ON THE OCCURRENCE OF LARGE GAPS BETWEEN PRIME NUMBERS

by R. J. COOK

(Received 13 July, 1977)

1. Introduction. Let p_{n} denote the nth prime number. Erdös asked whether

$$
\begin{equation*}
\sum_{\substack{p_{n}<x \\ p_{n+1}-p_{n}>X^{1 / 2+}}}\left(p_{n+1}-p_{n}\right)<X^{c} \tag{1}
\end{equation*}
$$

for some constant $c<1$. Moreno [7] obtained a somewhat weaker result and subsequently Wolke [10] proved that

$$
\sum_{\substack{p_{n}<x \\ p_{n}+1-p_{n}>p_{n}^{1 / 2}}}\left(p_{n+1}-p_{n}\right) \ll X^{29 / 30}
$$

As long ago as 1943 Selberg [8] proved that, if the Riemann Hypothesis is true, then (1) holds with $c=1 / 2+\eta$ for any $\eta>0$. More recently Warlimont [9] obtained analogous results for sums with a condition $p_{n+1}-p_{n}>p_{n}^{\phi}$ where $\phi<1 / 2$, but his method does not appear to give a computable exponent of X.

Theorem. For any $\varepsilon>0$

$$
\begin{equation*}
\sum_{\substack{p_{n}<X \\ p_{n}+1-p_{n}>p_{n} 1 / 2}}\left(p_{n+1}-p_{n}\right) \ll X^{85 / 98+e} \tag{2}
\end{equation*}
$$

The proof follows similar lines to Wolke's, but uses sharper zero-density estimates for the Riemann ζ-function.
2. Preliminaries. Let

$$
\psi(x)=\sum_{p^{\prime} \leq x} \log p
$$

Then from the explicit formula for $\psi(x)$ (see [1, p. 120] with $T=x^{\alpha}$) we have

$$
\begin{equation*}
\psi(x)-x=-\sum_{|\gamma| \leq x^{\alpha}} \frac{x^{\rho}}{\rho}+O\left(x^{1-\alpha}(\log x)^{2}\right) \tag{3}
\end{equation*}
$$

for $x \geq 9$ and any constant $\alpha>1 / 2$, where the summation is over the non-trivial zeros $\rho=\beta+i \gamma$ of the Riemann ζ-function.

We take

$$
\begin{equation*}
\alpha=\frac{111}{196}, \quad U=3 x^{1 / 2}, \quad e^{\delta}=1+\frac{1}{U} \tag{4}
\end{equation*}
$$

Glasgow Math. J. 20 (1979) 43-48.

R. J. COOK

and, choosing $\sigma_{0}>85 / 98$ (but close to $85 / 98$), we put

$$
\begin{equation*}
\Delta(y)=\psi\left(y+\frac{y}{U}\right)-\psi(y)-\frac{y}{U}+\sum \frac{\left(e^{\delta \rho}-1\right)}{\rho} y^{\rho}, \tag{5}
\end{equation*}
$$

where $x<y \leq 2 x$ and the summation is over the zeros of $\zeta(s)$ in the region $|\gamma| \leq x^{\alpha}$, $\sigma_{0} \leq \beta \leq 1$. Then

$$
\begin{equation*}
\Delta(y) \ll\left|\sum \frac{\left(e^{\delta \rho}-1\right)}{\rho} y^{\rho}\right|+x^{1-\alpha} \log ^{2} x \tag{6}
\end{equation*}
$$

where the summation is over zeros in the region $|\gamma| \leq x^{\alpha}, 0<\beta<\sigma_{0}$.
Following Moreno [7, Lemma 2], we obtain

$$
\begin{equation*}
\int_{x}^{2 x}|\Delta(y)|^{2} d y \ll \frac{x(\log x)^{2}}{U^{2}} \sum x^{2 \beta}+x^{3-2 \alpha}(\log x)^{4} \tag{7}
\end{equation*}
$$

where the summation conditions are the same as in (6).
3. Estimation of the integral. Let $N(\sigma, T)$ denote the number of zeros of $\zeta(s)$ in the rectangle $\sigma \leq \beta \leq 1,|\gamma| \leq T$ and write $N(T)$ for $N(0, T)$.

Lemma 1.

$$
\begin{equation*}
N(T) \ll T \log T \tag{8}
\end{equation*}
$$

(See, for example, [2, Chapter 15].)
Integrating we have

$$
\begin{aligned}
\sum_{\substack{|\gamma| \leq x^{\alpha} \\
0 \leq \beta \leq \sigma_{0}}}\left(x^{2 \beta}-1\right) & =2 \sum_{\substack{|\gamma| \leq x^{\alpha} \\
0 \leq \beta \leq \sigma_{0}}} \int_{0}^{\beta} x^{2 \sigma} \log x d \sigma \\
& =2 \int_{0}^{\sigma_{0}} \sum_{\substack{|\gamma| \leq x^{\alpha} \\
\sigma_{0} \geq \beta \geq \sigma}} x^{2 \sigma} \log x d \sigma \\
& \ll \int_{0}^{\sigma_{0}} x^{2 \sigma} N\left(\sigma, x^{\alpha}\right) \log x d \sigma
\end{aligned}
$$

so, from Lemma 1,

$$
\begin{equation*}
\sum_{\substack{|\gamma| \leq x^{\alpha} \\ 0 \leq \beta \leq \sigma_{0}}} x^{2 \beta} \ll x^{1+\alpha} \log x+\int_{1 / 2}^{\sigma_{0}} x^{2 \sigma} N\left(\sigma, x^{\alpha}\right) \log x d \sigma \tag{9}
\end{equation*}
$$

Lemma 2.

$$
\begin{equation*}
N(\sigma, T) \ll T^{3(1-\sigma) /(2-\sigma)}(\log T)^{5} \tag{10}
\end{equation*}
$$

uniformly for $1 / 2 \leq \sigma \leq 1$.
(This is due to Ingham [5].)

Lemma 2 shows that the contribution to the integral in (9) coming from the interval $1 / 2 \leq \sigma \leq 3 / 4$ is

$$
\begin{align*}
& <(\log x)^{6} \max _{1 / 2 \leq \sigma \leq 3 / 4} x^{2 \sigma+3 \alpha(1-\sigma) /(2-\sigma)} \\
& <(\log x)^{6} x^{3 / 2+3 \alpha / 5} \ll x^{3-2 \alpha} . \tag{11}
\end{align*}
$$

Lemma 3.

$$
\begin{equation*}
N(\sigma, T) \ll T^{3(1-\sigma) /(3 \sigma-1)}(\log T)^{44} \tag{12}
\end{equation*}
$$

uniformly in $3 / 4 \leq \sigma \leq 1$.
(This is due to Huxley [3].)
We apply Lemma 3 on the interval $\left[\frac{3}{4}, \frac{5}{6}\right]$ to give a contribution to the integral which is

$$
\begin{align*}
& <(\log x)^{45} \max _{3 / 4 \leq \sigma \leq 5 / 6} x^{2 \sigma+3 \alpha(1-\sigma) /(3 \sigma-1)} \\
& \ll x^{5 / 3+\alpha / 3}(\log x)^{45} \ll x^{3-2 \alpha} \tag{13}
\end{align*}
$$

Lemma 4. For any $\eta>0$,

$$
\begin{equation*}
N(\sigma, T) \ll T^{48(1-\sigma) / 37(2 \sigma-1)+\eta} \tag{14}
\end{equation*}
$$

uniformly in $61 / 74 \leq \sigma \leq 37 / 42$, where the implicit constant depends on η.
(This is due to Huxley [4].)
Applying Lemma 4 on the interval $\left[\frac{5}{6}, \sigma_{0}\right]$, at $\sigma=85 / 98$ we have

$$
2 \sigma+48 \alpha(1-\sigma) / 37(2 \sigma-1)=3-2 \alpha=85 / 98+1
$$

so, choosing σ_{0} close enough to $85 / 98$, the contribution to the integral coming from the interval $\left[\frac{5}{6}, \sigma_{0}\right.$] is

$$
\begin{equation*}
\ll x^{3-2 \alpha+\varepsilon} . \tag{15}
\end{equation*}
$$

Combining these estimates, for any $\varepsilon>0$ and σ_{0} satisfying $85 / 98<\sigma_{0} \leq 85 / 98+\delta(\varepsilon)$,

$$
\begin{equation*}
\int_{1 / 2}^{\sigma_{0}} x^{2 \sigma} N\left(\sigma, x^{\alpha}\right) \log x d \sigma \ll x^{3-2 \alpha+\varepsilon} \tag{16}
\end{equation*}
$$

and so, from (7) and (9), and recalling that $U=3 x^{1 / 2}$,

$$
\begin{equation*}
\int_{x}^{2 x}|\Delta(y)|^{2} d y \ll x^{3-2 \alpha+\varepsilon} \tag{17}
\end{equation*}
$$

4. Estimation of a sum. We break the sum

$$
\sum \frac{\left(e^{\delta \rho}-1\right)}{\rho} y^{\rho}
$$

occurring in the definition of $\Delta(y)$ into 4 parts, and observe that

$$
\frac{\left(e^{\delta \rho}-1\right)}{\rho} y^{\rho} \ll \frac{y^{\beta}}{U}
$$

Using Lemma 13 and

$$
\sum_{\substack{|\gamma| \leq x^{\alpha} \\ \sigma_{0} \leq \beta \leq 1}} x^{\beta} \ll \int_{\sigma_{0}}^{1} x^{\sigma} N\left(\sigma, x^{\alpha}\right) \log x d \sigma,
$$

we see that those zeros in the strip $\sigma_{0} \leq \beta \leq 37 / 42$ make a contribution

$$
\begin{align*}
& \ll U^{-1} \log x \max x^{\beta+48 \alpha(1-\beta) / 37\left(2 \sigma_{0}-1\right)+\eta} \\
& <U^{-1} x^{1-\theta} \tag{18}
\end{align*}
$$

for some $\theta>0$, as η can be taken arbitrarily small.
Lemma 5. For any $\eta>0$,

$$
\begin{equation*}
N(\sigma, T) \ll x^{3(1-\sigma) / 2 \sigma+\eta} \tag{19}
\end{equation*}
$$

uniformly in $37 / 42 \leq \sigma \leq 1$.
(This is due to Huxley [4].)
Applying Lemma 5 on the interval $37 / 42 \leq \beta \leq 23 / 24$, we obtain a contribution

$$
\begin{align*}
& \ll U^{-1} \log x \max x^{\beta+63 \alpha(1-\beta) / 37+\eta} \\
& <U^{-1} x^{1-\theta} \tag{20}
\end{align*}
$$

for some $\theta>0$.
Lemma 6.

$$
\begin{equation*}
N(\sigma, T) \ll T^{84(1-\sigma) / 55}(\log T)^{50} \tag{21}
\end{equation*}
$$

uniformly in the interval [23/24, 1].
(This follows immediately from Corollary 12.4 of Montgomery [6].)
Lemma 7. For some positive constant c, we have $\zeta(s) \neq 0$ in the region

$$
\begin{equation*}
\sigma=\operatorname{re} s>1-\frac{c}{(\log \tau)^{2 / 3}(\log \log \tau)^{1 / 3}}, \quad \tau=|\lim s|+2 \tag{22}
\end{equation*}
$$

(See [6, Corollary 11, 4].)
Taking, for some suitable c,

$$
\sigma_{1}=1-\frac{c}{(\log x)^{2 / 3}(\log \log x)^{1 / 3}}
$$

and using Lemma 6 on the interval $\left[23 / 24, \sigma_{1}\right]$ we have a contribution

$$
\begin{align*}
& \ll U^{-1} \log x \max x^{\beta+84 \alpha(1-\beta) / 55}(\log x)^{50} \\
& <x / U \log x \tag{23}
\end{align*}
$$

from the remaining zeros.
5. Proof of the theorem. Let x be large and let p_{n}, p_{n+1} be two consecutive primes satisfying

$$
x<p_{n}<p_{n+1} \leq 2 x \text { and } p_{n+1}-p_{n}>p_{n}^{1 / 2}
$$

Choosing y so that

$$
p_{n}<y \leq p_{n}+\frac{1}{3}\left(p_{n+1}-p_{n}\right)=q_{n}
$$

say, we have $y+y / U<p_{n+1}$ and therefore

$$
\begin{align*}
|\Delta(y)| & =\left|\psi\left(y+\frac{y}{U}\right)-\psi(y)-\frac{y}{U}+\sum \frac{\left(e^{\delta \rho}-1\right)}{\rho} y^{\rho}\right| \\
& =\left|\frac{y}{U}+O\left(\frac{y}{U \log x}\right)\right| \geq \frac{x}{2 U} \gg x^{1 / 2} \tag{24}
\end{align*}
$$

if x is sufficiently large. Then

$$
\int_{p_{n}}^{q_{n}}|\Delta(y)|^{2}, d y \gg x\left(q_{n}-p_{n}\right) \gg x\left(p_{n+1}-p_{n}\right)
$$

Hence

$$
\begin{align*}
\sum_{\substack{x<p_{n}<p_{n+1} \leq 2 x \\
p_{n+1}-1-p_{n}>p_{n} 12}}\left(p_{n+1}-p_{n}\right) & \ll x^{-1} \int_{x}^{2 x}|\Delta(y)|^{2} d y \\
& \ll x^{2-2 \alpha+\varepsilon}=x^{85 / 98+\varepsilon} \tag{25}
\end{align*}
$$

The theorem now follows on summing estimates from the intervals $\left[X / 2^{\nu+1}, X / 2^{\nu}\right]$ for $\nu=0,1, \ldots$.

REFERENCES

1. K. Chandrasekharan, Arithmetical functions (Springer-Verlag, 1970).
2. H. Davenport, Multiplicative number theory (Markham, 1967).
3. M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170.
4. M. N. Huxley, Large values of Dirichlet polynomials II, Acta Arith. 27 (1975), 159-169.
5. A. E. Ingham, On the estimation of $N(\sigma, T)$, Quart. J. Math. Oxford Ser(1) 11 (1940), 291-292.
6. H. L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics No. 227 (Springer-Verlag, 1971).
7. C. J. Moreno, The average size of gaps between primes, Mathematika 21 (1974), 96-100.
8. A. Selberg, On the normal density of primes in small intervals and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), 1-19.
9. R. Warlimont, Uber die Haufigkeit grosser Differenzen konsekutiver Primzahlen, Monatsh. Math. 83 (1977), 59-63.
10. D. Wolke, Grosse Differenzen zwischen aufeinanderfolgenden Primzahlen, Math. Ann. 218 (1975), 269-271.

University of Sheffield
Sheffield S10 2TN

