due to the
operating condition of LPT blades at low Reynolds number and elevated adverse pressure
gradient (see, e.g. Coull & Hodson 2011; Michálek, Monaldi & Arts 2012; Michelassi et al.
2015), the boundary layer in the rear part of the suction side may experience separation at
low free stream turbulence level, or a bypass-like transition process in the case of elevated
FSTI level (see, e.g. Nagabhushana Rao et al. 2013; Lengani & Simoni 2015).

In the case of boundary layer separation, inflectional instability is the dominant
mechanism leading to transition. Large-scale Kelvin–Helmholtz (KH) vortices are shed
downstream of the position of the maximum displacement of the bubble (see, e.g. Yang &
Voke 2001). Diwan & Ramesh (2009) clearly showed that the smaller the distance of the
separated shear layer from the wall, the smaller the amplification rate of KH instabilities, as
also shown subsequently in Simoni, Ubaldi & Zunino (2016). The dominant amplification
has clearly been shown to stem from waves with the most unstable shear layer wavenumber,
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(i.e. with a wavenumber of around k = 0.8/l, with l being the shear layer thickness, see
Schmid & Henningson (2001)), even though spanwise modes could also be amplified in
the forepart of the separated flow region (see, e.g. Marxen et al. 2003; Marxen, Rist &
Wagner 2004). The latter can play a role in triggering KH instabilities in the rear part
of the separated flow region. This is further confirmed by recent experiments reported in
Simoni et al. (2017), Istvan & Yarusevych (2018) and in the investigation using DNS from
Hosseinverdi & Fasel (2018), where free stream turbulence is shown to generate streaky
structures. With elevated FSTI levels, low frequency velocity disturbances penetrate the
laminar boundary layer from the free stream while the high frequency ones are filtered
out according to the shear sheltering mechanism described in Jacobs & Durbin (2001) and
Zaki & Saha (2009). Once penetrated, velocity disturbances assume the shape of elongated
low- and high-speed streaky structures, as described in Brandt & Henningson (2002)
and Brandt et al. (2004). The streamwise amplification of velocity fluctuations related
to streaky structures is well predicted by transient growth theory (see, e.g. Fransson et al.
2004). Then, once velocity perturbations reach an amplitude of approximately 20 % of the
local free stream velocity, secondary instability can occur (Brandt et al. 2004), leading to
breakup events and the consequent formation of hairpins, cane and lambda vortices typical
of the fully turbulent condition of the boundary layer. However, DNS results reported
in Ovchinnikov et al. (2008) clearly highlight that with a free stream turbulent length
scale significantly larger than the boundary layer thickness, streamwise waves initiate the
transition and no evidence of secondary instability of streaky structures have been linked
to turbulent spot formation.

In real applications, like compressors or turbine blades, the flow subjected to the
favourable and adverse pressure gradient conditions alter the dynamics leading to streak
generation and propagation, thus nucleation of turbulent spots and transition. Recent
experiments on LPT blades from Lengani et al. (2018) show that streaky structures scale
with the boundary layer integral parameters, also in the presence of a strong adverse
pressure gradient and incoming wakes shed from upstream blade rows. Additionally,
the higher the adverse pressure gradient, the higher the streak amplification rate in the
pretransitional part of the boundary layer, as shown in Zaki & Durbin (2006).

1.3. Aim of the present paper
This paper considers the DNS of the flow around a low pressure turbine under inlet
free stream turbulence. The time mean results were presented and compared against
experiments in Ðurović et al. (2021) with satisfactory agreement. The main aim of the
present paper is the analysis of the receptivity of the pressure and suction side boundary
layers due to continuous forcing imposed by free stream turbulence. This work extends
the results of the recent work of Zhao & Sandberg (2020) by providing a statistical
analysis using data-driven decomposition techniques. In the work of Zhao & Sandberg
(2020) and the aforementioned literature, the formation and propagation of structures
inside the boundary layers are mainly characterized by means of visual inspection of the
structures affecting the different portions of the boundary layer and how they amplify,
stretch and merge during advection. In the present work, a statistical representation of
the turbulent structures is provided by means of the proper orthogonal decomposition
(POD) (e.g. Berkooz, Holmes & Lumley 1993; Liu, Adrian & Hanratty 2001). The
modal representations of what occurs in the boundary layer are correlated with the POD
representation of the forcing computed at the leading edge and in the free stream region to
further characterize the nature and the origin of boundary layer related structures.
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To this purpose, the present analysis exploits the properties of POD and its extended
version (see Borée 2003). The extended POD allows us to provide a solid statistical
representation of the most correlated events affecting transition. The POD bases are
computed in different domains of the blades, focusing on the leading edge, the blade
passage, and the blade boundary layer regions. The degree of correlation between the
bases extracted in these domains is used as a statistical tool to discern between the
impact of leading-edge receptivity and that of the free stream forcing on the amplification
of velocity fluctuations. Temporal and spanwise correlations and extended modes are
provided and compared with optimal disturbance analysis results. The analysis here
reported not only provides a general description of coherent structures but also gives
a quantitative estimation of the degree of correlation of the interacting structures. The
rationale behind this analysis could be also adopted by other research groups for the
analysis of correlating events of different nature in the field of fluid mechanics.

The paper is organized as follows. Details on the simulation and cascade geometry are
provided in § 2. The data processing with POD and extended POD in both the temporal
and spanwise domains are provided in § 3, while the corresponding results are given in
§ 4. Finally, § 5 provides a summary and concluding remarks.

2. Simulation tools and flow geometry

Direct numerical simulation is used as the primary tool to investigate the flow around an
LPT blade subjected to free stream turbulence. The Mach number at the inlet and the
blade throat does not exceed a value of 0.017. Based on that, we neglect compressibility
effects and consider a fluid with constant properties. For such a fluid, the Navier–Stokes
and continuity equations in the non-dimensional form are

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇u, (2.1)

∇ · u = 0. (2.2)

Here u = (uc, vc, wc) represents the axial, normal and spanwise velocity components
in the Cartesian reference system, p is the pressure and Re the Reynolds number. The
numerical tool used for the simulations is the Nek5000 code, an open-source code
developed by Fischer, Lottes & Kerkemeier (2008). The Nek5000 code is based on the
spectral element method by Patera (1984), which has the advantage of combining the
geometric flexibility of the finite element method with the high accuracy of spectral
methods. Following the PN − PN−2 (Maday, Mavriplis & Patera 1988) formulation,
we perform the spatial discretization in each element where velocity is represented by
high-order Lagrange interpolants through the Gauss–Lobatto–Legendre quadrature points.
In contrast, the pressure is represented on the staggered Gauss–Legendre quadrature
points. The equations are advanced in time using a third-order conditionally stable
backward differentiation and extrapolation scheme (known as BDF3/EXT3), employing
an implicit treatment of the viscous term and explicit treatment of the nonlinear term. In
order to remove aliasing errors, we apply over-integration.

Figure 1 represents a schematic view of the computational domain, which is a numerical
model of the experiments by Lengani & Simoni (2015). In the simulations, the flow
past only one blade is computed, with periodic boundary conditions in the cross-flow
direction to account for the cascade periodicity. The axial chord length c is selected
as the characteristic length scale and the mean inflow speed Uin as the characteristic
velocity. The Reynolds number based on the chord is 40 000. The spanwise extension
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y
x

Figure 1. Computational domain: spectral element mesh.

of the computational domain is 0.685 times the blade chord, which is also the size of one
blade pitch, g = 0.685c, that separates the top and bottom computational boundaries. Inlet
and outlet flow angles are approximately 44◦ and −65◦, respectively, with a trailing edge
thickness-to-pitch ratio of approximately 2 %, more details are available in Ðurović et al.
(2021).

At the inflow plane, a mean velocity (Uin cos(α), Uin sin(α), 0) with the inflow angle
α = 40◦ is prescribed using Dirichlet boundary conditions. The free stream turbulence is
generated through superimposed Fourier modes at the inflow as described in Brandt et al.
(2004). Two levels of the FSTI were simulated; the low FSTI case has a turbulence level of
0.19 %, while it is 5.2 % for the high FSTI case. For both cases, the wavenumber space is
divided into a series of 80 concentric shells, and 40 points are chosen randomly to obtain
the three components of the wavenumber vector. The amplitude of the modes on each shell
is then scaled in order to match a von Kármán spectrum defined as

E(κ) = 2
3

LI
1.606(κLI)

4

[
1.350 + (κLI)2

]17/6 T2
u . (2.3)

Here E is the kinetic energy, κ the magnitude of three-dimensional wavenumber vector,
LI the integral length scale and Tu the turbulence intensity. The spectrum is defined
once the turbulence intensity and the integral length scale are chosen, where the inlet
wavenumber ranges from 7.24 to 142.5. In particular, the choice of the integral length
scale determines how the energy is distributed between the different wavenumbers. For
the present simulations the integral length scale is 0.167c for both cases (as obtained from
experiments (Lengani & Simoni 2015)) and the resulting von Kármán spectrum is shown in
figure 2. We can see that the highest values of energy are found at the lowest wavenumber
(β̂ = βc = 7.24), and it decreases for the higher modes. As a consequence, the energy
content of the optimal perturbations computed with the spanwise wavenumbers yielding
the largest amplification inside the boundary layer ( β̂ ≈ 65–200, see § 3.3) is small. The
role of the so-called optimal perturbations (Andersson, Berggren & Henningson 1999;
Luchini 2000) in the formation of structures along the blade surface will be further
investigated in the following sections. A detailed description of the applied free stream
turbulence and its behaviour can be found in Ðurović et al. (2021).
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E/
Tu

2

κ̂, β̂

Figure 2. Scaled kinetic energy of the free stream modes as a function of non-dimensional wavenumber, κ̂ ,
given by von Kármán spectrum. Red stars correspond to the values of non-dimensional spanwise wavenumbers,
β̂, which can be fitted in the computational domain.

At the outflow, we apply stress-free outflow boundary conditions with a small forcing
applied at the end of the domain to avoid backflow. In the spanwise direction, we enforce
periodic boundary conditions. The no-slip boundary condition is applied on the surface of
the blade.

In the streamwise direction, the grid spacing, expressed in viscous units, is in the
range �x+ = 0.3–4.2, and depends on the streamwise location around the blade. In the
wall-normal direction, the value at the wall is �y+

wall = 0.7 and increases towards the
boundaries, while in the spanwise direction, the grid spacing is uniform, with �z+ = 6.
Moreover, 35 points are positioned below y+ = 10 region in the direction away from the
blade surface. Scaling is provided in the viscous units using l∗ = ν/uτ as a reference scale,
where ν is the fluid kinematic viscosity and uτ = √

τw/ρ the friction velocity, with ρ being
the fluid density and τw wall shear stress.

3. Data processing approaches

3.1. POD
Proper orthogonal decomposition has first been used to provide a statistical representation
of normal and shear stress based on an energy rank. Since the work of Lumley (1967) this
decomposition has mainly been used for the detection of coherent structures embedded
within the flow. The snapshot method of Sirovich (1987) has been used for the modal
decomposition in the present work. The data, which are composed of the three velocity
components, are first collected in a velocity field matrix U , where columns represent the
DNS temporal snapshots and its rows contain the spatial information. This classical POD
provides the following decomposition of the velocity field u defined in space (x, y, z) and
time t:

u(x, y, z, t) =
∑

k

φk(x, y, z)χk(t), (3.1)

where χk are the time coefficients and φk the POD modes, which are composed of
vectorial quantities (φu, φv, φw) related to each velocity component.

The first step of the decomposition consists of computing the time coefficients χk

as the eigenvectors of the cross-correlation matrix C = UTU . The eigenvalues λk of C
represent the energy contribution of the mode to the total kinetic energy (TKE) of velocity
fluctuations since the three velocity components have been used in the definition of the
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POD kernel. Because of the large number of elements of U , the parallel algorithm of
Sayadi & Schmid (2016) has been used for the calculation of eigenvectors and modes.

In (3.1), the eigenvalues λk are implicitly retained in the modes φk that are orthogonal.
The time coefficients χk (also referred to as POD coefficients) constitute an orthonormal
basis and retain the temporal information related to each mode. The POD modes constitute
an orthogonal basis that extracts the spatial structures in the flow by means of a statistical
approach, as also discussed in Berkooz et al. (1993). The most energetic modes may be
seen as the most recurrent patterns in the flow from a probabilistic approach. A single
mode describes a perturbation to the mean flow, while to describe a convective structure
two modes are sufficient (e.g. Legrand, Nogueira & Lecuona 2011). For the sake of
conciseness, POD modes will be sometimes referred to as structures in the present paper.

The original set of data, defined in Cartesian coordinates (axial, tangential and
spanwise directions), has been used for the initial computation. The POD mode vector
(φuc, φvc, φwc), obtained by this procedure, is still orientated in the Cartesian reference
system. However, in complex geometries such as turbine blades, where the flow is turning,
it is convenient to discuss the POD results with respect to the flow direction: i.e. streamwise
(parallel to the time-averaged flow); normal (perpendicular to the time-averaged flow,
and locally to the wall); and spanwise directions. The streamwise, normal and spanwise
velocity components are defined as (u, v, w): u = uc cos(α) + vc sin(α), v = vc cos(α) −
uc sin(α) and w = wc, where α is the local time-averaged flow angle, that is computed in
every spatial position. It is easy to demonstrate that the modes orientated in the ‘streamline
aligned’ reference system (φu, φv, φw) can be obtained by applying the same rotation to
the POD modes in the Cartesian reference system since unitary transformation applied to
the original snapshot matrix directly translates in a mode rotation (Brunton & Kutz 2019).
Therefore, POD modes have been computed in the Cartesian reference system, and then
rotated of the proper time-mean angle α in each grid point to obtain the modes orientated
in the ‘streamline aligned’ reference system.

Since the POD modes φk are orthogonal and the vectors χk are orthonormal, the
time-averaged Reynolds shear and normal stresses can be computed as follows:

uiuj =
∑

k

φk
i φ

k
j . (3.2)

The term φk
i φ

k
j represents the contribution of the kth POD mode to the corresponding

Reynolds stresses. This property of POD can be applied to split the contribution to the
TKE production terms PTKE:

PTKE = −u′
iu

′
j
∂ui

∂xj
. (3.3)

Furthermore, in order to identify the spanwise wavelength of the structures in the free
stream region and inside the boundary layer, another version of the classical POD has
been adopted. In this version, referred to as POD-z, the POD coefficient basis is obtained
along the spanwise direction z, i.e. the velocity field is decomposed as

u(x, y, z, t) =
∑

k

φk
z(x, y, t)χk(z), (3.4)

where the matrix of data is organized as for classical POD, with the exception that the
snapshots are ordered along the z direction and not along time. In this case, the term
χ(z) is the spanwise coefficient, representing a waveform in the z direction. The POD-z
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modes extract the spatial structures in the (x, y) plane and their temporal evolution. The
term structures is also used in this case with the meaning of statistical representation of
coherent structure (e.g. Berkooz et al. 1993).

For convenience, the decomposition provided by (3.1) and (3.4) is formulated in the next
section just as matrix products, where the equivalent of these equation reads U = ΦX T.
Here, Φ and X have φk and χk as their columns, respectively. While in the first case (3.1)
the velocity field matrix U is constituted by the DNS temporal snapshots in the columns,
in the second case (3.4), the columns of the velocity field matrix are equivalent to the
number of points in the z direction.

3.2. Extended POD
The extended POD procedure has been introduced by Borée (2003) as a tool to correlate
events in turbulent flows. In its original formulation it is adopted to correlate two different
physical quantities in two integration volumes (Ω and V). These two different volumes
may be equal, and one may or may not contain the other. If the volumes are equal, it
is of interest to correlate different quantities (e.g. velocity and pressure). Otherwise, by
considering different volumes, the same quantity can be used to provide the correlation
between the dynamics developing in the different regions.

Given a matrix of velocity data UV defined on the volume V , the matrix of the extended
POD modes defined on volume V is computed as

ΦV,Ω = UVXΩ, (3.5)

where the matrix of POD coefficients XΩ is computed for the volume Ω from a physical
quantity of interest. A priori, the quantity of interest may differ (e.g. using velocity for
UV , one can adopt pressure for the computation of XΩ ). However, in the present work
the velocity field in the different volumes is adopted as the quantity of interest. Equation
(3.5) may be further developed, decomposing the field data U by POD (either classical or
POD-z approaches) computed in the domain V , as

ΦV,Ω = ΦVX T
VXΩ. (3.6)

This formulation highlights that the extended POD modes ΦV,Ω depend on the product
of two matrices given by the two bases of POD coefficients (X V and XΩ ) computed in
the two different domains. Therefore, the matrix product X T

VXΩ provides the degree of
correlation of the velocity field in volume V with that in the volume Ω . In the ideal
scenario that the orthonormal coefficients of the two regions are identical, the product
X T

VXΩ provides the identity matrix. Otherwise the resulting matrix is no more diagonal,
it is extremely dispersed and with entries lower than unity. A degree of correlation close
to unity indicates that the two bases have very similar coefficients.

In other words, the extended POD mode provides the correlation of any physical quantity
between the two domains Ω and V . The extended POD is here applied to both formulations
of POD. For the classical POD approach, the eigenvectors X are time coefficients,
thus the entries of the cross-correlation matrix are the time correlation between POD
coefficients computed in the two domains. In the second approach (i.e. POD-z), the matrix
of coefficients X represents spanwise waves, thus the cross-correlation matrix connecting
the two bases provides a measure of spanwise wave similarity between the two domains.

In the first case, the extended POD is used to correlate the turbulent events in particular
domains Ω (i.e. the blade leading edge and the passage region as shown in figure 3)
with the blade boundary layer region V (black area in figure 3). Namely, the temporal
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Figure 3. Domains used for extraction of data sets for computation of temporal/spanwise basis for extended
POD projection: red, leading edge; black, boundary layer; blue, rear part of the passage; pink, wake region;
grey, rear part of the suction side of the boundary layer.

coefficients XΩ of POD have been computed by decomposing the snapshot matrix
obtained with velocity data extracted from the restricted spatial regions of figure 3.
The velocity field U in the boundary layer region V has then been projected on these
bases applying (3.5). In the case of a high temporal correlation the matrix X T

VXΩ is
close to the identity matrix. Therefore, a high degree of correlation produces extended
modes ΦV,Ω that are similar to the modes in the original domain ΦV . In this case, the
extended modes are well defined and show the spatial structures characterized by the high
temporal correlation between the boundary layer (volume V) and the free stream and/or
the leading-edge flow regions (volumes Ω). Conversely, poor correlation generates an
almost constant matrix X T

VXΩ and almost negligible spatial modes. This property will
be explored in the paper to link events occurring in the boundary layer with the leading
edge and passage oscillations.

It has to be mentioned that the temporal correlation between the basis X V and XΩ has
also been tested by applying a time lag between them. This test has been done to investigate
if the time delay due to the propagation of the structures from the different domains affects
the results. The results did not depend on the temporal shift. This result depends on the
mathematical properties of POD and on the fact that the free stream flow is characterized
by a broadband spectrum. Proper orthogonal decomposition discerns a convective flow
by means of temporal and spatial bases that are shifted by a quarter of period (Legrand
et al. 2011). Therefore, when performing a correlation (i.e. the product of POD coefficient
matrices X T

VXΩ ) the time shift may increase/reduce the correlation of the first waveform
while inducing the opposite effects on the coupled one. Thus, the time lag gives a little
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contribution once the projection of all the elements of the basis is considered. Additionally,
since the inlet free stream turbulence spectrum is broadband, including several waves, a
fixed temporal shift may increase the correlation between specific waves, while it did not
affect the results in terms of statistical analysis. For these reasons, the discussion is limited
to the above formulation of the extended POD.

In the second approach, the extended POD-z has been applied to the velocity snapshots
sampled in the same domains Ω (leading edge, and passage region of figure 3) and used
to look for spanwise waves correlating with the rear suction side region V (the boundary
layer region within the grey border in figure 3). The correlation between the different
bases X T

VXΩ identify structures with a high degree of correlation (i.e. similar spanwise
wavelength) that develop in the different domains. The correlation value can be directly
used to highlight the spanwise wavenumbers present in the boundary layer and the free
stream or leading-edge region. Equation (3.6) is then used on the whole blade domain to
compute the extended POD modes to provide the temporal evolution in the (x, y) plane of
the most correlated spanwise waves. The POD mode sequences will allow us to track the
generation of bursting events leading to transition.

3.3. Optimal disturbance analysis
In order to understand how the perturbation caused by the FSTI grows in the boundary
layer, we have performed a spatial, linear analysis on the suction side based on the
optimal perturbation theory (see, e.g. Andersson et al. 1999; Luchini 2000). For the
sake of consistency, the curvature terms have been included in the linearized boundary
layer equations (Tempelmann, Hanifi & Henningson 2012). The aim of this analysis is to
identify the spanwise wavenumber of the most amplified streaks. Here, for each spanwise
wavenumber, we find the initial disturbance at x0, giving the highest energy gain at a
specific downstream position xf . The energy gain G is defined as G = Kf /K0 where Kf and
K0 are the kinetic energy of the perturbation at the final and initial positions, respectively.
In particular, the initial energy is chosen to be unity. Moreover, the initial position is chosen
as close as possible to the leading edge (x0/c = 0.023) so that the entire evolution of
the perturbations over the suction side can be studied. This computation is then repeated
for different wavenumbers β̂ and different streamwise positions xf . For the analysis, the
time-averaged flow from the low FSTI case was employed as the baseflow. The code used
here is based on a second-order backward discretization scheme in a streamwise direction
while a spectral collocation scheme based on Chebyshev polynomials is employed for the
wall-normal direction (Juniper, Hanifi & Theofilis 2014).

Data in figure 4 shows the gain as a function of the spanwise wavenumber and the axial
position for x0/c = 0.023. The optimal spanwise wavenumber decays in the downstream
direction. At the end of the domain, a band for the optimum, in the range 65 < β̂ < 200,
is predicted with a gain of around 250. Note that the most energetic free stream mode with
β̂ = 7.24 (see figure 2) has a significant smaller gain. The role of disturbances belonging
to this spanwise wavenumber range will be further analysed in the following, employing
POD.

4. Results

4.1. Time mean and instantaneous flow field
The time-averaged flow fields are shown in figure 5 for both the low (figure 5a) and the
high (figure 5b) FSTI levels. The contour levels represent the magnitude of the streamwise
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Figure 4. Energy gain G on the blade suction side as a function of the final position xf of the optimal growth
interval with initial unit energy at x0/c = 0.023.

velocity, which is normalized by the reference velocity as all other quantities that will
be shown. At the blade leading edge, the mean flow enters at approximately 40◦ with
respect to the axial direction, and it is progressively turned by the blade pressure field.
The peak velocity is localized on the suction side of the blade, its position is marked in
the pictures by the letter ‘p’ that corresponds to approximately x/c = 0.35. Downstream
of this position, the boundary layer faces an adverse pressure gradient (see Ðurović et al.
(2021) for more details), leading to a massive separation that fails to reattach in the low
FSTI case. The separated flow region is identified by the dark blue area enclosed by the
white line at zero velocity in the enlarged view on top of the pictures. At the low FSTI level,
an extended separated flow region can also be observed on the pressure side of the blade.
In the high FSTI case, the increase of free stream disturbances suppresses the boundary
layer separation on the suction side and also considerably reduces the size of the separation
on the pressure side. Further details about the characteristics of the mean flow, such as the
distributions of the skin friction coefficient, can be found in Ðurović et al. (2021).

The magnitude of the velocity fluctuations in the passage seems to be linked to the
generation of coherent structures in the blade boundary layers, which can be observed
in the instantaneous perturbation velocity plots in figure 6. In the low FSTI case, the
free stream region is weakly affected by the fluctuations. Here, the massively separated
flow area is accompanied by the generation of large-scale KH rolls, as also shown in the
experimental work of Lengani & Simoni (2015). Particularly, the separated shear layer can
be seen in the rear part of the suction side just downstream of the position of the suction
peak. The KH rolls are only generated close to the blade trailing edge as highlighted
by the enlarged view on top right-hand side. Some structures can also be observed
on the pressure side, just downstream of the separated flow area observed in figure 5.
A completely different scenario characterizes the high FSTI case. The free stream region
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Figure 5. The contour of time-averaged normalized streamwise velocity: (a) low FSTI; (b) high FSTI. The
enlarged view on top, related to the rear part of the blade suction side, highlights the dividing streamline at zero
velocity with white colour for the low FSTI case, and the area enclosed by this line is affected by backflow. The
letter ‘p’ identifies the suction peak position.

is affected by a dense population of structures of different sizes, and they appear randomly
distributed in space in the whole passage. In the time instant shown in figure 6, a multitude
of structures influence the flow around the leading-edge area. Free stream fluctuations are
convected throughout the cascade passage, and they act as a continuous external forcing
on the boundary layer over the suction side of the blade (please refer to the movie attached
in the supplementary material available at https://doi.org/10.1017/jfm.2022.127). In the
vicinity of the position of the suction peak, energetic low-speed structures can be observed
inside the boundary layer (e.g. see the blue stripe close to the position marked with the
letter ‘p’ in the panel). Breakdown of these structures causes transition upstream of the
blade trailing edge (see the enlarged view in the top right-hand corner), which prevents
the occurrence of the boundary layer separation. Inspection of the full movie (attached as
supplementary material) gives insight into the complexity of the transition scenario in this
high FSTI case.

In figure 7, a close-up view of two-dimensional slices in the wall-normal and
wall-parallel planes are reported for the high FSTI case. The spatial position of these
planes can be observed in figure 7(a). A typical snapshot is reported to show a view of
the flow structures that populate the suction side boundary layer (a movie is provided in
the supplementary material to give an idea of the dynamics at play). Alternating low-
and high-speed bands of structures can be observed in the wall-parallel plane (figure 7d).
They appear quite ordered in the bottom half of this plane, with shear effects acting
in-between the low- and the high-speed filaments. The product u′w′ is seen in the form
of a localized vorticity region in the top half of the wall-parallel plane. Similarly, the
panel on the right helps to identify the region characterized by high shear stress events
that are formed at the edge of the low-speed regions (see the isolines of u′ = −0.4).
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Figure 6. Typical instantaneous flow field: (a) low FSTI; (b) high FSTI. The contour of streamwise velocity
fluctuations and fluctuating velocity vectors (u′, v′) from the DNS. The enlarged view on top, related to the rear
part of the blade suction side, identifies the structures affecting transition. The abbreviation ‘KH’ identifies a
vortex related to the Kelvin–Helmholtz instability. The letter ‘p’ identifies the suction peak position.

The wall-normal plane (figure 7b), taken in the middle of the wall-parallel plane, identifies
low-speed regions. Intense ejection events (with instantaneous vectors pointing in the
second quadrant according to Nolan, Walsh & McEligot (2010)) may be observed. In this
snapshot, high tangential negative Reynolds stresses, u′v′ (see also figure 7c), characterize
the flow and seems to highlight breakup events that are characterized by shear stress events
in both planes.

4.2. POD analysis
In order to provide a clear statistical representation of the structures leading to transition
in the high FSTI case, the classical version of POD has first been used to describe the
modal contribution to the normal and the shear stresses in the different parts of the blade
channel according to (3.2). The POD has been computed on 993 instantaneous flow field
snapshots that have been sampled during 4.5 flow-through times. The convergence of POD
modes has been checked with the approach of Hekmati, Ricot & Druault (2011). Namely,
different sets of POD modes have been computed by progressively increasing the number
of snapshots that constitute the field matrix U . The convergence is given by the similarity
of the modes between the different sets. It has been found that 800 snapshots are sufficient
to reach the convergence on the first 50 modes. The first 200 modes are fully converged
after including 95 % of the snapshots into the matrix.

The statistical representation of the fluctuating energy carried by each mode is provided
in figure 8. This figure shows the normalized distribution of the cumulative sum of
eigenvalues and their quota to the TKE production, on figure 8(a) and figure 8(b),
respectively. The first 10 modes represent approximately 20 % of the TKE of the
flow, and approximately 200 modes are necessary to capture 80 % of the total energy.
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Figure 7. (a) Three-dimensional view of the blade with two-dimensional planes in the rear of the suction
side: wall-normal plane (black); wall-parallel plane (red); cross-stream planes (blue). The planes are adopted
for visualization purposes. Panels (b,d) are instantaneous snapshots in wall-normal (b) and wall-parallel (d)
planes. The contour of streamwise velocity fluctuations and fluctuating velocity vectors (u′, v′) on (b) and
(u′, w′) on the (d) for the high FSTI case. Panels (c,e) are instantaneous u′v′ on (c) and u′w′ on (e), isocontour
lines of u′ = −0.4 are superimposed for completeness. (a) Reference planes; (b–e) typical snapshot.

Such dispersion of the POD eigenvalues indicates that the flow dynamics is ruled by highly
stochastic events, which is typical of a free stream induced transition scenario (see also Liu
et al. (2001) and Lengani & Simoni (2015)). The distribution of the production of TKE
integrated in the whole volume indicates a similar behaviour, where the first 200 modes
also capture 80 % of the total PTKE. However, the analysis in the different integration
volumes highlights that 200 modes capture all the information in the blade passage and
in the blade boundary layer region. Interestingly, the POD identifies contribution to PTKE
in the wake region just with high-order, less energetic modes. Therefore, since the modes
related to the largest scale structures are able to better identify the turbulence production
in the passage and boundary layer region, the following analysis will be limited to the
most energetic mode. Figure 9 shows isosurfaces of the streamwise component of typical,
high energetic modes (the first, the 7th and the 19th). These modes show elongated
structures embedded into the suction side boundary layer. They appear downstream of the
position of the suction peak, with a larger concentration in the trailing edge region. In the
higher-order modes, structures appear evidently finer and even more concentrated on the
trailing edge of the blade and also extending in the wake region. The most energetic modes
are characterized by a large wavelength in the spanwise direction, while higher-order
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Figure 8. Cumulative contribution of each POD mode to the TKE (a) and its production (b) in different
integration domains: (a) POD eigenvalues; (b) PTKE captured.

Mode 1, φu Mode 7, φu Mode 19, φu
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Figure 9. Isosurface of streamwise component φu of typical POD modes (1st, 7th and 19th). Blue and red
isosurfaces identify negative and positive values (±0.03), respectively.

modes exhibit finer scales. In summary, all these modes highlight similar structures that are
elongated in the streamwise direction, while their spanwise wavelength becomes smaller
for higher-order modes. This consideration holds for all the modes that carry high energy
and high PTKE, whereas, as a consequence, we limit the analysis in this section to the
visual inspection of the first mode only. The effect of the different spanwise wavelengths
at hand will be quantified in the last section of the paper.

The contribution of the first POD mode to the normal and shear components of the
Reynolds tensor is reported in figure 10. Figure 10(a) shows the normal stress related to the
streamwise fluctuations and provides the same results found in figure 9. The pattern shown
by this quantity appears evidently ordered, without a trace of bursting events, similar to
the first time instant previously discussed, referring to figure 7. However, this quantity is
the only term of the Reynolds no stresses with high values on the blade suction side. In
fact, no significant contributions of φ2

v and φ2
w (figure 10b,c) can be observed on the whole

suction side boundary layer.
The modal decomposition of the shear stress terms is reported for the same mode in

figure 10(d–f ). The isosurfaces, in this case, represent positive (red) and negative (blue)
contributions to the corresponding shear stress term. The spatial distribution of the modal
contribution to u′v′ in figure 10(d) highlights finer scale structures just in the rear part of
the suction side. Wedge-shaped regions fed by coherent small-scale structures are clearly
observable. The pattern of this modal distribution changes with respect to the normal
components of the Reynolds stress shown in previous figures. The isocontour of φuφv
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φ2
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(e) ( f )
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Figure 10. Contribution to the Reynolds normal and shear stresses of the first POD mode. (a–c) Isosurfaces
of partial u′2; v′2 and w′2 (from left to right) are traced in red (0.001). (d–f ) Isosurfaces of partial u′v′, u′w′ and
v′w′ (from left to right) are traced in red and blue, indicating positive and negative contributions (±0.0005),
respectively. (a–c) Contribution to Reynolds normal stresses of first POD mode. (d–f ) Contribution to Reynolds
shear stresses of first POD mode.

does not show a preferred direction for the elongation of structures. These events closely
mark turbulent spots (Burgmann & Schröder 2008) and could be directly linked to the
breakup events induced by the later stage of streak breakdown.

The contour plots of φuφw in figure 10(e) highlight again the occurrence of elongated
filaments contributing to the shear stress in the rear part of the suction side. Interestingly,
the spatial scale in the z direction shown here is evidently smaller than the corresponding
trace of the mode contributing to normal stress. Structures that are shown here still appear
quite ordered (and decrease their wavelength for higher-order modes, similar to what was
found in figure 9). These modal distributions provide a statistical representation of the
shear effects in-between low- and high-speed filaments occurring in the wall-parallel plane
previously observed in the instantaneous images of figure 7.

The contribution to v′w′ (figure 10f ) on the suction side is smaller than that of the other
two Reynolds shear stresses since the isosurfaces of φvφw are not visible. The term φvφw
only marks activity on the pressure side. On the pressure side, the modal decomposition of
the streamwise normal stress (u′2) (figure 10a) is confined to the region just downstream
of the leading edge. Conversely, φ2

v and φ2
w (figure 10b,c) clearly highlight large-scale

structures on the pressure side of the blade. Figure 11 shows the spatial distribution of
these quantities adopting a different field of view from the bottom of the blade. The POD
mode highlights isosurfaces as elongated tubes preferably aligned with the streamwise
direction, with a large wavelength in the spanwise direction. This scenario results from
the normal stresses in the spanwise direction and the consequent shear stresses in the
wall-normal direction. The breakups of the elongated structures observed on the pressure
side are due to shear effects mainly acting in the cross-stream plane.
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Figure 11. Contribution to the Reynolds normal (φ2
v and φ2

w) and shear (φvφw) stresses of the first POD modes,
blade pressure side view. Isosurfaces of partial v′2, w′2 and v′w′ (from left to right) are traced in red and blue,
indicating positive and negative contributions, respectively. The values of the isosurfaces are the same used in
figure 10: 0.001 for φ2

v and φ2
w and ±0.0005 for φvφw.

4.3. Extended POD analysis on temporal basis
The results in previous sections suggest that on the suction side, the modal decomposition
of the different components of the Reynolds stress tensor can describe the different stages
of transition, from the ordered pattern of streaky structures to the final stage of breakup and
the resulting formation of randomized structures close to the trailing edge. However, such
analysis cannot provide any information about the mechanisms leading to the initial stage
of penetration/formation of such structures in the boundary layer. In order to investigate the
role played by leading-edge receptivity and the continuous forcing from the passage region,
results from extended POD are shown in this section. Extended POD modes presented here
are the results of projecting the instantaneous snapshots on the temporal basis extracted
from a limited portion of the passage and leading-edge domains (blue and red areas in
figure 3, respectively).

Before focusing on the results regarding the blade boundary layers, figure 12 is
introduced to provide a visualization of the structures identified by the extended POD
procedure. Here, the first mode of the streamwise velocity (φu) is shown. In figure 12(a,b),
the snapshot matrix has been projected on the first time coefficient (χ1) of the basis
extracted in the leading edge region. This gives a comprehensive view of the spatial
distribution of the modal representation correlating with the leading-edge events. Note
that in this case, the mode is an extended mode for the area outside of the leading-edge
region. Two different views of the blade are proposed in the figure to better highlight the
turbulent field captured by this mode. Figure 12(a,b) shows large-scale structures at the
inlet of the blade. The feature identified by figure 12(a) is a region of positive φu just
in front of the blade leading edge. Figure 12(c,d) is obtained by projecting the snapshot
matrix on the passage base. The passage base is defined in the rear part of the blade away
from the blade surface (see the blue area of figure 3). Even though this base is extracted
away from the leading edge, the figure shows large bulks of positive or negative values of
φu at the inlet of the blade. Contrary to what is isolated by the leading-edge basis, these
bulks are localized away from the leading edge.

The relation between events embedded in the two bases with the structures on the
blade boundary layer is discussed by means of the representation of the contributions
to the Reynolds stress tensor provided by the extended POD projection (3.5). Results are
shown for the first mode only since the behaviour of the higher-order modes is similar.
As discussed in § 3.2, the correlation between the temporal basis of classical POD and
that extracted from the limited portion on the leading edge and free-stream region gives
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Mode 1, φu(a) (b)

(c) (d )

Leading edge view

Mode 1, φu Leading edge view

Figure 12. Isosurface of the streamwise component φu of the first POD modes of the extended POD. The mode
is obtained by projecting the snapshot matrix on the leading-edge temporal base (a,b) and the passage temporal
base (c,d). Light blue and yellow isosurfaces identify negative and positive values (±0.012), respectively. To
highlight the different structures identified by the two basis, two different views of same mode are shown; the
one on the right is a rotated view to highlight the leading-edge region. (a,b) Leading-edge ‘basis’; (c,d) passage
‘basis’.

a direct and quantitative estimation of correlation between the temporal events in these
regions and the structures developing inside the boundary layer.

Figure 13 describes the spatial distribution of the first extended POD mode in terms of
φ2

u , φuφv and φuφw. The modes are obtained by a projection of the classical POD temporal
coefficient (i.e. extracted on the whole domain) on the temporal coefficient extracted from
the leading-edge region (figure 13a–c) and from the passage (figure 13d–f ), respectively.
The streamwise normal stress obtained by a projection on the leading-edge basis leads to
a modal representation highlighting finer scale structures in the rear part of the suction
side with respect to classical POD (compare with figure 10a–c). The projection on the
passage shows a similar representation, as made evident in figure 13(d–f ). These results
suggest that penetration and formation of streaky structures in the rear part of the blade
suction side are due to both leading-edge receptivity and continuous forcing from the free
stream. However, structures shown in figure 13(d–f ) more closely resemble those shown
in figure 10(a–c), thus providing the first evidence that the continuous forcing of turbulent
structures from the passage is more related to transition events than to the leading-edge
receptivity process.
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Figure 13. Contribution to the Reynolds normal (φ2
u ) and shear (φuφv and φuφw) stresses of the first extended

POD modes, blade suction side view. The mode is obtained by projecting the snapshot matrix on the
leading-edge temporal base (a–c) and the passage temporal base (d–f ). Isosurfaces are traced in red and
blue, indicating positive and negative values, respectively. The contour level of the isosurfaces is the same of
figure 10, (i.e. 0.001 for contribution to normal and ±0.0005 for shear stresses). A larger isosurface corresponds
to a large degree of correlation. (a–c) Leading-edge ‘basis’; (d–f ) passage ‘basis’.

The extended POD projection of the u′v′ component is shown in figure 13(b,e). The
spatial distribution in figure 13(a–c) suggests that breakup events are poorly correlated
with the leading-edge related events. The correlation seems just slightly higher for the free
stream oscillations (figure 13d–f ). This is in agreement with the fact that structures on
the suction side are forced by free stream/leading-edge perturbations, but their breakup
(secondary instability, etc.) do not directly depend on those perturbations. This will be
further discussed in the last section of the paper.

The extended POD modes for φuφw are presented in 13(c, f ). This term may be linked
to the initial stage of destabilization between high- and low-speed streaks inducing shear
stress events, as also observed in figure 7. Projection on the leading-edge bases provides
significant correlation only in the rear part of the suction side close to the blade trailing
edge (figure 13a–c). A better correlation, which corresponds to a large isosurface, with a
high value of the extended mode (see § 3.2), can be observed on the basis extracted from
the passage. In figure 13(d–f ) shear stress events in this plane can again be recognized in
the whole decelerating part of the blade suction side, and they appear even upstream of
what observed in figure 10(d–f ).

A completely different scenario can instead be observed on the pressure side. Figure 14
shows the extended POD projections on the blade pressure side, adopting the same bottom
view of figure 11. The normal and shear contributions to v′2, w′2 and v′w′ are shown from
left to right in the figure. The elongated structures that are clearly visible in the classical
POD modal representation in figure 11 are practically absent when projected on the
leading-edge basis (figure 14a–c). A partial representation of them is instead found once
projected on the passage temporal basis (figure 14d–f ). Thus, such kind of structures that
strongly resemble Görtler vortices do not seem to be affected by leading-edge receptivity
and are linked to the continuous forcing from the passage region, mainly by means of
normal stresses in the spanwise direction.
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φ2
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w φv φw
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Figure 14. Contribution to the Reynolds normal (φ2
v and φ2

w) and shear (φvφw) stresses of the first extended
POD modes, blade pressure side view. The mode is obtained projecting on the leading-edge temporal base (a–c)
and on the passage temporal base (d–f ). Isosurfaces are traced in red and blue, indicating positive and negative
values, respectively. The contour level of the isosurfaces is the same of figure 11, (i.e. 0.001 for contribution to
normal and ±0.0005 for shear stresses). A larger isosurface corresponds to a large degree of correlation. (a–c)
Leading-edge ‘base’; (d–f ) passage ‘base’.

The degree of correlation of the coherent structures on the suction and pressure sides
with perturbations in the leading edge and passage regions is quantified by the volume
integral of the PTKE. The cumulative turbulent kinetic energy production for the classical
POD and for different projected cases are shown in figure 15. The plots are normalized by
the total TKE production inside the boundary layer over the blade. The optimal projection
reaches the total cumulative value for a lower number of modes than the others. For the
suction side, the projections on the passage and leading-edge basis show a similar degree
of correlations for the first six modes. For the higher-order modes, the projection on the
leading-edge base evidently reduces with respect to the projection on the passage. Thus,
the cumulative curves in figure 15 make it evident that the correlation on the passage
is higher than the correlation on the leading edge. On the pressure side, the structure
projected on the leading-edge base do not produce TKE for the first six modes. The
projection is evidently better on the passage base since higher PTKE is shown for every
mode.

4.4. Extended POD analysis along the z direction
In order to present more detailed information on the characteristic wavelengths of the
structures present in the suction side boundary layer, the POD has also been performed
looking at coefficients in the z direction (3.4). The modes are represented in the (x, y, t)
plane, i.e. they provide the temporal evolution of the flow features in the (x, y) physical
space that are characterized by a spanwise wave according to their coefficient χ(z). Thus,
they directly provide a view of the disturbance dynamics, from their penetration into
the boundary layer to the final stage of the breakup, leading to the formation of shear
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Figure 15. Cumulative contribution to the TKE production of classical and extended POD reconstructions on
the suction (a) and pressure (b) side.
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Figure 16. Cumulative distribution of the POD-z eigenvalues in three different domains. Each distribution is
normalized by the total energy in the respective domain.

stress events in the rear part of the blade. This analysis complements and merges all
previous observations. The POD-z has been computed on limited domains: the leading
edge and rear passage areas as defined in figure 3 as well as on the rear suction side
area (i.e. the boundary layer region after the suction peak). Note that in the POD-z, the
number of modes corresponds to the number of computational points along the spanwise
direction and the convergence history differs from that of the classical POD procedure
previously described. The cumulative distribution of the eigenvalues in the leading edge
and the passage regions (figure 16) shows that convergence is achieved with 50 modes, and
modes above 35 retain almost no energetic contribution. Therefore, the extended POD-z
analysis is limited to these first 50 energetic modes. Conversely, on the rear suction side,
there is a significant energetic contribution also for modes above 50. This is probably due
to the breakdown into smaller spanwise wavelengths that are not present (or with negligible
energy) in the free stream turbulence. In this latter case, the procedure of Hekmati et al.
(2011) has been applied to the POD-z modes to check the convergence. In this case, the
spanwise extension has been kept fixed, and the number of points in the z direction has
been reduced. The modes up to the 50th are already well captured with half of the points.
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Figure 17. Degree of correlation between modes of leading edge and passage regions with that of the rear
suction side; only the maximum value is shown.

The correlation matrix of the extended POD-z is computed as X T
VXΩ (see also (3.6))

where the reference domain V is the rear part of the suction side and the domains Ω are
alternatively the leading edge and the passage regions. Figure 17 shows the maximum
degree of correlation between modes of these two regions (in the abscissa of the figure)
with modes of the rear part of the suction side boundary layer. The values in the plots
are quite high (above 0.4) for both regions. However, the highest degree of correlation
is shown, almost for all modes, between the passage and the rear suction side regions,
confirming what was discussed in the previous sections. The similarity between selected
coefficients of these different domains and their characteristic spanwise wavenumber can
be observed in figure 18. The POD coefficients in these plots are chosen among those
with a degree of correlation above 0.8 and therefore show almost the same waveform
in the two regions. The most energetic disturbance in the free stream (β̂ = 7.24) and
disturbances belonging to the band predicted by the linearized theory (60 < β̂ < 200)
appear between those with a high degree of correlation between events occurring in the
suction side and in the free stream. A mode exhibiting high correlation with a spanwise
wavenumber in-between the most energetic and the optimal (β̂ = 43.46) is also shown.
For what concerns the leading-edge region, only mode 5 with a spanwise wavenumber
β̂ = 14.49 is characterized by a degree of correlation higher than the free stream region,
thus it is the only mode from the leading edge shown in figure 18(a). The other modes
(figure 18b–f ) are related to the passage region. The POD coefficients shown here strongly
resemble Fourier modes due to homogeneity (in a statistical sense) in the z direction.
Amplitude modulation is limited for the low-order modes, and it appears more evident for
mode 49, which is at the top of the band of the optimal disturbance.

The r.m.s. of the streamwise component of POD-z modes, which have the maximum
correlation, are shown in figure 19. These distributions are then compared with the
gain predicted for the same spanwise wavenumber from optimal disturbance theory in
figure 20. The results of figure 19 show that the most energetic disturbance of the free
stream (β̂ = 7.24) is also responsible for the largest energy within the boundary layer.
Interestingly, it grows similar to mode 5, which is correlated with the leading-edge region.
Mode 5 is amplified downstream of x/c = 0.2, while the disturbances correlating with the
passage region are amplified downstream of x/c = 0.35 (i.e. in the decelerating region of
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Figure 18. The POD coefficients computed in the different regions that have been considered for the extended
POD-z analysis. These coefficients correspond to modes for which the degree of correlation is above 0.8 (see
figure 17).
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Figure 19. Evolution of maximum root mean square (r.m.s.) of φu within the blade suction side boundary
layer.

the suction side boundary layer). Summarizing, the fluctuations of the streamwise velocity
induced by structures having large spanwise wavelength are correlated to events at both
the leading edge and passage regions, further confirming what was found from figure 13.

Disturbances in the range of the optimal wavenumber (86.93 < β̂ < 173.85) also grow
significantly downstream of the position of the suction peak. The optimal disturbance
analysis (figure 4) shows a very similar result for the spanwise wavenumber of interest.
In fact, in the same range of β̂ extracted from the extended POD-z, the optimal velocity
amplification occurs mainly downstream of x/c = 0.35. In order to provide a direct
comparison between the optimal disturbance analysis and the growth of the r.m.s. of
POD-z modes, data from POD and optimal theory have been normalized for the respective
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Figure 20. Comparison of the maximum φu,rms evolution within the boundary layer and optimal disturbance
growth. The different curves have been normalized to unity at x/c = 0.35.

value at x/c = 0.35 in figure 20. The two analyses present differences for the most
energetic, low spanwise wavenumber mode. On the other hand, the optimal disturbance
and POD-z agree well for the higher spanwise wavenumber corresponding to the most
growing optimal disturbances (figure 20d–f ).

The POD-z modes provide the temporal evolution of the structures in the (x, y) plane
that are characterized by the spanwise wavenumber identified by the corresponding
coefficients. For visualization purposes, three sequences of modes have been selected and
shown in figures 21–23. The modes are obtained by projecting the velocity field on the χ(z)
coefficients. The streamwise velocity of the mode is depicted in the sequence in panel (a),
while the contribution to the partial Reynolds shear stress φuφv is depicted in panel (b).

Figure 21 shows the spatial distribution of the extended POD mode of the leading-edge
basis and its temporal evolution. The mode represented in the figure is the fifth, and it is
characterized by a spanwise wavenumber of β̂ = 14.49 (see figure 18a). The wavenumber
of this mode is almost twice that of the most energetic free stream disturbance and
significantly smaller than the optimal one predicted by the linear theory. It is possible to
observe the low and high streamwise velocity region from the sequence in figure 21(a).
At the first instance, a negative velocity region (labelled with ‘A’ in the subpanel
sequence) impacts the leading edge. Its trace and propagation are visible in the free stream
region above and within the boundary layer. In the third time instant, this low-speed
region is limited to the boundary layer region, and its intensity becomes bigger (smaller
velocity), propagating downstream in the fourth and fifth subpanels of the sequence. This
sequence confirms that a disturbance from the leading edge may propagate downstream
as streamwise elongated structures with negative or positive disturbance velocity (see also
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Figure 21. Temporal evolution of POD-z mode, distribution of modes of the streamwise velocity (sequence
on panel (a)), distribution of partial shear stress φuφv on (b). The mode is obtained by projecting the whole
velocity field on the POD coefficient of mode 5 computed from the leading-edge basis (figure 18a).

figure 13). The sequence in figure 21(b) highlights that the Reynolds shear stresses related
to the low (or high speed) region propagating from the leading edge have a very small
amplitude. Particularly, the partial Reynolds shear stress related to the low-speed region
previously identified is rather small, below the threshold defined in the figure. This further
confirms the poor correlation between the structures that impinge on the leading edge and
the breakdown process in the transitional region.

Figure 22 shows a similar scenario related to the most energetic free stream mode. The
first subpanel of the sequence in figure 22(a) highlights a large region at high velocity
(labelled with ‘B’ over the subpanel sequence) in the passage and boundary layer regions.
This structure propagates downstream and retains a certain spatial coherence in the passage
region above the boundary layer. A low-speed region in the boundary layer is also triggered
close to the wall, just below the free stream perturbation (see the third and fourth subpanel
of the sequence). Therefore, it confirms the link between region at a low (or high) velocity
in the passage and response in the rear suction side boundary layer. Differently to what was
observed in figure 21, the partial Reynolds shear stress captured by the mode sequence
in figure 22 is not null in the region of the streamwise velocity perturbation: namely,
negative φuφv appears in the last sequence in figure 22(b). Therefore, the projection on
the passage base shows a certain degree of correlation with the breakup events identified
by the Reynolds shear stress u′v′. This is not the case for the projection on the leading-edge
basis.
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Figure 22. Temporal evolution of POD-z modes, distribution of modes of the streamwise velocity (sequence
on panel (a)), distribution of partial shear stress φuφv on (b). The mode is obtained by projecting the whole
velocity field on the POD coefficient of mode 1 computed from the passage basis (figure 18b).

The evolution of structures characterized by a spanwise wavenumber with β̂ = 108.66 is
reported in the subpanel sequence of figure 23. This is representative of what happens for
modes in the band of the optimum predicted by the linear theory. In this case, the regions of
low and high speed inside the boundary layer and in the passage are considerably smaller
than in the previous cases. Small perturbations propagate within the boundary layer; see,
for example, the low speed region marked with ‘C’ in the first time snapshots. This
low velocity region increases its magnitude moving downstream and triggers a region of
growing negative Reynolds shear stress in the rear part of the blade boundary layer (see the
sequence in figure 23b). Thus, even though characterized by significantly smaller energy,
the evolution of the optimal disturbance in the suction side boundary layer correlates well
with spanwise wave forced by the free stream, and it is responsible for the formation of
shear stress events related to transition.

5. Summary and conclusions

In the present work, analysis of DNS data shed further light on the role the free stream
turbulence on the mechanisms leading to transition on both the pressure and the suction
side of a low pressure turbine blade. Results account for the role played by the receptivity
in the leading-edge region as well as the continuous forcing of free stream eddies at the
boundary layer edge. Linear optimal disturbance analysis has been performed to identify
the spanwise scale of the most amplified structures. Their evolution has been compared

937 A36-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

12
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.127


D. Lengani and others

–0.006 –0.003 0 0.0060.003
φu

φuφv

‘C’

‘C’

‘C’

‘C’

‘C’

‘C’

‘C’

2 × 10–5

–2 × 10–5
–1 × 10–5
0

(a) (b)

1 × 10–5

Figure 23. Temporal evolution of POD-z modes, distribution of modes of the streamwise velocity (sequence
on panel (a)), distribution of partial shear stress φuφv on (b). The mode is obtained by projecting the whole
velocity field on the POD coefficient of mode 31 computed from the passage basis (figure 18e).

with that of the most energetic mode carried by the free stream and with that of other
structures captured by POD.

Structures generated on the different parts of the blade have first been identified
with POD, adopting its classical formulation. The POD modes provide a statistical
representation of the structures contributing to both normal and shear stress. Ordered
structures resembling streaky structures have been shown to mainly contribute to
normal stress in the streamwise direction on the suction side. The shear stress between
streamwise and spanwise directions (φuφw) marks shear effects between the low- and
high-speed streaks, while the shear between the streamwise and wall-normal direction
(φuφv) highlights breakup events. The pressure side is dominated by structures that are
characterized by high normal stress in the spanwise and wall-normal directions and by
their shear effects.

The extended POD formalism allowed us to quantify the correlation between the
structures growing on both sides of the blade with the leading-edge related events and
the forcing from free stream turbulence in the blade passage region. This first version of
extended POD highlights the time-averaged correlating events between the boundary layer
and the passage/leading-edge region. The events growing in the suction side boundary
layer correlate better with the temporal basis describing the free stream oscillations
in the passage. On the pressure side boundary layer, the degree of correlation with
the passage region is even higher, while the correlation with the leading-edge basis is
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extremely poor. This implies that the leading-edge receptivity does not influence the
generation and propagation of structures in the pressure side boundary layer.

The second variant of extended POD has been performed in the spanwise direction
focusing on the results obtained in the suction side boundary layer. The extended POD-z
provides the spatial evolution of the most energetic wavenumber carried by the free stream
and allows comparison with the evolution of the optimal disturbance predicted by the
linear theory. The region that correlates most with the events in the rear suction side
is the passage, and, therefore, the free stream forcing seems to play a major role in the
generation of structures in the boundary layer. The most energetic mode obtained by
projection of the snapshot matrix on the leading-edge basis provides a limited contribution
to the formation of shear stress events. On the other hand, the most energetic mode of the
passage basis is clearly related to the generation of breakup events. Disturbances with
spanwise wavenumbers in the optimal range show an amplification process in agreement
with that predicted by the linear theory. These modes correlate mostly with the elements of
the passage base, and once penetrated into the boundary layer, amplify in the rear suction
side, inducing the breakup events responsible for the generation of the shear stress, thus
transition.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.127.
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