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According to the celebrated Bolgiano–Obukhov (Bolgiano, J. Geophys. Res., vol. 64
(12), 1959, pp. 2226–2229; Obukhov, Dokl. Akad. Nauk SSSR, vol. 125, 1959,
p. 1246) phenomenology for moderately stably stratified turbulence, the energy
spectrum in the inertial range shows a dual scaling: the kinetic energy follows
(i) ∼k−11/5 for k< kB, and (ii) ∼k−5/3 for k> kB, where kB is the Bolgiano wavenumber.
The k−5/3 scaling, akin to passive scalar turbulence, is a direct consequence of the
assumption that buoyancy is insignificant for k> kB. We revisit this assumption, and
using the constancy of kinetic and potential energy fluxes and simple theoretical
analysis, we find that the k−5/3 spectrum is absent. This is because the velocity field
at small scales is too weak to establish a constant kinetic energy flux as in passive
scalar turbulence. A quantitative condition for the existence of the second regime is
also derived in the paper.

Key words: stratified turbulence

1. Introduction
Stable density stratification is commonly observed in oceans and the nocturnal

atmosphere (Sagaut & Cambon 2008; Turner 2009; Davidson 2013; Maffioli &
Davidson 2016). Both atmospheric and oceanic flow can often be turbulent; such
turbulence, commonly known as ‘stably stratified turbulence’ (SST), is different from
the classical ‘Kolmogorov turbulence’, which is applicable to homogeneous and
isotropic hydrodynamic turbulence.

Stably stratified turbulence is quite complex, and there are many unresolved issues
in this field (Lindborg 2006, 2007; Brethouwer et al. 2007; Davidson 2013; Rosenberg
et al. 2015; Verma 2018). One of the important parameters here is the Froude number

Fr≡
U
NL
, (1.1)

where U and L are the large-scale velocity and length scale, respectively, and N is
the Brunt–Väisälä frequency (defined in § 2) (Davidson 2013). A related parameter is
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the Richardson number,

Ri≡
N2

(∂u/∂z)2
, (1.2)

which is the ratio of buoyancy and flow shear. The approximation ∂u/∂z ∼ U/L
yields Ri ≈ Fr−2 (Rosenberg et al. 2015; Maffioli, Brethouwer & Lindborg 2016).
The degree of turbulence is quantified by the Reynolds number, Re≡UL/ν, where ν
is the kinematic viscosity of the fluid.

Based on the above parameters, stably stratified turbulent flows can be classified
into three broad regimes:

(1) Re� 1 and Fr� 1 (turbulent SST with weak buoyancy): In this regime, strong
nonlinearity (u · ∇u) in comparison to buoyancy yields scaling similar to passive
scalar turbulence. Hence, both the kinetic energy spectrum, Eu(k), and potential
energy spectrum, Eb(k), follow the Kolmogorov spectrum and scale as ∼k−5/3,
where k denotes wavenumber.

(2) Re � 1 and Fr � 1 (turbulent SST with strong buoyancy): Here, buoyancy is
much stronger than the nonlinearity. The flow is strongly anisotropic, with strong
horizontal velocity compared to the vertical velocity (Vallis, Shutts & Gray 1997;
Lindborg 2006, 2007; Brethouwer et al. 2007; Davidson 2013). The flow of the
terrestrial atmosphere is strongly stratified with typical Fr ∼ 0.01 (Waite 2011).
The physics of this regime is quite complex, and it is still being debated.

(3) Re � 1 and Fr ≈ 1 (turbulent SST with moderate buoyancy): Here, buoyancy
and nonlinearity are of comparable strength. Bolgiano (1959) and Obukhov
(1959) constructed a model for this regime by arguing that the buoyancy force
converts kinetic energy into potential energy. They argued for a dual scaling,
with transition occurring at Bolgiano wavenumber kB. For k < kB, the kinetic
energy flux Πu(k) decreases as ∼k−4/5, but the potential energy flux Πb(k) is
constant. Here, Eu(k)∼ k−11/5 and Eb(k)∼ k−7/5. For k> kB, buoyancy is expected
to be weak, and hence the scaling is similar to that for a passive scalar. We
denote the above model as the Bolgiano–Obukhov (BO) phenomenology.

In this paper we focus on the third regime – moderately stratified turbulence. For
this, computational studies by Waite & Bartello (2004) and Kumar, Chatterjee &
Verma (2014) show that the flow remains approximately isotropic. Furthermore, the
direct numerical simulation results of Kimura & Herring (1996) and Kumar et al.
(2014), the shell-model results of Kumar & Verma (2015) and the global energy
balance analysis of Bhattacharjee (2015) have unequivocally shown that the kinetic
energy spectrum indeed scales as ∼k−11/5 in a wavenumber band. However, we are
not aware of any numerical or experimental work that convincingly demonstrates the
dual scaling for such flows.

Several researchers have reported BO scaling for turbulent thermal convection,
Rayleigh–Taylor turbulence and unstably stratified flows. Note, however, that
Verma, Kumar & Pandey (2017) showed that BO scaling is not applicable to
such flows in three dimensions; instead, they follow Kolmogorov-like turbulence
phenomenology (Eu(k)∼ k−5/3). Yet, in two dimensions, turbulent thermal convection
and Rayleigh–Taylor turbulence exhibit BO scaling, as demonstrated by Boffetta et al.
(2012) and Boffetta & Mazzino (2017). Verma et al. (2017) and Verma (2018) argued
that the above phenomenon is due to the inverse cascade of kinetic energy.

The flow in the deep oceans is moderately stratified with Fr∼ 1 (Petrolo & Woods
2019). The atmosphere of some other planets could yield a wide range of Fr; hence,
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a clear understanding of SST with moderate buoyancy is essential. The goal of this
paper is to revisit turbulent SST with moderate buoyancy and critically examine the
validity of dual scaling of the BO phenomenology. We start with the constancy of the
total energy flux (kinetic plus potential) and demonstrate that, for large wavenumbers,
the velocity field becomes weak; hence, the assumption that buoyancy becomes weak
at large wavenumbers leading to k−5/3 spectra is improbable. We observe that Eu(k)∼
k−11/5 for k> 1/L, where L is the system size, with no cross-over to k−5/3 spectra. As
an aside, we recover Eu(k)= k−5/3 for k< 1/L, which may be possible in systems with
large aspect ratio. Thus, we provide a revision of the celebrated BO phenomenology.

The outline of the paper is as follows. The equations governing SST are introduced
in § 2. The BO phenomenology is described in § 3. In § 4.1 and § 4.2, respectively,
numerical solution and asymptotic analysis of the equation for the total energy flux
(a fifth-order equation) are presented. We conclude in § 5.

2. Governing equations

The governing Navier–Stokes equations for stably stratified flows (density stratifica-
tion in the vertical (z) direction) under the Boussinesq approximation are (Davidson
2004, 2013; Lindborg 2006; Verma 2018)

∂u
∂t
+ (u · ∇)u=−

1
ρm
∇σ −Nbẑ+ ν∇2u+Fu, (2.1a)

∂b
∂t
+ (u · ∇)b=Nuz + κ∇

2b, (2.1b)

∇ · u= 0. (2.1c)

Here u= (ux, uy, uz) and σ are, respectively, the velocity and the pressure fields; ν and
κ are respectively the kinematic viscosity and diffusivity of the density fluctuation; ρm

is the mean density; Fu is the external force (in addition to the buoyancy); and b is the
density fluctuation in velocity units, which is achieved by the following transformation
(Lindborg 2006; Davidson 2013; Rosenberg et al. 2015):

b=
g
N
ρ

ρm
, (2.2)

where g is the acceleration due to gravity and ρ is the density fluctuation. The
quantity

N =

√
g
ρm

∣∣∣∣dρ̄dz

∣∣∣∣ (2.3)

is the Brunt–Väisälä frequency. Note that −Nb is buoyancy.
It is convenient to describe the flow behaviour in Fourier space since it captures the

scale-by-scale energy transfer and interactions. The following one-dimensional kinetic
spectrum, Eu(k), and the potential energy spectrum, Eb(k), which are the sums of the
respective energy of all the modes of a shell of thickness dk, are introduced:

Eu(k, t) dk=
∑

k<|k′|6k+dk

1
2
|u(k′, t)|2, (2.4)
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Eb(k, t) dk=
∑

k<|k′|6k+dk

1
2
|b(k′, t)|2. (2.5)

Note that Eu(k) and Eb(k) are averaged over polar angles; hence they do not capture
the anisotropic effects. The ring spectrum proposed by Teaca et al. (2009) and Nath
et al. (2016) captures the angular-dependent spectra.

Henceforth, the explicit time dependence in Eu and Eb is suppressed for brevity.
The nonlinear energy transfers across modes are quantified using energy fluxes or
energy cascade rates. The kinetic (potential) energy flux, Πu(b)(k0), for a wavenumber
sphere of radius k0 is the total kinetic (potential) energy leaving the said sphere due to
nonlinear interactions. These fluxes are computed using the following formulae (Dar,
Verma & Eswaran 2001; Verma 2004, 2018):

Πu(k0)=
∑
|k|>k0

∑
|p|6k0

Im[{k · u(q)}{u(p) · u∗(k)}], (2.6a)

Πb(k0)=
∑
|k|>k0

∑
|p|6k0

Im[{k · u(q)}{b(p)b∗(k)}], (2.6b)

where k= p+ q.
The dynamical equations for modal kinetic energy (Eu(k) = (1/2)|u(k)|2) and

potential energy (Eb(k) = (1/2)|b(k)|2), respectively, can be derived from (2.1a) and
(2.1b), and are as follows (Davidson 2013; Verma 2018):

d
dt

Eu(k)= Tu(k)+FB(k)+Fext(k)−Du(k), (2.7a)

d
dt

Eb(k)= Tb(k)−FB(k)−Db(k). (2.7b)

Here Tu(b)(k) and Du(b)(k) are, respectively, the nonlinear kinetic (potential) energy
transfer rate and dissipation rate, while FB and Fext denote the energy feed rate by
the buoyancy and external force, respectively. These quantities are defined as follows
(Verma et al. 2017; Verma 2018):

Tu(k)=
∑

p

Im[{k · u(q)}{u(p) · u∗(k)}], (2.8a)

Tb(k)=
∑

p

Im[{k · u(q)}{b(p)b∗(k)}], (2.8b)

FB(k)=−NRe[b(k)u∗z (k)], (2.8c)
Fext(k)=Re[Fu(k) · u∗(k)], (2.8d)

Du(k)= 2νk2Eu(k), (2.8e)
Db(k)= 2κk2Eb(k), (2.8f )

where k=p+q. The kinetic and potential energy fluxes are related to nonlinear energy
transfer terms as

Πu(k0)=−
∑
|k|6k0

Tu(k), Πb(k0)=−
∑
|k|6k0

Tb(k). (2.9a,b)
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We write (2.7a) and (2.7b) for the spheres of radii k and k + dk and take their
difference, which yields

d
dt

∑
k<|k′|6k+dk

Eu(k′)=
∑

k<|k′|6k+dk

Tu(k′)+FB(k′)+Fext(k′)−Du(k′), (2.10a)

d
dt

∑
k<|k′|6k+dk

Eb(k′)=
∑

k<|k′|6k+dk

Tb(k′)−FB(k′)−Db(k′), (2.10b)

where ∑
k<|k′|6k+dk

Tu(k′)=−Πu(k+ dk)+Πu(k), (2.11a)

∑
k<|k′|6k+dk

Tb(k′)=−Πb(k+ dk)+Πb(k). (2.11b)

Now taking the limit dk→ 0 yields

d
dt

Eu(k)=−
d
dk
Πu(k)+FB(k)+Fext(k)−Du(k), (2.12a)

d
dt

Eb(k)=−
d
dk
Πb(k)−FB(k)−Db(k), (2.12b)

where

FB(k) dk=−
∑

k<|k′|6k+dk

NRe[b(k′)u∗z (k
′)], (2.13a)

Fext(k) dk=
∑

k<|k′|6k+dk

Re[Fu(k′) · u∗(k′)], (2.13b)

Du(k) dk= 2ν
∑

k<|k′|6k+dk

k′2Eu(k′), (2.13c)

Db(k) dk= 2κ
∑

k<|k′|6k+dk

k′2Eb(k′). (2.13d)

The above energetics is illustrated in figure 1.
Let us consider a statistically steady state (∂/∂t→ 0). In the inertial range, Fext= 0,

and the dissipative effects are negligible, i.e. Du→ 0 and Db→ 0. Hence the equations
for the kinetic and potential energies simplify to

d
dk
Πu(k)=FB(k), (2.14a)

d
dk
Πb(k)=−FB(k). (2.14b)

The sum of (2.14a) and (2.14b) yields

Πu(k)+Πb(k)=Π = const. (2.15)

Hence the total energy flux is constant in the inertial range. We will employ (2.15)
in the later part of the paper.
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Du(k) dk Db(k) dk

fB(k) dk fB(k) dk

Ôu(k + dk)

k +
 dk

Ôu(k) Ôb(k + dk)Ôb(k)k

k +
 dk

k

(a) (b)

FIGURE 1. (Colour online) (a) The kinetic energy content of a wavenumber shell changes
due to the kinetic energy flux difference Πu(k + dk) − Πu(k), energy removal rate by
buoyancy FB(k) dk, and viscous dissipation rate Du(k) dk. (b) The potential energy changes
due to potential energy flux difference Πb(k+dk)−Πb(k), energy supply rate by buoyancy
FB(k) dk, and dissipation rate Db(k) dk.

Based on energetics arguments, it has been shown that the energy injection rate
by buoyancy, FB, is negative. Hence Πu(k) decreases with k (Kumar et al. 2014;
Verma 2018, 2019). Verma (2019) showed that, in the linear regime, gravity waves
facilitate periodic exchange of kinetic and potential energies, hence FB= 0. Therefore,
a non-dissipative gravity wave represents a neutral state. Since the system is stable, the
nonlinearity makes FB negative. If FB > 0, according to the integral form of (2.7a),
the kinetic energy would grow in time, thus making the flow unstable. Hence, FB< 0.
In addition, Kumar et al. (2014) and Verma (2019) go on to argue that FB(k) < 0.
The above features have been verified numerically by Kumar et al. (2014) and Verma
et al. (2017).

When we substitute negative FB(k) in (2.14a) and (2.14b), we deduce that Πu(k)
decreases with k, while Πb(k) increases with k. These features play an important role
in the models of Bolgiano (1959) and Obukhov (1959).

The equations described in this section apply to all three regimes. In the following
two sections we will focus on phenomenology of moderately stratified turbulence.

3. The Bolgiano–Obukhov phenomenology for moderately stably stratified
turbulence
Bolgiano (1959) and Obukhov (1959) constructed a phenomenology for moderately

stratified turbulence, which we refer to as BO phenomenology. In this regime, the
flow is nearly isotropic. Kumar et al. (2014) showed that for Fr & 1 the anisotropic
ratio E⊥/2E‖ ≈ 1, where E⊥ = (u2

x + u2
y)/2 and E‖ = u2

z/2. Waite & Bartello (2004)
also showed that the flow is approximately isotropic for Fr = 1.3, and anisotropy
of stratification starts to become visible for Fr 6 0.21. It has been conjectured that
isotropy is also present in the inertial range of moderately SST.

According to the BO phenomenology, a force balance between the nonlinear term
and buoyancy in (2.1a) yields

ku2
k =Nbk, (3.1)

where uk and bk are, respectively, the velocity and density fluctuations at wavenumber
k. In addition, the BO phenomenology assumes that, in the inertial range, Πb(k) ≈
const., and it equals the dissipation rate of the potential energy (εb):

Πb(k)= kb2
kuk = εb. (3.2)
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Equations (3.1) and (3.2) yield the following relations:

Eu(k)=
u2

k

k
= c1ε

2/5
b N4/5k−11/5, (3.3a)

Eb(k)=
b2

k

k
= c2ε

4/5
b N−2/5k−7/5, (3.3b)

Πu(k)= ku3
k = c3ε

3/5
b N6/5k−4/5, (3.3c)

Πb(k)= εb. (3.3d)

Bolgiano (1959) and Obukhov (1959) argued that the above-mentioned behaviour
of the inertial range is true only for lower wavenumbers (k < kB, where kB will be
defined below). For k > kB of the inertial range, the buoyancy effects are weak and
hence cannot balance the inertial term (which is balanced by the pressure gradient).
Hence in this region, the scaling of passive scalar (i.e. Kolmogorov) turbulence should
be valid. The energy and flux relations obtained here are

Eu(k)=KKoε
2/3
u k−5/3, (3.4a)

Eb(k)=KOCε
−1/3
u εbk−5/3, (3.4b)

Πu(k)= εu, (3.4c)
Πb(k)= εb, (3.4d)

where εu is the viscous dissipation rate, and KKo and KOC are the Kolmogorov
and Obukhov–Corrsin constants. It is important to keep in mind that the viscous
dissipation and thermal dissipation play a critical role in turbulence. They set up the
fluxes, Πu and Πb, even though they are not very active in the inertial range.

The behavioural transition from one regime to another occurs near the Bolgiano
wavenumber kB, which is obtained by matching Πu(k) in the two regimes:

kB ≈N3/2ε−5/4
u ε

3/4
b . (3.5)

The nature of kinetic and potential energy fluxes, as well as dual scaling of moderately
SST as predicted by Bolgiano (1959) and Obukhov (1959), are illustrated in figure 2.
We also remark that Πu(k) decreases rapidly as k−4/5 and then it tapers off to εu.
However, Πb ≈ εb ≈Π (see (2.15)). Hence, εb� εu.

In addition to kB, another important length referred to in SST is the ‘Ozmidov
length’, which is defined as

LO ≡

√
εu

N3
. (3.6)

The corresponding wavenumber kO = 1/LO. At LO, the time scales of gravity waves
and local eddies match, i.e. l/ul ≈ 1/N. Using a numerical simulation, Waite &
Bartello (2004, 2006) computed LO for Fr= 1.3 and reported that LO is approximately
1/31 of the system size.

For moderately stratified flows, Πu(k) varies with k; hence it is not obvious whether
we should substitute εu=Πu(k) of (3.3c), or εu of (3.4c). In any case, it is interesting
to compare kO with kB. Using (3.5) and (3.6) we obtain

kB

kO
= ε−5/4+1/2

u ε
3/4
b ∼

(
εb

εu

)3/4

. (3.7)

Since εb� εu for SST, we expect that kB� kO.
In the next section, we describe certain critical deficiencies of the BO phenomenology.
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Du(k)

Db(k)

Ôu(k) ¡ const.

Ôb(k) £ const.

Ô
u(k) ¡ k -4/5

fLS

-fB(k) > 0

Ô
u(

k)
Ô

b(
k)

kB kDI kd k

kDI kd k

(a)

(b)

fB(k) < 0 fB £ 0

fB £ 0

kB

FIGURE 2. (Colour online) Schematic diagram of moderately SST according to the BO
phenomenology. (a) Kinetic energy flux and (b) potential energy flux. The transition from
the inertial regime to the dissipation regime occurs at wavenumber kDI . Here kd is the
Kolmogorov wavenumber, and kd� kDI .

4. Revision of Bolgiano–Obukhov phenomenology for moderately stably stratified
turbulence
A crucial assumption made in the BO phenomenology is that Πb(k)≈ const. in the

inertial range (refer to (3.2)). This assumption needs a closer examination. A more
rigorous approach would be to start with the constancy of total energy flux (2.15) that
follows from the conservation of total energy (kinetic plus potential) in the inviscid
limit.

We start with (2.15), and equate it to the total dissipation rate ε. That is,

Πu(k)+Πb(k)= ku3
k + kb2

kuk = ε. (4.1)

In the above equation we eliminate bk using (3.1), which yields the following fifth-
order polynomial in uk:

ku3
k +

k3u5
k

N2
= ε. (4.2)

There is no analytical solution for a fifth-order algebraic polynomial. Therefore, we
employ numerical solution and asymptotic analysis to solve the above equation. These
two results are consistent with each other.

4.1. Numerical solution
We numerically solve (4.2) using the ‘fsolve’ function of the SciPy library in Python,
which uses Powell’s hybrid method to find zeros of nonlinear functions. We choose
N= 1.0, and the total energy flux Π = 1.0, which is also equal to the total dissipation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

52
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.529


Revisiting Bolgiano–Obukhov scaling 969

101

10-2

10-5

10-8

Ôu(k)
Ôb(k)

Eu(k)
Eb(k)

k4/3

k-4/5

k-1/3

k-5/3

k-11/5

k-7/5

102

k
106 101010-210-6 102

k
106 101010-210-6

100

10-12

10-8

10-4

104

108

1012

Ô
u(

k)
, Ô

b(
k)

E u
(k

), 
E b

(k
)

(a) (b)

FIGURE 3. (Colour online) Fluxes and energy spectra for N = 1.0 and the total energy
flux Π = 1.0. (a) Kinetic energy flux (Πu(k)) is plotted in red and potential energy flux
(Πb(k)) is plotted in green. (b) Kinetic energy spectrum (Eu(k)) is plotted in red and
potential energy spectrum (Eb(k)) is plotted in green. In both panels, black lines represent
asymptotic behaviours in the extreme limits.

rate ε. We vary k from 10−6 to 1010 in logarithmic scale. These parameters can be
treated as non-dimensional with the time period of a large-scale gravitational wave as
the time scale, system size as the length scale, and large-scale velocity as the velocity
scale. Using the numerically evaluated uk and bk, we evaluate Eu(k)= u2

k/k, Eb(k)=
b2

k/k, Πu(k)= ku3
k and Πb(k)= kukb2

k . The quantities are plotted in figure 3.
Figure 3 exhibits the fluxes and spectra of the kinetic and potential energies. For 1<

k< 1010, Πb ≈ 1, Πu(k)∼ k−4/5, Eu ∼ k−11/5 and Eb ∼ k−7/5, which are the predictions
of the BO phenomenology for k < kB. Surprisingly, there is no cross-over to k−5/3

scaling of passive scalar turbulence. This is because uk� bk; hence uk cannot induce
a constant kinetic energy flux. We will show a more rigorous derivation in the next
subsection.

Interestingly, for k� 1, we obtain Πu≈ 1, Πb∼ k4/3, Eu∼ k−5/3 and Eb∼ k−1/3. That
is, uk dominates bk at small k values, which leads to Kolmogorov’s scaling for the
velocity field. Note, however, that k= 1 corresponds to 1/L. Hence, k� 1 is possible
in SST when the transverse length scale is much larger than the vertical scale (L).

In the next two subsections we will perform asymptotic analysis of (4.1).

4.2. Asymptotic analysis
We examine the dominant balance for the two extreme limits of (4.2).

4.2.1. Case 1: moderately stably stratified turbulence for k� 1
In this situation, Πu�Πb, and hence the balance is between Πb and ε:

k3u5
k

N2
≈ ε H⇒ uk ≈ ε

1/5N2/5k−3/5. (4.3)

Using (3.1), bk is found to be

bk ≈ ε
2/5N−1/5k−1/5. (4.4)
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Therefore, the kinetic and potential energy spectra and fluxes, as well as the energy
feed by buoyancy, are given by

Πu(k)≈ ε3/5N6/5k−4/5, (4.5a)
Πb(k)≈ ε, (4.5b)

FB(k)=
∂

∂k
Πu(k)≈−

4
5
ε3/5N6/5k−9/5, (4.5c)

Eu(k)≈ ε2/5N4/5k−11/5, (4.5d)
Eb(k)≈ ε4/5N−2/5k−7/5. (4.5e)

Note that uk ∼ k−3/5 decreases faster than bk ∼ k−1/5. Therefore, buoyancy is strong
enough so as to yield Eu(k) ∼ k−11/5 for the whole of the inertial range, without a
transition to the Eu(k)∼ k−5/3 regime. Note that the dissipation range starts after the
inertial range.

A more quantitative condition for the absence of the second regime (kB to kDI of
figure 2) is obtained as follows. Clearly, the Bolgiano wavenumber should be much
smaller than the Kolmogorov wavenumber, kd, which leads to

N6ε3
bε
−5
u � εuν

−3, (4.6)

or

N2ν� ε2
uε
−1
b . (4.7)

In the above equation, substitution of the following expressions for the Richardson
number and thermal dissipation based on the root mean square quantities (Verma
2018),

Ri=
NbrmsL

U2
, (4.8)

εb =
Ub2

rms

L
(4.9)

yields

εu�
Ri
√

Re

U3

L
, (4.10)

where L is the length scale of the system. Using Ri≈ Fr−2, we obtain

Reb = ReFr2
�

U3/L
εu

, (4.11)

where Reb is the buoyancy Reynolds number. As an example, for Fr= 1.58, Maffioli
et al. (2016) obtained Reb= 10 430. Interestingly, (4.11) is similar to that obtained by
Brethouwer et al. (2007) for strongly stratified turbulence.

Since εu � εb, the above condition may be very difficult to achieve in numerical
simulations. If we assume that εu = 10−3εb ≈ 10−3U3/L, for Fr = 1, equation (4.11)
predicts that Re�103. Such a flow would be difficult to simulate. Therefore, we claim
that the second regime of BO scaling is very difficult to find in numerical simulations.
It would be interesting to attempt to find this regime in a shell model (Kumar &
Verma 2015) or in some experiment.
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4.2.2. Case 2: moderately stably stratified turbulence for lower wavenumbers (k� 1)
Equations (4.3)–(4.4) indicate that uk≈ bk near k= 1. For k� 1, Πu�Πb, implying

that the dominant balance has to be between Πu and ε:

ku3
k ≈ ε H⇒ uk ≈ ε

1/3k−1/3. (4.12)

Using (3.1), bk is found to be

bk ≈ ε
2/3N−1k1/3. (4.13)

With the above uk and bk, the evaluated energy spectra and fluxes, as well as the
energy feed by buoyancy in this situation, are given by

Πu(k)≈ ε, (4.14a)
Πb(k)≈ ε5/3N−2k4/3, (4.14b)

FB(k)=−
∂

∂k
Πb(k)≈−

4
3
ε5/3N−2k1/3 (4.14c)

Eu(k)≈ ε2/5k−5/3, (4.14d)
Eb(k)≈ ε4/3N−2k−1/3. (4.14e)

However, it is not certain whether the above scaling can be observed in realistic
systems. The range k � 1 is possible in a large-aspect-ratio box, but such systems
could exhibit two-dimensional or quasi-two-dimensional turbulence for which (4.1) is
not valid. Hence this prediction needs to be tested thoroughly in future. Schematic
diagrams exhibiting kinetic and potential energy fluxes based on the revised BO
phenomenology are shown in figure 4.

5. Conclusions
In this paper, we revisit the celebrated Bolgiano–Obukhov (BO) phenomenology

for SST under moderate stratification. The BO phenomenology predicts a dual scaling
for the energy spectra: Eu(k)∼ k−11/5 for k < kB and Eu(k)∼ k−5/3 for k > kB, where
kB is the Bolgiano wavenumber. The potential energy varies as ∼k−7/5 and ∼k−5/3,
respectively, in the two regimes. The transition to k−5/3 scaling is based on the
argument that the energy supply rate from buoyancy becomes negligible when k is
large, thus making density a passive scalar (such passive scalar behaviour of density
is observed in weakly stratified turbulence).

In the present paper, we start with the constancy of the total energy flux, which
yields a fifth-order algebraic equation for uk. Numerical solution of the above equation
yields Eu(k) ∼ k−11/5 and Πu(k) ∼ k−4/5, with no transition to the Kolmogorov-like
scaling for larger wavenumbers. The reason behind the absence of the second scaling
is that uk is too weak at large wavenumbers to be able to start a constant energy
cascade. The above scaling is also substantiated using asymptotic analysis.

In addition, we also derive the quantitative condition for obtaining the Kolmogorov
scaling; it is given by kB� kd, where kd is Kolmogorov wavenumber. This condition
yields εu � (Ri/

√
Re)(U3/d), which may be difficult to satisfy in numerical

simulations considering the fact that εu � εb. However, it may be possible that
such an extreme condition for observing the second regime of BO scaling could be
satisfied in some shell models of SST.

In conclusion, we believe that our revised scaling of the BO formalism for
moderately stable stratification will have important consequences in the modelling of
buoyancy-driven flows.
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Du(k)

Db(k)

Ôu(k) £ const.

Ôb(k) £ const.

Ô
u(k) ¡ k -4/5

Ôb(k
) ¡

 k
4/3

fLS
fB(k) < 0

-fB(k) > 0

Ô
u(

k)
Ô

b(
k)

k = 1 kDI kd k

k = 1 kDI kd k

(a)

(b)

FIGURE 4. (Colour online) Schematic diagram of moderately SST according to the revised
BO phenomenology, which is expected in numerical simulations. (a) Kinetic energy flux
and (b) potential energy flux. Energy feed rate by buoyancy (FB(k)) is shown by green
arrows. With k . 1 and Πu(k) ≈ const., Πb(k) and FB(k) increase with k as ∼k4/3 and
∼k1/3, respectively. With k & 1 and Πb(k)≈ const., Πu(k) and FB(k) decrease with k as
∼k−4/5 and ∼k−9/5, respectively.
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