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In this note we present an extremely short proof of Goldie's 

theorem on the structure of semiprime Noetherian rings [1]. The outline 

of the proof was given by Procesi and Small in [4]. By utilizing the 

concept of the singular ideal of a ring we have been able to weaken the 

hypotheses of many of the steps in [4]. Most significantly, we are 

able to avoid a reduction to the case of prime rings, and in Lemma 5 

we give an informative list of the relationship between regular elements 

and essential ideals of semiprime rings. 

Let S be a subset of a ring R. I(S) = {x £ R : xS = 0} is 

called the left annihilator of S; similarly r(S) = {x £ R : Sx = 0} 

is called the right annihilator of S. Note that r£r(S) = r(S). It 

follows that a ring satisfying the ascending chain condition on left 

annihilators satisfies the descending chain condition on right annihi-

lators. 

Let R be any ring and I and J left ideals of R with 

I c J. I is said to be essential in J if I intersects every non

zero left ideal contained in J non-trivially. If I is essential 

in R we will call I an essential left ideal. We define Z(R) = 0 

to mean r(I) = 0 for every essential left ideal I. 

Let I be a left ideal of a ring R. For x € R, set 

(I:x) = {r € R : rx € I}. Note that (I:x)x = I n Rx. 
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LEMMA 1. Let R be any ring, I and J left ideals of R. 

(i) If I is essential in J, then (I:x) is an essential 

left ideal of R for any x 6 J. 

(ii) Conversely, if Z(R) = 0 , x £ R and (I:x) is an 

essential left ideal, then I is essential in I+Rx. 

This lemma is due to Johnson [3], and is in fact true for any 

R-module. For the sake of completeness we repeat the proof. 

Proof. Let K be a nonzero left ideal of R. Kx = 0 implies 

0 / K C ( I : x ) [IK. On the other hand, if Kx i 0 then I 0 Kx / 0 

since Kx c_ J. So choosing 0 1 kx f Kx fl I, k £ K, we have 

0 i k € K fl (I:x). This proves (i) . 

Now suppose Z(R) = 0 and (I:x) is an essential left ideal 

of R. Let 0 i i + ax £ I + Rx with i £ I, a € R; we have to 

show that R(i + ax) fl I / 0. From (i), (I:i + ax) = (I: ax) = ((I:x):a) 

is an essential left ideal of R. Since Z(R) = 0, 

0 i (I:i + ax) (i + ax) = I fl R(i + ax). 

LEMMA 2. _Let R be a ring with Z(R) = 0, and I a left 

ideal of R. 

(i) Jjf £(B) is essential in I, then £(B) = I. 

(ii) \£_ Rx and Ry are essential left ideals, so is Rxy. 

Proof. Suppose that £(B) is essential in I and let x € I. 

Then (£(B):x) is an essential left ideal and (£(B):x)xB = 0, which 

implies that xB = 0, i.e., x £ -0(B). This proves (i) . 

For (ii) it suffices to prove that Rxy is essential in Ry. 

Now Rx c (Rxy:y), and so (Rxy:y) is essential in R. Hence by 

Lemma 1 (ii) , Rxy is an essential submodule of Rxy + Ry = Ry. 
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A ring R is said to be semiprime provided it has no nonzero 

nilpotent left ideals. Note that for left ideals J and K of a semi-

prime ring, JK = 0 implies KJ = 0. 

We will constantly refer to the conditions 

£(acc): R has the ascending chain condition on left 

annihilators. 

m(acc): R contains no infinite direct sums of left 

ideals. 

The following lemma appears in [4]. We repeat the proof. 

LEMMA 3. ]_f R is a semiprime ring satisfying £(acc) then 

Z(R) = 0. Conversely, if R is any ring with Z(R) r 0 and satisfying 

fP>(acc) , then R has both the ascending and the descending chain 

conditions on left annihilators. 

Proof. Suppose that I is an essential ideal with r(I) i 0. 

2 
Choose U i 0, a minimal right annihilator <^r(I). U i 0 since R 

is semiprime, so there exists u £ U such that uU i 0. We complete 

the proof of the first half of the lemma by showing that Ru D I = 0. 

If not, there exists 0 4 xu ç Ru fl I with x € R. Since 

xu £ I and r(I) _3 U, xuU = 0. Now r(x) fl U is a right annihilator 

contained in U, hence r(x) fl U = 0 or r(x) fl U = U. But xuU = 0, 

so 0 / uU G r(x) fl U. Hence we have r(x) fl U = U, which implies 

that U ç r(x). But then xu = 0, a contradiction. 

For the converse note that from any infinite proper chain of 

left annihilators we can extract an infinite direct sum by Lemma 2(i). 

LEMMA 4. Suppose that R is a semiprime ring satisfying 

(B(acc) . Let I be any left ideal of R, and let a £ I with £(a) 

minimal among all £(x) with x £ I. Then Ra is essential in I. 
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Proof. Let J be any left ideal çz I with Ra fl J = 0. For 

any x £ J, £(a + x) 3 £(a) fl £(x) ; and in fact £(a + x) = 

£(a) fl £(x) c £(a) since Ra fl J = 0. By the minimality of £(a) we 

must have £(a + x) = £(a) fl £(x) = £(a). Hence £(a) c £(x). Since 

x was arbitrary, £(a)J = 0 = J£(a). 

2 
Suppose now that x 6 £(a ). Then xa 6 £(a), so Jxa = 0. 

2 
But then Jx Ç £(a), so (Jx) = 0, whence Jx = 0. We have thus 

shown that J£(a ) = 0; and similarly we can prove that J£(a ) = 0 

for all integers i > 0. 

Either J = 0 or else Ja1 i 0 for all i > 0 (for Ja1 = 0 

implies that J c £(a ), whence J = 0). In the latter case, consider 

CO 

VJa . This sum cannot be direct, so there exist x, ,...,x f J. 
.<•' k n 
i=l 

k n k 
n > k, such that x, a +...+X a = 0 with x, a ^ 0. Now k n k 

n-k k n_k k 
(x,+...+x a )a = 0 implies that R(x,+. . .+x a ) <̂  £(a ), and 

so JR(x, +.. .+x a ~ ) = 0. But then JRx, = JR(-x, ina-...-x a " ) v k n k v k+1 n 

c J n Ra = 0, which leads to a contradiction since x, £ J. Hence 

J = 0, and it follows that Ra is essential in I, 

LEMMA 5. Let R be a semiprime ring. 

(i) If R satisfies £(acc), and Ra is an essential left 

ideal, then a is regular, i.e., r(a) = 0 = £(a). 

(ii) Lf R satisfies ©(ace), and £(a) = 0, then Ra is an 

essential left ideal. 

(iii) If R satisfies both £(acc) and ©(ace), then every 

essential left ideal contains a regular element. 
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Proof. (i). Suppose that Ra is essential. By Lemma 3, 

r(a) = r(Ra) = 0. Since R satisfies the ascending chain condition 

on left annihilators, there exists an integer n such that 

£(an) = £(a n + 1). Suppose yan = x £ Ran n £(a). Then 0 = xa = ya n + 1, 

so y ç ^(an+1) = £(an), whence x = ya11 = 0. Thus Ran n £(a) = 0. 

But by Lemma 2(ii) Ra is essential. Hence £(a) = 0. 

Both (ii) and (iii) are consequences of Lemma 4; (ii) is 

immediate, while for (iii) we need only invoke part (i). 

A ring Q with identity is said to be a left quotient ring of 

a ring R if R £J Q, every regular element of R is invertible in 

Q, and every element of Q is of the form a b with a,b 6 R. 

It is known [2; p.262] that the following common multiple 

condition is necessary and sufficient that a ring R containing regular 

elements have a left quotient ring: given a,b € R with a regular, 

there exist c,d € R with d regular such that ca = db. 

THEOREM (Goldie). Let R be a semiprime ring satisfying both 

£(acc) and ©(ace). Then R has a left quotient ring Q which is 

semisimple with minimum condition. 

Proof. Observe that by a trivial application of Lemma 5(iii) 

R contains regular elements. Next, let a,b f R be given with a 

regular. Ra is essential by Lemma 5(ii) and hence (Ra:b) is 

essential. By Lemma 5(iii), (Ra:b) must contain a regular element, 

and this yields the common multiple condition. 

To prove that Q is semisimple with minimum condition it 

suffices to show that every left ideal of Q is a direct summand. 

If I is a nonzero left ideal of Q, then by Zorn's lemma there 
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exists a left ideal K of R such that (I fl R) ® K is essential in 

R. Then by Lemma 5(iii), Q = Q((I n R) Œ K) which equals 

Q(I n R) ff> QK = I fP> QK since Q is the left quotient ring of R. 

This completes the proof of the theorem. 

Remark. In view of Lemma 3 we could replace the condition 

£(acc) in the theorem with the hypothesis Z(R) = 0. 
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