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Abstract. For every manifold of dimension n > 5 a diffeomorphism / which has n — \
non-zero characteristic exponents almost everywhere is constructed. The
diffeomorphism preserves the Lebesgue measure and is Bernoulli with respect to this
measure. To produce this example a diffeomorphism of the 2-disk is extended by
means of an Anosov flow, and this skew product is embedded in U".

1. Introduction

(1.1) A diffeomorphism / of a compact Riemannian manifold M is called a Bernoulli
diffeomorphism if / preserves a positive smooth probability measure fi and if the
automorphism (M, fj., f) is conjugate by a measure preserving invertible mapping to a
Bernoulli shift [4].

The main mechanism of strong ergodic properties (for example, the K- property,
the Bernoulli property) in smooth dynamical systems, which is known up to now, is
hyperbolicity. The relation between ergodic and hyperbolic properties of
diffeomorphisms and smooth flows was studied by Pesin [8, 9,10]. Hyperbolic
properties of smooth dynamical systems can be expressed in terms of the so-called
characteristic exponents [8]. Pesin described the Pinsker partition in terms of the
stable and unstable foliation [9] and also showed that, if the characteristic exponents
are non-zero almost everywhere, then almost every ergodic component has positive
measure and, under some extra conditions, the system is Bernoullian [10]. Two
natural questions emerge: (1) Does every compact manifold carry a Bernoulli
diffeomorphism? (2) Does every compact manifold carry a diffeomorphism with
non-zero exponents? (Exponents being non-zero means at almost every point all
exponents are non-zero.) The first question was answered positively in [4] and [2].
The second question is still open, though the answer seems to be 'yes'. The problem is
that Pesin's conditions for a diffeomorphism to be Bernoullian are essentially
sufficient and not necessary. The diffeomorphism constructed in [2] has only 2
non-zero exponents and n-2 zero exponents (n is the dimension); and still it is
Bernoullian. Pesin's entropy formula shows that, for any diffeomorphism preserving
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a smooth measure with positive entropy, there is a set of positive measure where at
least two of the exponents are non-zero. Thus, the example constructed in [2] is
optimal in the sense that the diffeomorphism has the least possible number of
non-zero exponents which is necessary to provide the Bernoulli property.

(1.2) In this paper we construct a Bernoulli diffeomorphism with « - l non-zero
exponents on any «-dimensional compact manifold, n > 5. In dimension 2 there is an
example of a Bernoulli diffeomorphism with non-zero exponents due to Katok and
Grines [4]. The main element of their proof is the construction of a Bernoulli
diffeomorphism with non-zero exponents on the 2-disk. By suspending this
diffeomorphism, one can obtain a Bernoulli flow with non-zero exponents on any
3-manifold, each diffeomorphism of this flow being Bernoullian and having 2
non-zero exponents. Another way to obtain such an example in dimension 3 can be
found in [2]. For topological reasons the construction given below does not work in
dimension 4, although the statement obviously seems to be true.

(1.3). The construction consists of several steps. In the first step we consider the
Bernoulli diffeomorphism g of the 2-disk D2 described in [4], an Anosov flow h' on
an («-2)-dimensional manifold N and their skew product f(x, y) = (gx, ha(x)y),
a (x) being a skewing function which is equal to 0 in a neighbourhood of the boundary
3D2. We choose a in such a way that / i s a K- and Bernoulli automorphism (actually it
is true for almost every a). In the second step the phase space M" =D2xNn~2 is
embedded in U" and a continuous mapping <t> from M" onto the n-dimensional ball
B" is constructed which has the following properties: (i) <f> sends the Lebesgue
measure on M" into the Lebesgue measure on B"; (ii) <j> is a diffeomorphic
C°°- embedding on int D2 x N" ~2; (iii) </> (dMn) is a finite union of submanifolds in B"
of positive codimension. Thus fB = <f> °f° <t>~x is a Bernoulli diffeomorphism of B"
with n - 1 non-zero exponents. A similar argument shows that fB can be transferred
from B" to any compact «-dimensional manifold.

2. Construction of a skew product over D2 with n - \ non-zero exponents

Let h': N" ~2 -» N" ~2 be a C°° Anosov flow which preserves the Lebesgue measure v
and is a K- and Bernoulli flow (the spectrum contains no discrete component and the
measurable hull of each foliation is trivial [1]). Let g:D2^D2 be the Bernoulli
diffeomorphism constructed in [4]. This C°°- diffeomorphism preserves the Lebes-
gue measure A on D2, has non-zero exponents and stops at the boundary dD2 with all
derivatives. Any smooth function g :£>2->R determines a diffeomorphism / of the
direct product M = D2 x N given by the formula

f(x,y) = (g(x),haMy). (2.1)

(2.1) PROPOSITION. Leta be a smooth non-negative function a :D2-»R, a&O. Then
the diffeomorphism f: M -» Mgiven by (2.1) has n — 1 non-zero exponents (a.e. with
respect to the invariant product measure n=AX)/).

Proof. Our construction is similar to the one from [5]. Let Ws
g, W"g, W$

h and W"h be
the stable and unstable foliations of g and h and denote by IT :M-*D2 the natural
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projection. Let x e£>2 be a point where Ws
g{x) and Wg(x) exist. For every point

(x,y)€D2xN consider the following two sets

W'f(x,y)= U {xs,Wl(h'^y)), (2.2)

xseW|(x)

W?(x,y)= U (xu,W
u
h(h'"UJy)), (2.3)

where
'.(*.) = I (a(gn(x,))-a(gn(x))), (2.4)

'«(*„) = I (a(g""(JC«))-«(g-"(x))). (2.5)
n = l

It is easy to see that, if Wg(x) is exponentially contracted by g and if Ls(x) =
n

lim (1/n) X a(g"*)>0, then the submanifold W/U, y) is exponentially
n-co , = i

contracted by /. The same is true for W"(JC, y) if we reverse the time. Since g is
ergodic, the limit Ls(x) (and L"(x)) exists A-almost everywhere. Thus, for n almost
every point there exist the stable and unstable manifolds. The sum of their dimen-
sions is equal to n — 1. Therefore, / has n — \ non-zero exponents; the zero exponent
corresponds to the direction of the flow h' (it acts globally on M). The proposition is
proved. •

(2.2) PROPOSITION. / / «(.*)> 0 and a(x)&0, then f is a K-autornorphism of the
Lebesgue space (M, fj.).

Proof. Pesin showed in [9] that the Pinsker partition of a diffeomorphism preserving a
smooth measure is equal to both the measurable hull of the stable and unstable
foliations. Suppose A is a set consisting of entire leaves W}(x, y). Since every leaf
W}(x, y) intersects every vertical fibre TT~1(XS)(XS e Wg(x)) by exactly one stable leaf
of h\ then A intersects with every fibre IT~1(X) by a set consisting of entire stable
leaves of h' (this set may be empty). If A has positive measure, then for x belonging
to a set of positive measure, the intersection n~1(x) n A has positive measure and,
therefore, must have full measure, since h' is not a suspension and the foliation Ws

h is
ergodic. It follows that A has full measure, because the stable foliation Ws

g is also
ergodic (g is a K-automorphism of (D2, A)). The proposition is proved. •

(2.3) PROPOSITION. If a is such that f is a K-automorphism, then f is Bernoullian.

The proof repeats Pesin's argument (see [10] and [11]) for flows with non-zero
exponents. The diffeomorphism we consider has three invariant foliations: the stable
foliation W% the unstable foliation W", and the neutral foliation W°f formed by the
trajectories of h in each vertical fibre. Pesin deals with a flow F' which also has three
invariant foliations WS

F, Wp and the neutral foliation WF formed by the trajectories
of F. To prove the existence of a very weak Bernoulli generator he considers the
so-called parallelepipeds, i.e. small measurable sets consisting of pieces of weak
stable manifolds WF

S and of unstable manifolds WF. To carry on the proof one needs
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the following two properties: (a) the distance between the images of any two points
belonging to the same local weak stable manifold does not increase, and (b) the
jacobian of the succession mapping between any two weak stable manifolds inside a
parallelepiped, which is carried out by means of unstable manifolds, tends to 1 when
the size of the parallelepiped tends to 0 (see [11], § 3). Property (a) is valid in our case
because the foliations W} and W°f are certainly integrable by construction, and if x
and y belong to the same neutral leaf, the distance between their images does not
change. Property (b) is also valid because the corresponding succession mapping is an
isometry in the W°-direction. Thus, Pesin's proof goes through.

(2.4) Remark. Actually this argument works in a more general case. Let / be a
diffeomorphism which preserves a smooth measure and has three invariant folia-
tions, two of them being hyperbolic (may be non-uniformly) and the third one being
isometric in the sense that the distances on each leaf are preserved by /. Then,
provided / is a K-automorphism, it is Bernoullian.

3. Construction of a Bernoulli diffeomorphism on the n-dimensional ball B"

(a) The flow h'. Let A be a hyperbolic (n - 3) x (n - 3) matrix with determinant 1 and
integer entries. Consider the corresponding Anosov diffeomorphism of the (n -3) -
torus T"~3 and its suspension h' with function 1. The flow h' is not a K-flow (since it
has a discrete component in the spectrum), but we can perturb h' in the class of
smooth flows preserving the Lebesgue measure to obtain an Anosov flow h' which is
a K-flow. The phase space TV of h' (as well as of h') is diffeomorphic to the product
T"~3 x [0, 1], where the tori T""3 x 0 and T""3 x 1 are identified by the action of A.
From now on we assume that A has the following form:

A =
o

o
««*•

f ] , if n is odd

2
1

0

1
1
1

1
1

2

2
1

0

1
1

0

0
0
1

1
0

0

0
1

1

0
1

2
, if n is even (3.2)

(3.1) PROPOSITION. The matrix A defined by (3.1) and (3.2) induces an Anosov
rn-3

diffeomorphism of J"

Proof. It is obvious that det A = 1 and that the eigenvalues of ( ) are real and

j 2 1 V
different from 1. Therefore, it is sufficient to show that the eigenvalues of 1 1 1

\0 1 2)
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are real and different from 1. Consider the characteristic polynomial P(X) =
A3-5A2 + 6A - 1 . Observe that P(0) = - 1 , P(l) = 1, P{2) = - 1 , P(4) = 7. The pro-
position is proved. •

(b) Embedding in R"

(3.2) PROPOSITION. The phase space N"~2 of the flow h'corresponding to the matrix A
defined by (3.1) and (3.2) can be embedded in U".

Proof. Topologically the phase spaces of h' and h' are the same (see § 3(a)). Thus, it
suffices to show that the product T"~3x[0,1] with the top and the bottom tori
identified by A can be embedded in R". The embedding is constructed step by step

using the block structure of A. The matrix I I is the natural simplest element of

A and ( 1 ) = ( n •,)(•. i ) • W e wi l1 c o n s t r u c t a deformation T""3 of the torus

T" 3 in R" * which transforms the torus into its image under A. The deformation
consists of k steps each of them dealing only with the corresponding block of A and
with the corresponding 2- or 3-dimensional torus.

(3.3) LEMMA. There exists a deformation T2 of the 2-torus T3 in U* which transforms

Vo 1/To into its image under

Proof Let B3 = {(xu x2, x3)\x\ +x\ +xj <R} be a large ball in U3. The product
S**B3 can be embedded in a natural way into IR4. Consider first the strip
Do = S1x{(xu0, 0 ) | 0 < J C I < 1 } C S 1 X S 3 and denote by I* the segment
4> x {(JCI, 0,0)|0 < JCI < 1}, <t> e S1. Let Dx be the strip {(<f>, r cos <£, r sin <f>, 0)|0 < r < 1}.
A deformation D, = {I^(t)} of Do into £>i in 51 x B3 such that /(f) c ^ x B 3 for every
0 ̂  t < 1 is shown in figure 1. For ( = 0we have the strip D0- For a small t let I& (t)

Xl

FIGURE 1
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describe a small circle near 7^(0) when <t> changes from 0 to 2TT\ For larger /s the
circles are larger, and the last one corresponding to t — 1 coincides with the equator in
the plane (xi, x2). Observe that the strip D2 is twisted in the plane {x\, x2). Since the
codimension is 2 and the manifold is orientable, the normal bundle is trivial [6] and
there exist two non-zero vector fields v\{t) and v2(t) normal to D,. Let v(t, <f>) be the
restriction of Vi(t) to the middle line of £>,. The pair I^t) and v(t, (j>) defines an
oriented circle S#r, in </> xB 3 . We obtain a 2-torus for each /, the last one being the

image of the first one under the matrix I I. The lemma is proved. D

Of course, the same statement is true for the matrix I j . Thus, there exists a

deformation T2 in R2 which transforms To into its image under the action of f I.

Consider now the manifold F = {txT2}, 0 < ? < l , (lying in R5 = RxR4. It has
codimension 2; therefore, the normal bundle is trivial [6] and the manifold FxS1 =
{txT2 xS1} is also embedded in RxR4. Any torus Tm can be embedded in Rm+1.
Hence, there is an embedding of F x T " " 5 = (Fx5 1 )xT"" 6 into R5xR"'5 = R".
Thus, there exists a deformation J"~3, i -1 < t < /, of T"~3 in R""1 which transforms
the torus T"~3 into its image under the action of the matrix

O
1 1

where Em is the unit matrix of order m (the last step may be slightly different). The
composition T,"~3', 0 < t < k, of these deformations corresponds to the action of A. If
we assume now that t belongs to a circle S1 of length k and T"~3 belongs to / x B"~l

(where Bn~l is a large ball in R""1), then we have an embedding of the phase space
N"~2 in S1 x Bn~x which, in its turn, is embedded in R". The proposition is proved.

•
(c) Construction of a Bernoulli diffeomorphism of Bn with n-\ non-zero exponents
It follows from the previous section that N"~2 can be embedded in R". Since N"~2 is
orientable, the normal bundle is trivial [6] and there exists an embedding tp of the
product D2xNn~2 in W. Let us assume that tlf{D2x.N"~2)<^B" and consider a
smooth triangulation en, • • •, crm of Bn\if){D2 x Nn~2). Simple induction shows (see
[4]) that there exists a smooth mapping </r0: D

2 x Nn~2 -*Bn such that its image is B"
and the restriction iAo|mt(D2xjv"-2) is a diffeomorphic embedding.

(3.4) PROPOSITION. There exists a Bernoulli diffeomorphism of B" preserving the
Lebesgue measure and havingn-\ non-zero characteristic exponents.

Proof. Consider the following skew product acting on D2xN"~2

f(x,y) = (g(x),ha(x)y),
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where g:D2-*D2 preserves the Lebesgue measure and stops at the boundary with
all derivatives, and a :D2-*R is a non-negative function which is positive at the
centre and equals 0 in a neighbourhood of the boundary dD2. According to § 2, /
preserves the Lebesgue measure, has n — 1 non-zero characteristic exponents and is
Bernoullian. Since g stops at 3D2 with all derivatives so does / at d(D2 x Nn~2), and
the topological construction in § 3(a), (b) implies that the diffeomorphism /i =
</fo0/°</'o1 acting on B" has all required properties, except that it does not preserve
the Lebesgue measure. However, the invariant measure for /i has smooth positive
density and an argument from [4] (see proposition 1.2) shows that there exists a
diffeomorphism i/fi:Bn-*B" such that fi = ^i°f°^il preserves the Lebesgue
measure. The proposition is proved. •

(3.5) THEOREM. For every smooth compact manifold Q", n > 5, there is a diffeomor-
phism y:Q"-*Q" which preserves the Riemannian volume, has n—l non-zero
characteristic exponents and is Bernoullian.

Proof. Katok showed in [4] (see proposition 1.2) that there is a continuous mapping
F:Bn->Qn such that F|intB" is a diffeomorphic embedding, F(B") = Q", the image
of the boundary has measure 0 and the image of the Lebesgue measure on B" is the
Riemannian volume on Q". It follows that y = F°f2°F~l has all required properties.
The theorem is proved. •

I wish to thank W. Neumann for useful discussions. I am also grateful to the
University of Warwick and to the Hebrew University of Jerusalem where this paper
was written. This research was supported by NSF Grant No. MCS79-03046.
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