ALMOST FIXED POINT AND BEST APPROXIMATIONS THEOREMS IN *H*-SPACES

O. HADŽIĆ

Using the methods of KKM theory, almost fixed point and best approximations theorems in H-spaces are proved.

1. INTRODUCTION

The notion of an H-space was introduced by Bardaro and Ceppitelli in [1] and since 1988, many results from Nonlinear Functional Analysis in such spaces have been obtained [1, 2, 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 18].

In this paper we shall introduce some generalisations of the Zima condition [8, 9, 10]) on a subset of an *H*-space. Some fixed point and almost fixed point theorems for single-valued and multi-valued mappings $f: K \to 2^X$, where X is a not necessarily locally convex topological vector space and K satisfies the Zima condition, have been proved in [8, 9, 10].

2. PRELIMINARIES

Let A be a subset of a topological space X. By 2^A we denote the family of all nonempty subsets of A and by $\mathcal{F}(A)$ the family of all nonempty finite subsets of A.

In [1] the following two definitions are given.

DEFINITION 1. A pair $(X, \{\Gamma_A\})$ is said to be an *H*-space if X is a topological space and $\{\Gamma_A\}_{A \in \mathcal{F}(X)}$ is a given family of contractible subsets Γ_A of X, such that $A \subset B \subset X$ implies $\Gamma_A \subset \Gamma_B$.

DEFINITION 2. A nonempty subset D of an H-space $(X, \{\Gamma_A\})$ is called Hconvex if for each $A \in \mathcal{F}(D), \Gamma_A \subset D$.

We shall introduce a condition of generalised Zima type in the following way.

DEFINITION 3. Let $(X, \{\Gamma_A\})$ be an *H*-space with a uniformity \mathcal{V} and let *K* be a nonempty subset of *X*. We say that *K* is of generalised Zima type if for every

Received 27 July 1995

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

 $V \in \mathcal{V}$ there exists $U \in \mathcal{V}$ such that for every $D \in \mathcal{F}(K)$ and every H-convex subset M of K the following implication holds:

(1)
$$M \cap U(z) \neq \emptyset$$
, for every $z \in D \Rightarrow M \cap V(u) \neq \emptyset$, for every $u \in \Gamma_D$.

REMARK. If K = X and U = V, for every $V \in V$, then X is of generalised Zima type if X is a l. c. H-space in the sense of [4].

EXAMPLE. Let X be a topological vector space with a fundamental system of neighbourhoods of zero \mathcal{V} and let $K \subset X$ be of Zima type, that is, for every $V \in \mathcal{V}$ there exists $U \in \mathcal{V}$ such that

$$co(U \cap (K-K)) \subseteq V,$$

where co is the convex hull operation.

We shall prove that (2) implies (1).

Let (2) hold and $D \in \mathcal{F}(K)$ and $M \subseteq K$, where M is convex. Suppose that

(3)
$$M \cap (z+U) \neq \emptyset$$
, for every $z \in D$.

If $D = \{z_1, z_2, \ldots, z_n\}$, it follows from (3) that there exists $\{v_1, v_2, \ldots, v_n\} \subseteq M$ such that

 $v_i \in M \cap (z_i + U), i \in \{1, 2, \ldots, n\}.$

Hence, there exists $\{w_1, w_2, \ldots, w_n\} \subseteq U$ such that $v_i = z_i + w_i, i \in \{1, 2, \ldots, n\}$. If $u \in \Gamma_D = coD$ then

$$u=\sum_{i=1}^n\lambda_i z_i, \ \lambda_i \ge 0, \ i\in\{1,\,2,\,\ldots,\,n\}, \ \sum_{i=1}^n\lambda_i=1,$$

and so:

$$\sum_{i=1}^n \lambda_i v_i = \sum_{i=1}^n \lambda_i z_i + \sum_{i=1}^n \lambda_i w_i \in u + co(U \cap (K-K)) \subseteq (u+V) \cap M.$$

From this it follows that $M \cap (u+V) \neq \emptyset$, for every $u \in coD$.

Now, we shall give an example of a subset of Zima type in a non locally convex topological vector space.

Let S(0, 1) be the space of all the equivalence classes of real measurable functions on [0, 1], and for every $\tilde{x} \in S(0, 1)$ let

$$\|\widetilde{x}\| = \int_0^1 \frac{|x(t)|}{1+|x(t)|} \mu(dt), \ \{x(t)\} \in \widetilde{x}.$$

Then $\|\cdot\|$ is a paranorm ($\|\cdot\|$ is not homogeneous) and S(0, 1) is a non locally convex topological vector space in which the fundamental system of neighbourhoods of zero is given by the family $\mathcal{V} = \{V_e\}_{e>0}$ where

$$V_{\varepsilon} = \{x; \|x\| < \varepsilon\}.$$

Convergence in this topology coincides with convergence in measure.

Let $\alpha > 0$ and $K_{\alpha} \subset S(0, 1)$ be defined by

$$K_{\boldsymbol{lpha}} = \{ \widetilde{\boldsymbol{x}}; \ \widetilde{\boldsymbol{x}} \in S(0, 1); \ |\boldsymbol{x}(t)| \leqslant \boldsymbol{\alpha}, \ t \in [0, 1] \}.$$

It can be shown that for every $s \in [0, 1]$ and every $\tilde{x}, \tilde{y} \in K_{\alpha}$:

(4)
$$\|s(\widetilde{x}-\widetilde{y})\| \leq (1+2\alpha)s \|\widetilde{x}-\widetilde{y}\| = C(K_{\alpha})s \|\widetilde{x}-\widetilde{y}\|,$$

where $C(K_{\alpha}) = 1 + 2\alpha > 1$. From (4) it follows that

$$co(V_{\varepsilon/(C(K_{\alpha}))} \cap (K_{\alpha} - K_{\alpha})) \subset V_{\varepsilon}$$
, for every $\varepsilon > 0$

which means that K_{α} is of Zima type, for every $\alpha > 0$.

3. An almost fixed point theorem

If $(X; \{\Gamma_A\})$ is an *H*-space with uniformity $\mathcal{V}, K \subset X$ and $F: K \to 2^X$ then *F* has a *V*-almost point $(V \in \mathcal{V})$ if there exists $y \in K$ such that

 $F(y) \cap V(y) \neq \emptyset.$

THEOREM 1. Let $(X; \{\Gamma_A\})$ be an *H*-space with uniformity \mathcal{V} and let *K* be a nonempty, convex and precompact subset of *X*. Let $F: K \to 2^X$ be a lower semicontinuous mapping such that $F(x) \cap K \neq \emptyset$ for every $x \in K$, and F(x) is *H*-convex for every $x \in K$. If $K \cup F(K)$ is of generalised Zima type then *F* has a *V*-almost fixed point, for every $V \in \mathcal{V}$.

PROOF: Let $V \in \mathcal{V}$ and $U \in \mathcal{V}$ be such that (1) holds for every $D \in \mathcal{F}(K \cup F(K))$ and every *H*-convex subset $M \subset K \cup F(K)$. We shall suppose that every $V \in \mathcal{V}$ is open. For every $x \in K$ let

$$G(x) = \{y; y \in K, F(y) \cap U(x) = \emptyset\}.$$

Since F is lower semicontinuous and U(x) is open it follows that G(x) is closed for every $x \in K$. From the precompactness of K it follows that there exists $D_1 \in \mathcal{F}(K)$ such that

(5)
$$K \subseteq \bigcup_{z \in D_1} U(z).$$

Since for every $x \in K$, $F(x) \cap K \neq \emptyset$, it follows from (5) that $F(x) \cap \left(\bigcup_{z \in D_1} U(z)\right) \neq \emptyset$.

Hence $\bigcap_{z \in D_1} G(z) = \emptyset$. From this we conclude that there exists $D_2 \subset D_1$ such that

$$\Gamma_{D_2} \not\subseteq \bigcup_{z \in D_2} G(z).$$

This means that there exists $y \in \Gamma_{D_2}$ such that $y \notin G(z)$, for every $z \in D_2$, this means that

$$F(y) \cap U(z) \neq \emptyset$$
, for every $z \in D_2$.

Since $F(y) \subseteq K \cup F(K)$ and $K \cup F(K)$ is of generalised Zima type, it follows that $F(y) \cap V(y) \neq \emptyset$, since $y \in \Gamma_{D_2}$. Hence y is a V-almost fixed point for F.

4. A BEST APPROXIMATION THEOREM

In this part of the paper we suppose that $(X; \{\Gamma_A\})$ is a metrisable *H*-space with metric *d*.

If $\emptyset \neq K \subset X$ and $F: K \rightarrow 2^X$ we say that F satisfies the Z_{δ} -condition on K if for every $y \in K$ and every $\varepsilon > 0$:

(6)
$$co(L(F(y), \delta(\varepsilon)) \cap K) \subset L(F(y), \varepsilon)$$

where $\delta: [0, \infty) \to [0, \infty)$ and for $M \subset X$, r > 0

$$L(M, r) = \{x; x \in X, d(x, M) < r\}.$$

EXAMPLE 2. Let (X, || ||) be a paranormed space, $\emptyset \neq K \subset X$, $F: K \to 2_{co}^X$ and suppose there exists C > 0 such that for every $s \in [0, 1]$

(7)
$$||s(u-v)|| \leq Cs ||u-v||, \text{ for every } u \in K, v \in F(K).$$

We shall prove that (7) implies (6) for $\delta(\varepsilon) = \varepsilon/C$. Let $z \in co(L(F(y), \delta(\varepsilon)) \cap K)$. This means that there exists $\{x_1, x_2, \ldots, x_n\} \in L(F(y), \delta(\varepsilon)) \cap K$ such that $z = \sum_{i=1}^n \lambda_i x_i$, $\lambda_i \ge 0, i \in \{1, 2, \ldots, n\}, \sum_{i=1}^n \lambda_i = 1$.

Hence $x_i \in K$ and $d(x_i, F(y)) < \delta(\varepsilon)$, for every $i \in \{1, 2, ..., n\}$. Hence, there exists $v_i \in F(y)$, $i \in \{1, 2, ..., n\}$ such that $||x_i - v_i|| < \delta(\varepsilon)$, for every $i \in \{1, 2, ..., n\}$.

Then (7) implies

$$\left\|\sum_{i=1}^{n} \lambda_{i} x_{i} - \sum_{i=1}^{n} \lambda_{i} v_{i}\right\| \leq C \sum_{i=1}^{n} \lambda_{i} \|x_{i} - v_{i}\| < C \cdot \frac{\varepsilon}{C} = \varepsilon.$$

Since F(y) is convex, $\sum_{i=1}^{n} \lambda_i v_i \in F(y)$ and so $d(z, F(y)) \leq \left\| y - \sum_{i=1}^{n} \lambda_i v_i \right\| < \varepsilon$, which means that $z \in L(F(y), \varepsilon)$.

EXAMPLE 3. If (X, d, W) is a Takahashi convex metric space (as defined by Takahashi in [15]) with continuous W and

(a)
$$d(W(x_1, x_2, \lambda), W(z_1, z_2, \lambda)) \leq \lambda d(x_1, z_1) + (1 - \lambda) d(x_2, z_2)$$

then for any $\{x_1, x_2, \ldots, x_n\} \subset X$, any $y \in co_W\{x_1, x_2, \ldots, x_n\}$ and any W-convex set A:

(8)
$$d(y, A) \leq \min_{1 \leq i \leq n} d(x_i, v_i)$$

for arbitrary $v_i \in A$ $(i \in \{1, 2, \ldots, n\})$, see [11].

In this case (6) holds for $\delta(\varepsilon) = \varepsilon$, for every $\varepsilon > 0$. Indeed if M is an arbitrary convex set in X then $L(M, \varepsilon)$ is a convex set as well. Suppose that $x_i \in L(M, \varepsilon)$, $i \in \{1, 2, ..., n\}$. Then $d(x_i, M) < \varepsilon$, for every $i \in \{1, 2, ..., n\}$ and so there exists $v_i \in M$, $i \in \{1, 2, ..., n\}$ such that $d(x_i, v_i) < \varepsilon$, $i \in \{1, 2, ..., n\}$. From (8) it follows that for every $y \in cow\{x_1, x_2, ..., x_n\}$:

$$d(y, M) < \epsilon$$

and so $y \in L(M, \varepsilon)$, which means that $L(M, \varepsilon)$ is a W-convex set.

In the proof of the next theorem we shall use the following result of Horvath [12]: Let (M, d) be a complete metric space and let $\{F_i\}_{i \in I}$ be a family of closed subsets in M. If the family $\{F_i\}_{i \in I}$ has the finite intersection property and $\inf_{i \in I} \alpha(F_i) = 0$, where α is the Kuratowski measure of noncompactness, then $\bigcap_{i \in I} F_i$ is compact and nonempty.

THEOREM 2. Let $(X; \{\Gamma_A\})$ be a metrisable *H*-space with metric $d, \emptyset \neq M$ an *H*-convex and complete subset of *X*, and let $F: M \to \mathcal{K}(X)$ (the family of all nonempty *H*-convex and compact subsets of *X*) be a continuous mapping which satisfies the Z_{δ} -condition on *M*, where δ is continuous and

(9)
$$\inf_{x\in M} \alpha[\{y; y\in M, \,\delta(d(y, F(y)))\leqslant d(x, F(y))\}]=0.$$

Then there exists $y_0 \in M$ such that

$$\delta(d(y_0, F(y_0))) \leqslant \inf_{x \in M} d(x, F(y_0)).$$

PROOF: Let G(x), $x \in M$, be defined in the following way:

$$G(x) = \{y; y \in M, \delta(d(y, F(y))) \leq d(x, F(y))\}.$$

We shall prove that G is an H-KKM mapping, that is, that for every $D = \{x_1, x_2, \dots, x_n\} \subseteq M$

(10)
$$\Gamma_D \subseteq \bigcup_{z \in D} G(z).$$

Suppose that $\Gamma_D \not\subseteq \bigcup_{z \in D} G(z)$. Then there exists $y \in \Gamma_D$ such that $y \notin G(x_i)$ for every $i \in \{1, 2, ..., n\}$. This means that

$$\delta(d(y, F(y))) > d(x_i, F(y)), ext{ for every } i \in \{1, 2, \ldots, n\},$$

and so $x_i \in L(F(y), \delta(d(y, F(y)))) \cap M$, for every $i \in \{1, 2, ..., n\}$. This implies that

$$egin{aligned} y \in co(L(F(y),\,\delta(d(y,\,F(y))))\cap M)\ &\subset L(F(y),\,d(y,\,F(y))) \end{aligned}$$

which means that d(y, F(y)) < d(y, F(y)). This is a contradiction. Hence (10) holds and G is an H-KKM mapping.

In order to prove that G(x) is closed for every $x \in M$ we shall prove that the mapping $y \mapsto \delta(d(y), F(y))$ $(y \in M)$ is lower semicontinuous and for every $x \in M$, the mapping $y \mapsto d(x, F(y))$ is upper semicontinuous. Let $\gamma > 0$ and

$$P_{\boldsymbol{\gamma}} = \{y; y \in M, \, \delta(d(y, F(y))) > \boldsymbol{\gamma}\}$$

 $Q_{\boldsymbol{\gamma}} = \{y; y \in M, \, d(x, F(y)) < \boldsymbol{\gamma}\}.$

We prove that P_{γ} and Q_{γ} are open.

Since $y \mapsto (y, F(y))$ is upper semicontinuous and

$$P_{\gamma} = \{y; y \in M, (y, F(y)) \subseteq \{(z, v); (z, v) \in M \times X; \delta(d(z, v)) > \gamma\}\}$$

it follows that P_{γ} is open.

Analogously, since F is lower semicontinuous and

$$Q_{\boldsymbol{\gamma}} = \{y; \ y \in M, \ F(y) \cap \{v; \ v \in X, \ d(x, v) < \gamma\} \neq \emptyset\}$$

therefore Q_{γ} is open.

Hence G(x) is closed, for every $x \in M$, and since G is an H-KKM mapping it follows that $\{G(x)\}_{x \in M}$ has the finite intersection property. From (9) it follows that $\bigcap_{x \in M} G(x) \neq \emptyset$. If $y_0 \in \bigcap_{x \in M} G(x)$ then

$$\delta(d(y_0, F(y_0))) \leqslant \inf_{x \in M} d(x, F(y_0)).$$

Ο

COROLLARY 1. Let (X, d, W) be a Takahashi convex metric space with continuous W such that (a) holds. Let $\emptyset \neq M$ be a convex and complete subset of X and let $F: M \to \mathcal{K}(X)$ be a continuous mapping such that

$$\inf_{x\in M} \alpha[\{y; y\in M, d(y, F(y))\leqslant d(x, F(y))\}]=0.$$

Then there exists $y_0 \in M$ such that

$$d(y_0, F(y_0)) = \inf_{x \in M} d(x, F(y_0)).$$

References

- C. Bardaro and R. Ceppitelli, 'Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities', J. Math. Anal. Appl. 132 (1988), 484-490.
- [2] S.S. Chang and L. Yang, 'Section theorems on H-spaces with applications', J. Math. Anal. Appl. 179 (1993), 214-231.
- X.P. Ding, 'An existence theorem for maximizable H-quasiconcave functions', Acta Math. Sinica 36 (1993), 273-279.
- X.P. Ding, 'Equilibrium existence theorems of abstract economics in H-spaces', Indian J. Pure Appl. Math. 25 (1994), 303-317.
- [5] X.P. Ding and K-K. Tan, 'Generalizations of KKM theorem and applications to best approximations and fixed point theorems', Southeast Asian Bull. Math. 17 (1993), 139-150.
- [6] X.P. Ding, W.K. Kim and K-K. Tan, 'A new minimax inequality on H-spaces with applications', Bull. Austral. Math. Soc. 41 (1990), 457-473.
- X.P. Ding, W.K. Kim and K-K. Tan, 'Applications of a minimax inequality on H-spaces', Bull. Austral. Math. Soc. 41 (1990), 475-485.
- [8] O. Hadžić, 'Some fixed point and almost fixed point theorems for multivalued mappings in topological vector spaces', Nonlinear Anal. Theory, Methods, Appl. 5 (1981), 1009-1019.
- [9] O. Hadžić, 'Fixed point theorems in not necessarily locally convex spaces', in Lecture Notes in Mathematics 943 (Springer Verlag, Berlin, Heidelberg, New York, 1982), pp. 118-130.
- [10] O. Hadžić, 'Some properties of measures of noncompactness in paranormed spaces', Proc. Amer. Math. Soc. 102 (1988), 843-849.
- [11] O. Hadžić, 'On best approximations for multivalued mappings in pseudoconvex metric spaces', Univ.u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 24 (1994), 1-12.
- [12] C. Horvath, 'Measure of non-compactness and multivalued mappings in complete metric topological vector spaces', J. Math. Anal. Appl. 180 (1985), 403-408.
- [13] H.M. Li and X.P. Ding, 'Versions of the KKM theorem in H-spaces and their applications', Sichuan Shifan Dezue Xuebao Ziran Kezue Ban 16 (1993), 21-27.

- [14] S. Park, 'The Brouwer and Schauder fixed point theorems for spaces having certain contractible subsets', Bull. Korean Math. Soc. 30 (1993), 83-89.
- [15] W.A. Takahashi, 'A convexity in metric spaces and nonexpansive mappings', I. Kodai Math. Sem. Rep. 29 (1977), 62-70.
- [16] A. Tarafdar, 'A fixed point theorem in H-spaces and related results', Bull. Austral. Math. Soc 42 (1990), 133-140.
- [17] S.S. Zhang, S.K. Kang and L. Yang, 'Coincidence point theorems for set-valued mappings in H-spaces and minimax inequalities', J. Chengdu Univ. Sci. Tech. 3 (1993), 57-61.

University of Novi Sad Department of Mathematics 21000 Novi Sad Trg Dositeja Obradovica 4 Yugoslavia