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Abstract. We show that every countable group with infinite finite conjugacy (FC)-center
has the Schmidt property, that is, admits a free, ergodic, measure-preserving action on
a standard probability space such that the full group of the associated orbit equivalence
relation contains a non-trivial central sequence. As a consequence, every countable, inner
amenable group with property (T) has the Schmidt property.
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1. Introduction
Let G be a countable group. Throughout the paper, we equip each countable group with
the discrete topology unless stated otherwise. We say that G is inner amenable if there
exists a sequence (ξn) of non-negative unit vectors in �1(G) such that, for each g ∈ G,
we have ‖ξgn − ξn‖1 → 0 and ξn(g) → 0, where the function ξgn on G is defined by
ξ
g
n (h) = ξn(ghg

−1) for h ∈ G. Inner amenability was introduced by Effros [Ef] as a
necessary condition for the group von Neumann algebra of G to have property Gamma
whenG satisfies the infinite conjugacy class (ICC) condition. Inner amenability also arises
in the context of p.m.p. actions of G. For brevity, by a p.m.p. action of G we mean a
measure-preserving action of G on a standard probability space, where ‘p.m.p.’ stands
for ‘probability-measure-preserving’. Let us say that a free ergodic p.m.p. action of G is
Schmidt if the associated orbit equivalence relation admits a non-trivial central sequence in
its full group. We say thatG has the Schmidt property ifG has a free ergodic p.m.p. action
which is Schmidt. While the Schmidt property of G implies inner amenability of G [JS,
pp. 113], the converse remains an open problem which was first posed by Schmidt [Sc,
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Problem 4.6]. Recent advances have led to the resolution of some related long-standing
problems concerning the relationship between inner amenability of groups and various
kinds of central sequences [Ki1, V].

If the functions ξn witnessing the inner amenability of G are further required to be
G-conjugation invariant, that is, they each satisfy ξgn = ξn for all g ∈ G, then an algebraic
constraint is imposed on G. In fact, the existence of such a sequence (ξn) is equivalent to
G having infinite FC-center. The FC-center of G is defined as the subgroup of elements
g ∈ G whose centralizer, denoted by CG(g), is of finite index in G. The FC-center of G is
a normal (in fact, a characteristic) subgroup of G.

In studying the structure of inner amenable groups, the second author [TD] introduced
the AC-center ofG, which is defined as the subgroup of elements g ∈ G for which the quo-
tient groupG/

⋂
h∈G hCG(g)h−1 is amenable. The AC-center ofG is also a characteristic

subgroup ofG and contains the FC-center ofG. IfG has infinite AC-center, thenG is inner
amenable; this follows from the fact that, for each element g in the AC-center ofG, the con-
jugation action ofG on the conjugacy class of g factors through an action of the amenable
group G/

⋂
h∈G hCG(g)h−1. If G is linear, or, more generally, fulfills a certain chain

condition on its subgroups, then inner amenability of G is equivalent to G having infinite
AC-center; in this case, the AC-center plays a crucial role in describing the structure ofG,
and this resulting structure can, in turn, be used to deduce thatG has the Schmidt property
[TD, Theorems 14 and 15]. However, there are many groups with infinite AC-center or
FC-center that do not satisfy the relevant chain condition, so the results of [TD] do not
apply to these groups. In this paper, we solve Schmidt’s problem for them affirmatively.

THEOREM 1.1. Every countable group with infinite AC-center has the Schmidt property.

In fact, the Schmidt property for groups with infinite AC-center but finite FC-center
follows from the constructions in [TD] (see §3.1). Thus, most of the proof of Theorem 1.1
is devoted to the case of groups with infinite FC-center.

The following corollary is an immediate consequence of Theorem 1.1 because every
inner amenable group with property (T) has infinite FC-center.

COROLLARY 1.2. Every countable, inner amenable group with property (T) has the
Schmidt property.

It is widely known that property (T) is useful for constructing interesting examples
regarding the non-existence of non-trivial central sequences in various contexts (e.g.,
[DV, Ki1, KTD, PV, V]). By contrast, Corollary 1.2 says that there do not exist any
counterexamples to Schmidt’s question among groups with property (T).

As mentioned above, the proof of Theorem 1.1 is reduced to that for a countable groupG
with infinite FC-center. We present two constructions of a free p.m.p. Schmidt action ofG.
The first construction, given throughout §§2–5, stems from analyzing central sequences for
translation groupoids associated with (not necessarily free) p.m.p. actions. This analysis is
of independent interest and yields by-products (Theorems 1.3 and 1.5) which do not follow
from the second construction. The second construction, given in §6, is by way of ultraprod-
ucts of p.m.p. actions. While the first construction splits into cases depending on the struc-
ture ofG, the second construction does not split into cases and is more direct than the first.
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A summary of the first construction. Let us describe some of the ingredients and
by-products of the first construction. The construction is divided into two cases, depending
on whether the FC-center has finite or infinite center. Let G be a countable group with
infinite FC-center R. If R has finite center C, then G admits a (not necessarily free)
profinite action G� (X, μ) such that the quotient group R/C, which is infinite by
assumption, acts freely. This action of R/C leads us to find a central sequence in the full
group of the groupoid G� (X, μ), similarly to the construction of Popa and Vaes [PV]
for residually finite groups with infinite FC-center. We need a further task to conclude that
G has the Schmidt property since the action G� (X, μ) is not necessarily free. We will
return to this point after discussing the other case.

In the other case, the FC-center of G has infinite center. The following construction
is carried out after choosing some infinite abelian normal subgroup A of G contained in
the FC-center of G. The group A is not necessarily the center of the FC-center of G.
We set � = G/A and fix a section of the quotient map from G onto �. The 2-cocycle
σ : � × � → A is then associated. The heart of the construction is to introduce the
groupoid extension

1 → U → Gσ̃ → X � � → 1,

which is defined as follows. For some appropriate compact abelian metrizable group L,
let X be the group of homomorphisms from A into L and let μ be the normalized Haar
measure on X. The conjugation � � A induces the p.m.p. action � � (X, μ). We set
U = X × L and regard it as the bundle over X with fiber L. Let X � � be the translation
groupoid and let (X � �)(2) be the set of composable pairs of X � �. The 2-cocycle
σ̃ : (X � �)(2) → U is then defined by

σ̃ ((τ , g), (g−1τ , h)) = (τ , τ(σ (g, h)))

for τ ∈ X and g, h ∈ � (see [J, Theorem 1.1] for a related construction). This 2-cocycle
σ̃ associates the groupoid Gσ̃ that fits into the above exact sequence. Let G act on X via
the quotient map fromG onto �. We then have a natural homomorphism η : X �G → Gσ̃
such that η(τ , a) = (τ , τ(a)) ∈ U for each τ ∈ X and a ∈ A. A crucial point is that if we
prepare a free p.m.p. action Gσ̃ � (Z, ζ ), then we can let X �G and thusG act on (Z, ζ )
via η, so that the action of A factors through the action of U , which is easily handled since
L is compact. Moreover we can describe the stabilizer of a point of Z in G in terms of
ker η, which is contained in X � A.

Compact groups and their p.m.p. actions are utilized in many constructions of Schmidt
actions such as in [DV, Ki2, Ki3, KTD, PV, TD]. They are useful on the basis of the
following simple fact. For each p.m.p. action K � (X, μ) of a continuous (rather than
compact) group K , each sequence converging to the identity in K also converges to the
identity in the automorphism group of (X, μ) in the weak topology. This weak convergence
is necessary for a sequence in the full group to be central and is also sufficient if the
sequence asymptotically commutes with each element of the acting group G.

Returning to the general set-up, let G be an arbitrary countable group with infinite
FC-center. Independent of whether the FC-center of G has finite or infinite center, the
above construction yields a p.m.p. action G� (W , ω) and a central sequence (Tn) in the
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full group of the translation groupoid G� (W , ω). The sequence (Tn) is non-trivial in
the sense that the automorphism of W induced by Tn is nowhere the identity. We cannot
yet conclude that G has the Schmidt property because the action G� (W , ω) is not
necessarily free.

Let us now simplify the set-up as follows. Let G be a countable group with a normal
subgroup M and a p.m.p. action G� (X, μ) such that M acts on X trivially and the
quotient group G/M acts on X freely. Suppose that the groupoid G := G� (X, μ) is
Schmidt, that is, admits a central sequence (Tn) in its full group such that the automor-
phism of X induced by Tn is nowhere the identity. Under several additional assumptions,
we then construct a free p.m.p. Schmidt action of G as follows. After replacing (Tn) by
another central sequence appropriately, we obtain the product subgroupoid M × R < G
such that R is the groupoid generated by all Tn and is also principal and hyperfinite.
Pick a free p.m.p. action M � (Y , ν), let M × R act on (Y , ν) via the projection from
M × R onto M , and co-induce the action G � (Z, ζ ) from the action M × R � (Y , ν).
Then we have the lift of (Tn) into the translation groupoid G � (Z, ζ ). This lifted
sequence is shown to be central in the full group by using that Tn acts on Y trivially
(see Proposition 2.4 for treatment of this fact in a more general framework). Moreover,
we can naturally define the p.m.p. action G� (Z, ζ ) such that the associated groupoid
G� (Z, ζ ) is identified with G � (Z, ζ ). The action G� (Z, ζ ) is free since the action
M � (Y , ν) is free. Thus we obtain a free p.m.p. Schmidt action of G. This construction
is flexible enough to apply to the more general set-up, and we are able to deduce the
Schmidt property for all groups with infinite FC-center. It also yields the following
by-products.

THEOREM 1.3. (Corollary 2.16) Let G be a countable group and let M be a finite central
subgroup ofG. LetG/M � (X, μ) be a free ergodic p.m.p. action and letG act on (X, μ)
through the quotient map from G onto G/M . Suppose that the translation groupoid G�

(X, μ) is Schmidt. Then G has the Schmidt property.

Remark 1.4. Let G be a countable group and let M be a finite central subgroup of G. It
remains unsolved whether the Schmidt property of G/M implies the Schmidt property of
G [KTD, Question 5.16]. IfG/M has infinite AC-center, thenG also has the same property
and thus has the Schmidt property (see Proposition 3.3 (ii) and related Remark 2.18).

Theorem 1.3 might be used to answer this question affirmatively: if there exists a free
ergodic p.m.p. action G/M � (X, μ) which is Schmidt, along with a non-trivial central
sequence in the full group of (G/M)� (X, μ) which lifts to a central sequence in the full
group ofG� (X, μ), then we can apply Theorem 1.3 and conclude thatG has the Schmidt
property. While this lifting problem of central sequences is unsolved in full generality, we
note that it is solved affirmatively for stability sequences in [Ki4].

A sequence (gn) of elements of a countable groupG is called central if, for each h ∈ G,
gn commutes with h for all sufficiently large n.

THEOREM 1.5. (Corollary 2.17) If a countable group G admits a central sequence
diverging to infinity, then G has the Schmidt property.
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Remark 1.6. Let G be a countable group that admits a central sequence diverging to
infinity. IfG has trivial center, then the Schmidt property forG can be proved immediately
as follows [Ke2, Proposition 9.5]. Let G act on the set G \ {e} by conjugation, which
induces the p.m.p. action of G on the product space X := ∏

G\{e}[0, 1] equipped with the
product measure μ of the Lebesgue measure. Then a central sequence in G gives rise to a
central sequence in the full group ofG� (X, μ), and the actionG� (X, μ) is essentially
free since G has trivial center.

Let G be a countable group with infinite FC-center. Then, given a sequence (gn) in its
FC-center diverging to infinity, each centralizer CG(gn) is of finite index in G, although
the index of CG(gn) in G possibly grows to infinity. In a sense, the gn may become less
and less central in G as n increases. In this case, the above Bernoulli-like action of G via
conjugationG� G \ {e} is not suitable for establishing the Schmidt property, and another
approach must be taken.

1.1. An organization of the paper. In §2, we fix notation and terminology for discrete
p.m.p. groupoids and describe co-induction of p.m.p. actions of discrete p.m.p. groupoids,
extending the co-induction construction for actions of countable groups. As an application,
we deduce the Schmidt property for a countable group G under the assumption that
G admits a (not necessarily free) p.m.p. action G� (X, μ) such that the translation
groupoid G� (X, μ) is Schmidt, together with some additional assumptions. In §3, we
collect elementary properties of groups with infinite AC-center and reduce the proof of
Theorem 1.1 to that for groups with infinite FC-center. Sections 4 and 5 are devoted to
the first proof that groups with infinite FC-center have the Schmidt property. The proof in
these two sections is divided into several cases depending on the existence and structure of
an infinite abelian normal subgroup of G contained in the FC-center of G. An outline of
the proof is given in §3.2. In §3.3, we exhibit examples of groupsG corresponding to each
of the cases considered in §§4 and 5.

In §6, for a countable group with infinite FC-center, we give the second construction of
a free p.m.p. Schmidt action, by way of ultraproducts.

In Appendix A, given an arbitrary countable abelian group A, we present a countable
group with property (T) whose center is isomorphic to A. Our construction relies on the
construction of Cornulier [C] and property (T) of the group SL3(Z[t])� Z[t]3, where Z[t]
is the polynomial ring over Z in one indeterminate t . This result is useful in constructing
interesting examples of groups with infinite FC-center, along with Examples 3.6 and 3.7,
although it is not necessary for proving Theorem 1.1.

Throughout the paper, unless otherwise mentioned, all relations among Borel sets and
maps are understood to hold up to null sets. Let N denote the set of positive integers.

2. Central sequences in translation groupoids
2.1. Groupoids. We fix notation and terminology. Let G be a groupoid. We denote by
G0 the unit space of G and denote by r , s : G → G0 the range and source maps of G,
respectively. For x ∈ G0, we set Gx = r−1(x) and Gx = s−1(x). For a subset A ⊂ G0, we
set GA = r−1(A) ∩ s−1(A). The set GA is then a groupoid with unit space A with respect
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to the product inherited from G. A groupoid G is called Borel if G is a standard Borel space,
G0 is a Borel subset of G and the following maps are all Borel: the range and source maps,
the multiplication map (γ , δ) �→ γ δ defined for γ , δ ∈ G with s(γ ) = r(δ), and the inverse
map γ �→ γ−1. If the range and source maps are further countable-to-one, then G is called
discrete. We mean by a discrete p.m.p. groupoid a pair (G, μ) of a discrete Borel groupoid
G and a Borel probability measure μ on G0 such that

∫
G0 c

r
x dμ(x) = ∫

G0 c
s
x dμ(x), where

crx and csx are the counting measures on Gx and Gx , respectively. The space G is then
equipped with this common measure

∫
G0 c

r
x dμ(x) = ∫

G0 c
s
x dμ(x).

A discrete p.m.p. groupoid is called principal if the map γ �→ (r(γ ), s(γ )) is injective.
Let R be a p.m.p. countable Borel equivalence relation on a standard probability space
(X, μ). Then the pair (R, μ) is naturally a principal discrete p.m.p. groupoid with unit
space R0 = {(x, x) | x ∈ X}, which is simply identified with X itself when there is no
cause for confusion. The range and source maps are given by r(x, y) = x and s(x, y) =
y, respectively, and the multiplication and inverse operations are given by (x, y)(y, z) =
(x, z) and (x, y)−1 = (y, x), respectively. By a discrete p.m.p. equivalence relation on a
standard probability space (X, μ), we mean a p.m.p. countable Borel equivalence relation
on (X, μ) equipped with this structure of a discrete p.m.p. groupoid.

Let (G, μ) be a discrete p.m.p. groupoid. A Borel subset A ⊂ G0 is called G-invariant
if r(Gx) ⊂ A for μ-almost every x ∈ A. We say that (G, μ) is ergodic if each G-invariant
Borel subset A of G0 is μ-null or μ-conull. A local section of G is a Borel map
φ : dom(φ) → G, where dom(φ) is a Borel subset of G0, such that φ(x) ∈ Gx for each
x ∈ dom(φ) and the associated map φ◦ : dom(φ) → G0, given by φ◦ = r ◦ φ, is injective.
Two local sections are identified if their domains and values agree up to a μ-null set.
For two local sections φ : A → G, ψ : B → G, the composition of them is the local
section ψ ◦ φ : (φ◦)−1(φ◦(A) ∩ B) → G defined by (ψ ◦ φ)(x) = ψ(φ◦(x))φ(x). The
inverse of a local section φ : A → G is the local section φ−1 : φ◦(A) → G defined by
φ−1(x) = φ((φ◦)−1(x))−1.

We denote by [G] the group of all local sections φ of G with dom(φ) = G0, and we call
[G] the full group of (G, μ). If the measure μ should be specified, then we denote it by
[(G, μ)]. In fact, the full group is a group such that the product and inverse operations are
given by the composition and inverse, respectively. For φ ∈ [G] and a positive integer n,
let φn denote the n times composition of φ with itself, and let φ−n denote the inverse
of φn. Let φ0 denote the trivial element of [G], that is, the identity map on G0. We
draw attention to distinction between the trivial element φ0 of [G] and the associated
map φ◦ = r ◦ φ.

To each action G� X of a group G on a set X, the translation groupoid G = G�X

is associated as follows. The set of groupoid elements is defined as G = G×X with unit
space {e} ×X, which is identified with X if there is no cause for confusion. The range and
source maps r , s : G → G0 are given by r(g, x) = gx and s(g, x) = x, respectively. The
multiplication and inverse operations are given by (g, hx)(h, x) = (gh, x) and (g, x)−1 =
(g−1, gx), respectively. Suppose that G is a countable group and X is a standard Borel
space equipped with a Borel probability measure μ. If the action G� X is further Borel
and preserves μ, then the pair (G�X, μ) is a discrete p.m.p. groupoid and is denoted by
G� (X, μ). It is also denoted by G�X for brevity if μ is understood from the context.
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If the actionG� (X, μ) is essentially free, that is, the stabilizer of almost every point ofX
is trivial, then the groupoid G� (X, μ) is isomorphic to the associated orbit equivalence
relation {(gx, x) | g ∈ G, x ∈ X} via the map (g, x) �→ (gx, x).

For each action G� X, we similarly define the groupoid X �G such that the set of
groupoid elements is X ×G and the range and source of (x, g) ∈ X ×G are x and g−1x,
respectively. Then X �G is isomorphic to G�X via the map (x, g) �→ (g, g−1x).

Let p : G×X → G be the projection. Then each local section φ of the groupoidG�X

is completely determined by the composed map p ◦ φ : dom(φ) → G. Thus we will abuse
notation and identify φ with p ◦ φ if there is no cause for confusion. The groupG embeds
into [G�X] via the map g �→ φg , where φg : X → G is the constant map with value g.

2.2. Central sequences. Let (G, μ) be a discrete p.m.p. groupoid. A sequence (An) of
Borel subsets of the unit space G0 is called asymptotically invariant for (G, μ) if

μ(T ◦An 	 An) → 0

for every T ∈ [G]. A sequence (Tn) in the full group [G] is called central in [G] if Tn
asymptotically commutes with every S ∈ [G], that is,

μ({x ∈ G0 | (Tn ◦ S)x 
= (S ◦ Tn)x}) → 0

for every S ∈ [G].

Remark 2.1. LetG be a countable subgroup of [G] and suppose thatG generates G, that is,
the minimal subgroupoid of G containingG in its full group is equal to G. Then a sequence
(An) of Borel subsets of G0 is asymptotically invariant for (G, μ) if μ(gAn 	 An) → 0
for every g ∈ G [JS, pp. 93]. Moreover, a sequence (Tn) in [G] is central if and only if Tn
asymptotically commutes with every g ∈ G and μ(T ◦

n A	 A) → 0 for every Borel subset
A ⊂ X ([JS, Remark 3.3] or [Ki4, Lemma 2.3]). While these assertions are verified only
for translation groupoids G� (X, μ) in the cited papers, the same proof is available for
the above generalization.

We say that a discrete p.m.p. groupoid (G, μ) is Schmidt if there exists a central
sequence (Tn) in [G] such that μ({x ∈ X | T ◦

n x 
= x}) → 1. We say that a p.m.p. action
G� (X, μ) of a countable group G is Schmidt if the groupoid G� (X, μ) is Schmidt. If
a countable groupG admits a free ergodic p.m.p. action which is Schmidt, then we say that
G has the Schmidt property. (N.B. A countable group, being a discrete p.m.p. groupoid on
a singleton, is never Schmidt.) The following lemma implies that the Schmidt property of
G follows once we find a free p.m.p. Schmidt action of G which may not be ergodic. We
refer to [H, §6] for the ergodic decomposition of discrete p.m.p. groupoids.

LEMMA 2.2. Let (G, μ) be a discrete p.m.p. groupoid with the ergodic decomposition
map π : (G0, μ) → (Z, ζ ) and the disintegration μ = ∫

Z
μz dζ(z). Suppose that (G, μ)

is Schmidt and let (Tn) be a central sequence in [(G, μ)] such that μ({x ∈ X |
T ◦
n x 
= x}) → 1. Then there exists a subsequence (Tni ) of (Tn) such that, for
ζ -almost every z ∈ Z, (Tni ) is a central sequence in [(G, μz)] such that μz({x ∈ X |
T ◦
ni
x 
= x})→ 1. Thus, for ζ -almost every z ∈ Z, the ergodic component (G, μz) is

Schmidt.
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Proof. Let B be the sigma field of Borel subsets of G0. Let {Ak} be a countable
subfamily of B which generates B. Then, for every z ∈ Z, the family {Ak} generates
a dense subfield in G0 with respect to μz. Since (Tn) is central in [(G, μ)], we have∫
Z
μz(T

◦
n Ak 	 Ak) dζ(z) = μ(T ◦

n Ak 	 Ak) → 0 for each k. Thus, after passing to a
subsequence of (Tn), for ζ -almost every z ∈ Z, we have μz(T ◦

n Ak 	 Ak) → 0 for each k.
Applying the Lusin–Novikov uniformization theorem [Ke1, Theorem 18.10], we obtain

a countable collection {φl} of local sections of G such that
⋃
l φl(dom(φl)) = G. Similarly

to the above, after passing to a subsequence of (Tn), for ζ -almost every z ∈ Z, we have
μz({x ∈ X | (φl ◦ Tn)x = (Tn ◦ φl)x}) → 1 for each l and μz({x ∈ X | T ◦

n x 
= x}) → 1.
The first convergence together with the convergence obtained in the last paragraph implies
that (Tn) is a central sequence in [(G, μz)] for ζ -almost every z ∈ Z.

2.3. Co-induced actions. Co-induction is a canonical method to obtain a p.m.p. action
of a countable group from a p.m.p. action of its subgroup. We generalize this for p.m.p.
actions of discrete p.m.p. groupoids.

Remark 2.3. Formally, by an action of a groupoid G we mean an action of G on a space
Z fibered over G0 such that each g ∈ G gives rise to an isomorphism from the fiber at the
source of g onto the fiber at the range of g. Then we say that G acts on the fibered space Z.
We often obtain such an action of G from a groupoid homomorphism α : G → Aut(Y ) for
some space Y , as follows. Let Z = G0 × Y and regard it as being fibered over G0 via the
projection. Then G acts on Z by g(s(g), y) = (r(g), α(g)y). For simplicity, we will often
abuse terminology of actions, and call this action on the fibered space Z an action of G on
the space Y (which is not fibered over G0, however) unless there is cause for confusion.

Let (G, μ) be a discrete p.m.p. groupoid and set X = G0. Let S be a Borel subgroupoid
of G and suppose that S admits the measure-preserving action on a standard probability
space (Y , ν) arising from a Borel homomorphism α : S → Aut(Y , ν). From this action of
S, we co-induce a p.m.p. action G � (Z, ζ ) as follows. For each x ∈ X, we set

Zx = {f : Gx → Y | f (gh−1) = α(h)f (g) for each g ∈ Gx and each h ∈ Ss(g)}
and define Z as the disjoint union Z = ⊔

x∈X Zx . The set Z is fibered with respect to the
projection p : Z → X sending each element of Zx to x. The groupoid G acts on Z by

(gf )(g′) = f (g−1g′)

for g ∈ Gx , g′ ∈ Gr(g) and f ∈ Zx with x ∈ X.
A measure-space structure on Z is defined as follows. We have the decomposition of the

unit space, X = ⊔
m∈N∪{∞} Xm, into the G-invariant Borel subsets Xm such that the index

of SXm in GXm is the constant m. First, suppose that X = Xm for some m ∈ N ∪ {∞}.
Let {ψi}mi=1 be a family of choice functions for the inclusion S < G, that is, a family of
Borel maps ψi : X → G such that, for each x ∈ X, we have ψi(x) ∈ Gx and the family
{ψi(x)}mi=1 is a complete set of representatives of all the equivalence classes in Gx ,
where the equivalence relation on Gx is associated to the inclusion S < G as follows:
two elements g, h ∈ Gx are equivalent if and only if g−1h ∈ S. Then Z is identified
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with the product space X × ∏m
i=1 Y under the map sending each f ∈ Zx with x ∈ X

to (x, (f (ψi(x)))i). The measure-space structure on Z is induced by this identification,
where the space X × ∏m

i=1 Y is equipped with the product measure μ× ∏m
i=1 ν. The

action of G on Z is Borel and preserves the probability measure on Z.
If X is not necessarily equal to Xm for some m ∈ N, then, as already stated, we

have the decomposition X = ⊔
m∈N∪{∞} Xm into G-invariant Borel subsets. The set Z is

decomposed into the G-invariant subsets p−1(Xm), on which the measure-space structure
is given in the way described in the previous paragraph. Then the measure-space structure
is also induced on Z, so that each p−1(Xm) is Borel and the projection p : Z → X is
measure-preserving.

Let ζ be the induced probability measure on Z. We define a discrete p.m.p. groupoid
(G, μ)� (Z, ζ ) = (G̃, μ̃) as follows. The set of groupoid elements is the fibered product
G̃ := G ×X Z with respect to the source map s : G → X and the projection p : Z → X.
The unit space is G̃0 := Z with measure μ̃ := ζ . The range and source maps are given by
r̃(g, z) = gz and s̃(g, z) = z, respectively, with groupoid operations given by (gh, z) =
(g, hz)(h, z) and (g, z)−1 = (g−1, gz). Each element T ∈ [G] lifts to the element T̃ ∈ [G̃]
defined by T̃ z = (T x, z) for z ∈ Zx with x ∈ X.

Let us recall the following fact from the proof of [TD, Theorem 15] or [KTD, Example
8.8]. LetG be a countable group, let C be a central subgroup ofG and let C � (Y , ν) be a
p.m.p. action. We defineG� (Z, ζ ) as the action co-induced from the actionC � (Y , ν).
Then each sequence of elements of C that converges to the identity in Aut(Y , ν) is central
in the full group of the groupoid G� (Z, ζ ). We generalize this fact to give the following
proposition.

PROPOSITION 2.4. Let (G, μ) be a discrete p.m.p. groupoid and set X = G0. Let S be
a Borel subgroupoid of G, let (Y , ν) be a standard probability space and let α : S →
Aut(Y , ν) be a Borel homomorphism. Let G � (Z, ζ ) denote the action co-induced from
the action S � (X × Y , μ× ν) via α. Let (Tn) be a central sequence in [G] such that each
Tn belongs to [S] and, for each Borel subset B ⊂ Y ,∫

X

ν(α(Tnx)B 	 B) dμ(x) → 0

as n → ∞. Then the sequence (T̃n) of the lifts of Tn is central in the full group of the
groupoid (G, μ)� (Z, ζ ) defined above.

Proof. Since (Tn) is central in [G], by the definition of lifts, T̃n asymptotically commutes
with the lift of each S ∈ [G], that is, ζ({z ∈ Z | (S̃ ◦ T̃n)z 
= (T̃n ◦ S̃)z}) → 0 for each
S ∈ [G]. Hence it suffices to show that, for each Borel subset C ⊂ Z, we have ζ(T̃ ◦

n C 	
C)→ 0 (Remark 2.1). We may suppose that the index of S in G is the constant m ∈
N ∪ {∞}. Let {ψi}mi=1 be a family of choice functions for the inclusion S < G and identify
Z with the product space X × ∏m

i=1 Y as before the proposition. Then it suffices to show
that ζ(T̃ ◦

n C 	 C) → 0 for each cylindrical subset

C = {(x, (yi)mi=1) ∈ X × ∏m
i=1Y | x ∈ A and yi ∈ Bi for each i ∈ {1, . . . , l}},

whereA ⊂ X and B1, . . . , Bl ⊂ Y are Borel subsets and l is a positive integer with l ≤ m.
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Let ε > 0. We set ψ̄i = s ◦ ψi and set φi(x) = ψi(x)
−1 for x ∈ X. Since φi is the union

of local sections of G, the assumption on the central sequence (Tn) implies that there exists
an N ∈ N such that if n ≥ N , then:
(1) μ(T ◦

n A	 A) < ε;
(2)

∫
X
ν(α(Tn(ψ̄i(x)))Bi 	 Bi) dμ(x) < ε/l for each i ∈ {1, . . . , l}; and

(3) μ(A1) > μ(A)− ε,
where A1 is defined as the set of all elements x ∈ A such that (φi ◦ Tn)x = (Tn ◦ φi)x for
each i ∈ {1, . . . , l}. Fix n ∈ N with n ≥ N . We show that T̃ ◦

n f ∈ C if f belongs to the
set C1, which is slightly smaller than C, of all elements (x, (yi)mi=1) ∈ X × ∏m

i=1 Y such
that:
• x ∈ A1 ∩ (T ◦

n )
−1A; and

• yi ∈ α(Tn(ψ̄i(x)))−1Bi ∩ Bi for each i ∈ {1, . . . , l}.
We pick f = (x, (yi)mi=1) ∈ C1 and set y = T ◦

n x. For each i ∈ {1, . . . , l}, regarding f as
a map from Gx to Y belonging to the set Zx ,

(T̃ ◦
n f )(ψi(y)) = f ((Tnx)

−1ψi(y)) = f (ψi(x)Tn(ψ̄i(x))
−1)

= α(Tn(ψ̄i(x)))f (ψi(x)),

where the second equation follows from x ∈ A1 and φ◦
i (x) = ψ̄i(x). The right-hand side

belongs to Bi because f (ψi(x)) = yi ∈ α(Tn(ψ̄i(x)))−1Bi . Moreover, T̃ ◦
n f ∈ Zy and

y ∈ A because x ∈ (T ◦
n )

−1A. Therefore T̃ ◦
n f ∈ C. As a result, we obtain the inequality

ζ(C ∩ (T̃ ◦
n )

−1C) ≥ ζ(C1) =
∫
A1∩(T ◦

n )
−1A

l∏
i=1

ν(α(Tn(ψ̄i(x)))
−1Bi ∩ Bi)) dμ(x).

The left-hand side of this inequality is equal to ζ(C)− ζ(T̃ ◦
n C 	 C)/2, and the right-hand

side is equal to

∫
A1∩(T ◦

n )
−1A

l∏
i=1

(
ν(Bi)− 1

2
ν(α(Tn(ψ̄i(x)))

−1Bi 	 Bi)

)
dμ(x)

> ζ(C)− μ(A \ (A1 ∩ (T ◦
n )

−1A))− ε/2

≥ ζ(C)− (μ(A \ A1)+ μ(A \ (T ◦
n )

−1A))− ε/2 > ζ(C)− 2ε

by (1)–(3), where, to deduce the first inequality, we use the inequality | ∏l
i=1 ai −∏l

i=1 bi | ≤ ∑l
i=1 |ai − bi | for ai , bi ∈ [0, 1]. Therefore ζ(T̃ ◦

n C 	 C) < 4ε.

2.4. Construction of a free action. Under the assumption that a countable group G
admits a p.m.p. Schmidt action, in Theorem 2.5, we present a sufficient condition for G to
admit a free p.m.p. Schmidt action. Another sufficient condition will be given in Theorem
2.14 in §2.6. We remark that the analogous problem for stability in place of the Schmidt
property is solved in [Ki3, Theorem 1.4] with a much simpler method.

For p ∈ N and a Borel automorphism T of a standard Borel space X, we call a point
x ∈ X a p-periodic point of T if T px = x and T ix 
= x for all i ∈ N less than p. If a point
x ∈ X is a p-periodic point of T for some p ∈ N, then x is called a periodic point of T
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and the number p is called the period of x. For possible constraints on periods of T ◦
n for a

central sequence (Tn) in the full group, we refer to [KTD, Proposition 8.7].

THEOREM 2.5. Let G be a countable group, let G� (X, μ) be a p.m.p. action and
let π : (X, μ) → (�, η) be a G-equivariant measure-preserving map into a standard
probability space (�, η). Suppose that, for μ-almost every x ∈ X, the stabilizer of x in
G depends only on π(x) and we thus have a subgroupMω ofG indexed by η-almost every
ω ∈ � such that, for μ-almost every x ∈ X, the stabilizer of x in G is equal to Mπ(x). We
set (G, μ) = G� (X, μ).

Suppose that there exists a central sequence (Sn) in [G] such that:
• for all n, S◦

n preserves each fiber of π , that is, we have π(S◦
nx) = π(x) for μ-almost

every x ∈ X; and
• μ({x ∈ X | S◦

nx 
= x, Snx ∈ CG(Mπ(x))}) → 1 as n → ∞,
where, for a subgroupM < G, we denote by CG(M) the centralizer ofM inG. For p ∈ N,
let Apn ⊂ X be the set of p-periodic points of S◦

n . Suppose further that, for each p ∈ N, we
have μ(Apn) → 0 as n → ∞. Then G has the Schmidt property.

The proof of this theorem will be given after proving Lemmas 2.6 and 2.7 below. For a
discrete p.m.p. groupoid (G, μ) and an element T ∈ [G], we say that T is periodic if, for
μ-almost every x ∈ G0, there exists a p ∈ N such that x is a p-periodic point of T ◦ and
T px = e. We should emphasize that T is not necessarily periodic even if every point of X
is a periodic point of the induced automorphism T ◦.

LEMMA 2.6. Let G be a countable group, let G� (X, μ) be a p.m.p. action and let
π : (X, μ) → (�, η) be a G-equivariant measure-preserving map satisfying the assump-
tion in the first paragraph in Theorem 2.5. We set (G, μ) = G� (X, μ).

Pick ε > 0 and S ∈ [G] such that S◦ preserves each fiber of π . Let D and E be Borel
subsets of X with D ⊂ E and suppose that the following three conditions hold.
(1) If x ∈ D, then S◦x 
= x and Sx ∈ CG(Mπ(x)), and if x ∈ D is, further, a p-periodic

point of S◦ for some p ∈ N, then either p > 1/ε or Spx = e.
(2) The inequality μ(E \D) < εμ(E) holds.
(3) The inclusion S◦D ⊂ E holds.
Then there exists an element T ∈ [GE] such that:
(4) T is periodic;
(5) T ◦ preserves each fiber of π and T x ∈ CG(Mπ(x)) for each x ∈ E; and
(6) μ({x ∈ E | T x 
= Sx}) < 5εμ(E).

Proof. For a positive integer k, we set

Zk = {x ∈ D | S◦x, (S◦)2x, . . . , (S◦)k−1x ∈ D, (S◦)kx 
∈ D}.
The sets Zk are mutually disjoint and satisfy S◦Zk+1 ⊂ Zk and Z1 = D \ (S◦)−1D. Thus

μ(Z1) = μ(D \ (S◦)−1D) = μ(S◦D \D) ≤ μ(E \D) < εμ(E)

by conditions (2) and (3).
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We define a local section T of G on Zk for k ≥ 2, on S◦Z2 and on Z1 \ S◦Z2,
respectively, as follows; it is defined so that T is periodic and equal to S on a subset as
large as possible. If x ∈ Zk and k ≥ 2, then we set T x = Sx. For almost every x ∈ S◦Z2,
there is a maximal integer k ≥ 2 such that x ∈ (S◦)k−1Zk , and we let y ∈ Zk be the point
with x = (S◦)k−1y and set T x = (Sk−1y)−1. On Z1 \ S◦Z2, we set T x = e for each point
x of that set. We defined the local section T on the union Z := ⋃∞

k=1 Zk and have the
inequality

μ({x ∈ Z | T x 
= Sx}) ≤ μ(Z1) < εμ(E). (2.1)

We set D1 = D \ Z, which is S◦-invariant. Let B be the set of points of D1 that are
p-periodic points of S◦ for some p ∈ N. Let C be the complement of B in D1, that is,
the set of aperiodic points of S◦ in D1. For an integer p ≥ 2, let Bp denote the set of
p-periodic points of S◦ in B. Then each Bp is S◦-invariant, and B is the disjoint union of
the sets Bp with p ≥ 2 since S◦x 
= x for each x ∈ D by condition (1).

We extend the domain of T to the set B as follows. If p ≤ 1/ε, then, for each
x ∈ Bp, we have Spx = e by condition (1) and we thus set T = S on Bp, so that T is
periodic on it. Otherwise, that is, if p > 1/ε, pick a Borel fundamental domain B ′

p ⊂ Bp

of the periodic automorphism S◦|Bp . We set T x = Sx for x ∈ Bp \ (S◦)−1B ′
p and set

T x = (Sp−1(S◦x))−1 for x ∈ (S◦)−1B ′
p. Then T px = e for each x ∈ Bp, and

μ({x ∈ B | T x 
= Sx}) < εμ(E) (2.2)

because

μ({x ∈ B | T x 
= Sx}) ≤
∑
p>1/ε

μ((S◦)−1B ′
p) =

∑
p>1/ε

p−1μ(Bp) ≤ εμ(B) ≤ εμ(E).

We next define T on C, the set of aperiodic points of S◦ in D1. Let N be a positive
integer with 1/N < εμ(E). By the Rokhlin lemma, we can find a Borel subset C0 ⊂ C

such that C0, S◦C0, . . . , (S◦)N−1C0 are mutually disjoint and μ(C \ ⋃N−1
n=0 (S

◦)nC0) <

εμ(E). We define T on C as follows. For x ∈ C0 and n ∈ {0, 1, . . . , N − 2}, we set
T ((S◦)nx) = S((S◦)nx) and T ((S◦)N−1x) = (SN−1x)−1. If x ∈ C \ ⋃N−1

n=0 (S
◦)nC0, then

we set T x = e. Then T is periodic on C in the sense that each x ∈ C is a p-periodic point
of T ◦ for some p ∈ N, and we then have T px = e. We also have

μ({x ∈ C | T x 
= Sx}) ≤ μ((S◦)N−1C0)+ μ(C \ ⋃N−1
n=0 (S

◦)nC0) < 2εμ(E). (2.3)

Finally, we define T onE \D by T x = e for each x ∈ E \D. By construction, T ◦ is an
automorphism of each of Z, B, C and E \D and hence of E. Thus we defined T ∈ [GE],
which is periodic. This is desired. Indeed, for each x ∈ E, the element T x is either e or
the product of some values of S, which belong to CG(Mπ(x)) by condition (1). Therefore
T fulfills condition (5). By inequalities (2.1)–(2.3) and condition (2),

μ({x ∈ E | T x 
= Sx}) < 4εμ(E)+ μ(E \D) < 5εμ(E).

In order to state the next lemma, we prepare the following terminology. Let (G, μ) be a
discrete p.m.p. groupoid. For T , S ∈ [G], we say that T and S commute if T ◦ S = S ◦ T .
Let T = (T1, . . . , Tn) be a finite sequence of elements of [G] such that Ti and Tj commute
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for all i and j . For k = (k1, . . . , kn) ∈ N
n, we set

T k = (Tn)
kn ◦ · · · ◦ (T1)

k1 .

For l = (l1, . . . , ln) ∈ N
n, we say that a point x ∈ G0 is (l, T )-periodic if the following

two conditions hold.
• For every k = (k1, . . . , kn) ∈ N

n, we have (T k)◦x = x if and only if ki ≡ 0 modulo
li for all i ∈ {1, . . . , n}.

• If this equivalent condition holds, then we further have T kx = e.
For a discrete p.m.p. equivalence relation Q on a standard probability space (X, μ), by a
Borel transversal of Q we mean a Borel subset of X that meets each equivalence class of
Q at exactly one point.

LEMMA 2.7. With the notation and the assumption in Theorem 2.5, let R be the orbit
equivalence relation associated with the action G� (X, μ). Then there exists a central
sequence (Tn)n∈N in [G] satisfying the following four conditions.
(i) We have μ({x ∈ X | T ◦

n x 
= x}) → 1.
(ii) For each n, T ◦

n preserves each fiber of π and Tnx ∈ CG(Mπ(x)) for all x ∈ X.
(iii) For each m and n, Tm and Tn commute.
(iv) Let Qn be the subrelation of R generated by T ◦

1 , . . . , T ◦
n . Then there exists a Borel

transversalEn+1 ⊂ X of Qn and its Borel partitionEn+1 = ⊔
l∈Nn Eln+1 such that,

for each l = (l1, . . . , ln) ∈ N
n:

• every point of Eln+1 is (l, T )-periodic, where T = (T1, . . . , Tn);
• T ◦

n+1E
l
n+1 = Eln+1; and

• if n ≥ 2, then Eln+1 ⊂ E
(l1,...,ln−1)
n .

In particular, for each n, if En denotes the subgroupoid of G generated by T1, . . . , Tn
(that is, the minimal subgroupoid of G containing T1, . . . , Tn in its full group), then
En and Qn are isomorphic under the quotient map from G onto R.

Proof. Fix a decreasing sequence (εn)n∈N of positive numbers converging to zero. We
inductively construct a sequence (Tn, En+1)n∈N of pairs satisfying conditions (ii)–(iv) and
the inequality μ({x ∈ X | Tnx 
= Snx}) < 7εn for all n. This inequality implies condition
(i) and also implies that the sequence (Tn)n∈N is central in [G].

In Theorem 2.5, we assume that, for each p ∈ N, we have μ(Apn) → 0 as n → ∞,
where Apn is the set of p-periodic points of S◦

n . After replacing S1 with Sn for a large n,
we may assume that μ(X \D1) < ε1, where D1 is defined as the set of points x ∈ X such
that S◦

1x 
= x, S1x ∈ CG(Mπ(x)), and if x is a p-periodic point of S◦
1 for some p ∈ N, then

p > 1/ε1. Letting D = D1 and E = X, we apply Lemma 2.6. We then obtain a periodic
T1 ∈ [G] such that T ◦

1 preserves each fiber of π , we have T1x ∈ CG(Mπ(x)) for almost
every x ∈ X, and μ({x ∈ X | T1x 
= S1x}) < 5ε1 < 7ε1. Since T1 is periodic, we can find
a Borel fundamental domainE2 ⊂ X for the automorphism T ◦

1 ofX and its Borel partition
E2 = ⊔

l∈N El2 such that Q1E
l
2 is equal to the set of l-periodic points of T ◦

1 , where Q1 is
the subrelation of R generated by T ◦

1 . This completes the first step of the induction.
Assuming that we have constructed T1, . . . , Tn−1 and E2, . . . , En, we construct

Tn and En+1. By the induction hypothesis, the equivalence relation Qn−1 generated
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by T ◦
1 , . . . , T ◦

n−1 admits a Borel transversal En ⊂ X and its Borel partition En =⊔
l∈Nn−1 Eln such that, for each l ∈ (l1, . . . , ln−1) ∈ N

n−1, every point of Eln is
(l, T )-periodic, where we set T = (T1, . . . , Tn−1). We choose a finite subset Ln ⊂ N

n−1

such that μ(Eln) > 0 for all l ∈ Ln and

μ(X \ Qn−1Fn) < εn, (2.4)

where we set Fn = ⊔
l∈Ln E

l
n. After replacing Sn with Sm for a large m, we may assume

that

μ(Eln \Dln) < εnμ(E
l
n) (2.5)

for each l ∈ Ln if Dln is defined as the set of points x ∈ Eln such that:
• x ∈ Eln ∩ ((S◦

n)
−1Eln), S

◦
nx 
= x and Snx ∈ CG(Mπ(x));

• if x is a p-periodic point of S◦
n for some p ∈ N, then p > 1/εn; and

• (Sn ◦ T k)x = (T k ◦ Sn)x for each k = (k1, . . . , kn−1) ∈ �l ,
where we set

�l = {0, 1, . . . , l1 − 1} × {0, 1, . . . , l2 − 1} × · · · × {0, 1, . . . , ln−1 − 1}.
Letting D = Dln and E = Eln, we apply Lemma 2.6 for each l ∈ Ln. Then there exists
a periodic Tn ∈ [GFn ] such that T ◦

n preserves each Eln with l ∈ Ln, we have Tnx ∈
CG(Mπ(x)) for almost every x ∈ Fn and, for each l ∈ Ln,

μ({x ∈ Eln | Tnx 
= Snx}) < 5εnμ(Eln). (2.6)

We extend the local section Tn to the set Qn−1Fn so that it commutes with
T1, . . . , Tn−1. That is, if l ∈ (l1, . . . , ln−1) ∈ Ln and x ∈ Eln, then we set

Tn((T
k)◦x) = ((T k ◦ Tn)x)(T kx)−1

for k = (k1, . . . , kn−1) ∈ �l . We note that by condition (iv) for T1, . . . , Tn−1, which is an
induction hypothesis, each point of Qn−1Fn is uniquely written as (T k)◦x for some k ∈ �l
and x ∈ Eln with l ∈ Ln. Finally, we define Tn onX \ Qn−1Fn by Tnx = e for each point x
in that set. Then the element Tn ∈ [G] satisfies conditions (ii) and (iii). By construction, T ◦

n

preserves each Eln with l ∈ Ln and also preserves the other Eln with l ∈ N
n−1 \ Ln since

T ◦
n is the identity on it.

Let Qn be the subrelation of R generated by T ◦
1 , . . . , T ◦

n . We find a Borel transversal
En+1 ⊂ X of Qn satisfying condition (iv). Since T ◦

n preserves each Eln with l ∈ N
n−1 and

is periodic, we can choose a Borel fundamental domain Bln for the automorphism T ◦
n of

Eln and its Borel partition Bln = ⊔
m∈N E

l,m
n such that El,mn consists of m-periodic points

of T ◦
n . Pick l = (l1, . . . , ln−1) ∈ N

n−1 and m ∈ N and put k = (l1, . . . , ln−1, m) ∈ N
n.

If l ∈ Ln, we set Ekn+1 = E
l,m
n . Otherwise, we have Bln = E

l,1
n . We then set Ekn+1 = Eln

or Ekn+1 = ∅, depending on m = 1 or m 
= 1, respectively, and set En+1 = ⊔
k∈Nn Ekn+1.

This partition fulfills condition (iv) except for the equation involving Tn+1, which is still
not defined.

Finally, we estimate the measure μ({x ∈ X | Tnx 
= Snx}). If x ∈ Dln with l ∈ Ln and
Tnx = Snx, then, for each k = (k1, . . . , kn−1) ∈ �l ,

Sn((T
k)◦x) = ((T k ◦ Sn)x)(T kx)−1 = ((T k ◦ Tn)x)(T kx)−1 = Tn((T

k)◦x),
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where the first equation follows from x ∈ Dln, the second one follows from Tnx = Snx and
the third one holds by the definition of Tn. Hence we have Tn = Sn on the equivalence
class of x in Qn−1. The set {x ∈ X | Tnx 
= Snx} is thus contained in the union

(X \ Qn−1Fn) ∪
⋃
l∈Ln

Qn−1{x ∈ Eln | x 
∈ Dln or Tnx 
= Snx}.

By inequalities (2.4), (2.5) and (2.6), the measure of this union is less than

εn +
∑

l=(l1,...,ln−1)∈Ln
(l1 + · · · + ln−1)(μ(E

l
n \Dln)+ μ({x ∈ Eln | Tnx 
= Snx}))

< εn +
∑

l=(l1,...,ln−1)∈Ln
(l1 + · · · + ln−1)(εn + 5εn)μ(Eln) ≤ 7εn,

where the sum
∑
l(l1 + · · · + ln−1)μ(E

l
n) over l = (l1, . . . , ln−1) ∈ Ln is equal to

μ(Qn−1Fn) by condition (iv) and hence is at most 1. We thus have μ({x ∈ X | Tnx 
=
Snx}) < 7εn. This completes the induction.

Proof of Theorem 2.5. By Lemma 2.7, we obtain a central sequence (Tn) in [G] satisfying
conditions (i)–(iv) in the lemma. Let E and Q be the unions

⋃
n En and

⋃
n Qn,

respectively, where we use the symbols En, Qn in the lemma. Then Q is a subrelation of R,
and by condition (iv), E is a subgroupoid of G isomorphic to Q via the quotient map from
G onto R. Let M be the isotropy subgroupoid of G, which is the bundle

⊔
x∈X Mπ(x)

over X. Let M ×X E be the fibered product with respect to the range map of E . Then
(M ×X E , μ) is a discrete p.m.p. groupoid with unit spaceX. Indeed the range and source
of (m, (g, x)) ∈ M ×X E are defined to be gx and x, respectively. The product operation
in M ×X E is defined by (m, (g, hx))(l, (h, x)) = (ml, (gh, x)) for (g, hx), (h, x) ∈ E
andm, l ∈ Mπ(x), where we note that π(ghx) = π(hx) = π(x) since all T ◦

n preserve each
fiber of π . Let M ∨ E be the subgroupoid of G generated by M and E . By condition
(ii), if (g, x) ∈ E , then g commutes with each element of Mπ(x). Therefore the map
from M ×X E to M ∨ E sending (m, (g, x)) to (mg, x) is a homomorphism and thus
an isomorphism.

Let M̄ be the subgroupoid of G� (�, η) that is the bundle
⊔
ω∈� Mω. We obtain the

homomorphism from M ∨ E onto M̄ as the composition of the isomorphism from M ∨ E
onto M ×X E , with the projection from M ×X E onto M̄. Pick a Borel homomorphism
α0 : M̄ → Aut(Y , ν) with some standard probability space (Y , ν) such that the associated
action of M̄ on (Y , ν) is essentially free, that is, we have α0(m)y 
= y for almost
every y ∈ Y and almost every m ∈ M̄ \ M̄0, where M̄ is equipped with the measure∫
�
cω dη(ω) with cω the counting measure on Mω. Such α0 is obtained as follows. Pick a

free p.m.p. action G� (Y , ν). Via the projection from G� (�, η) onto G, we obtain the
homomorphism from G� (�, η) into Aut(Y , ν). Let α0 be its restriction to M̄. Then the
action α0 is essentially free. Let M ∨ E act on (Y , ν) via the homomorphism from M ∨ E
onto M̄, and denote this action by α : M ∨ E → Aut(Y , ν).

We now apply Proposition 2.4 by letting S = M ∨ E . Note that the central sequence
(Tn) satisfies the assumption in the proposition, that is, for each Borel subset B ⊂ Y , we
have

∫
X
ν(α(Tnx)B 	 B) dμ(x) → 0 as n → ∞ because E acts on Y trivially and thus
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α(Tnx) is the identity for every x ∈ X. By the proposition, the sequence (T̃n) of the lift of
Tn is central in the full group of the groupoid (G̃, μ̃), where we let G � (Z, ζ ) be the action
co-induced from the action α : M ∨ E → Aut(Y , ν) and let (G̃, μ̃) = (G, μ)� (Z, ζ ) be
the groupoid associated with this co-induced action, which was introduced just before the
proposition. Recall that G̃ is the fibered product G ×X Z with respect to the source map
s : G → X and is a groupoid with unit space Z.

If we define an action ofG onZ by gz = (g, x)z for g ∈ G and z ∈ Zx with x ∈ X, then
this action preserves the measure ζ and (G̃, μ̃) is identified with the translation groupoid
G� (Z, ζ ) via the map ((g, x), z) �→ (g, z) for g ∈ G and z ∈ Zx with x ∈ X. The action
G� (Z, ζ ) is free because the action of M̄ on (Y , ν) is free. Therefore we obtained
the free p.m.p. action G� (Z, ζ ) such that the groupoid G� (Z, ζ ) is Schmidt. By
Lemma 2.2, G admits a free ergodic p.m.p. action which is Schmidt.

2.5. Central sequences and periodic points. In Theorem 2.5, we assumed that the
central sequence (Sn) satisfies the property that, for each p ∈ N, the set of p-periodic
points of the automorphism S◦

n has measure approaching zero. On the other hand, in
Theorem 2.14 in the next subsection, we focus on a central sequence (Sn) without this
property. This subsection deals with such a central sequence.

In the rest of this subsection, we fix the following notation. Let G be a countable group
and let M be a normal subgroup of G. Let G/M � (X, μ) be a free ergodic p.m.p. action
and let G act on (X, μ) through the quotient map from G onto G/M . We set (G, μ) =
G� (X, μ).

LEMMA 2.8. Let (Sn)n∈N be a central sequence in [G]. For n, p ∈ N and h ∈ M , we set

A
p
n = {x ∈ X | x is a p-periodic point of S◦

n} and A
p,h
n = {x ∈ Apn | (Sn)px = h}.

Then:
(i) the sequence (Apn )n is asymptotically invariant for G; and
(ii) if h is central in G, then the sequence (Ap,h

n )n is asymptotically invariant for G.

Proof. Pick φ ∈ [G]. If n is large, then the set

{x ∈ X | (φ ◦ (Sn)i)x = ((Sn)
i ◦ φ)x for each i ∈ {1, . . . , p}}

has measure close to 1. If x ∈ Apn belongs to this set, then (S◦
n)
i(φ◦x) = φ◦((S◦

n)
ix) for

each i ∈ {1, . . . , p}. The right-hand side of this equation is not equal to φ◦x if i < p and
is equal to φ◦x if i = p. Hence φ◦x is a p-periodic point of S◦

n and belongs to Apn . We
thus have μ(φ◦Apn 	 A

p
n) → 0 as n → ∞. Assertion (i) follows.

To prove assertion (ii), we pick g ∈ G. If n is large, then the set

{x ∈ X | (φg ◦ (Sn)p)x = ((Sn)
p ◦ φg)x}

has measure close to 1. If a point x ∈ Ap,h
n belongs to this set, then

((Sn)
p(gx))g = ((Sn)

p ◦ φg)x = (φg ◦ (Sn)p)x = gh
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and thus (Sn)p(gx) = ghg−1 = h if h is central in G. Combining this with assertion (i),
we have μ(gAp,h

n 	 A
p,h
n ) → 0 as n → ∞. Assertion (ii) follows.

LEMMA 2.9. Let (Sn)n∈N be a central sequence in [G] and let N be a normal subgroup
of G. Then the sequence (An) defined by An = {x ∈ X | Snx ∈ N} is asymptotically
invariant for G.

Proof. Pick g ∈ G. If n is large, then, for every point x ∈ X outside a set of small measure,
we have (φg ◦ Sn)x = (Sn ◦ φg)x, that is, g(Snx) = (Sn(gx))g. Therefore if, further, x ∈
An, then Sn(gx) belongs to gNg−1 = N and thus gx ∈ An.

Remark 2.10. Lemma 2.9 will be used in the proof of Lemma 2.11 by letting N be the
centralizer CG(M) of M in G.

Let (Sn)n∈N be a central sequence in [G] and set An = {x ∈ X | Snx ∈ CG(M)}. While
(An) is asymptotically invariant for G by Lemma 2.9, we further have μ(An) → 1 if M
is finitely generated. Indeed, if F is a finite generating set of M and n is large enough,
then, for all x ∈ X outside a set of small measure, we have (φg ◦ Sn)x = (Sn ◦ φg)x for all
g ∈ F and hence g(Snx) = (Snx)g since M acts on X trivially. Thus Snx commutes with
every element of M .

LEMMA 2.11. Let (Sn)n∈N be a central sequence in [G] and let p ≥ 2 be an integer. Let
h ∈ M and suppose that h is central inG. We defineAn ⊂ X as the set of p-periodic points
x of S◦

n such that (Sn)ix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and (Sn)px = h. Suppose
that μ(An) is uniformly positive.

Then there exists a central sequence (Rn) in [G] such that if we define Bn ⊂ X as the
set of p-periodic points x of R◦

n such that (Rn)ix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and
(Rn)

px = h, then μ(Bn) → 1.

Proof. We follow the proof of [KTD, Lemma 5.3], patching the restrictions Sn|An together
to obtain a desired R ∈ [G] after passing to an appropriate subsequence of (Sn).

Note that the equation S◦
nAn = An holds. Indeed, let x ∈ An and put y = S◦

nx. Then y
is a p-periodic point of S◦

n . The condition that (Sn)ix ∈ CG(M) for all i ∈ {1, . . . , p − 1}
and (Sn)px = h ∈ CG(M) implies that the value of Sn at each point of the orbit of x under
iterations of S◦

n belongs to CG(M). Thus (Sn)iy ∈ CG(M) for all i ∈ {1, . . . , p − 1}. We
also have ((Sn)py)(Snx) = (Sn)

p+1x = (Snx)h = h(Snx) and thus (Sn)py = h. There-
fore y ∈ An and S◦

nAn ⊂ An. The converse inclusion follows from this because S◦
n is

measure-preserving or we have (S◦
n)

−1 = (S◦
n)
p−1 on An.

Since An is asymptotically invariant for G by Lemmas 2.8 and 2.9, the sequence (S′
n)

in [G], defined by S′
n = Sn on An and S′

nx = e for all x ∈ X \ An, is central in [G]. After
replacing Sn with S′

n, we may assume that Snx = e for all x ∈ X \ An. Then (S◦
n)
p is the

identity on X. It suffices to show that, for every ε > 0 and every finite subset F ⊂ [G],
there exists an R ∈ [G] such that μ({g ◦ R 
= R ◦ g}) < ε and μ(B) > 1 − ε, where, for
u, v ∈ [G], we let {u ◦ v 
= v ◦ u} be the set of points ofX on which u ◦ v and v ◦ u are not
equal, and we define B ⊂ X as the set of p-periodic points of R◦ such that Rix ∈ CG(M)
for all i ∈ {1, . . . , p − 1} and Rpx = h.
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Passing to a subsequence of (Sn), we may assume that the following conditions hold.
(1)

∑
n μ(g

◦An 	 An) < ε for all g ∈ F .
(2)

∑
n μ({g ◦ Sn 
= Sn ◦ g}) < ε for all g ∈ F .

(3)
∑
n

∑
k<n

∑p−1
i=1 μ((S

◦
n)
iAk 	 Ak) < ε.

Inequality (1) holds since the sequence (An) is asymptotically invariant for G. The other
two inequalities hold since the sequence (Sn) is central in [G]. We set Cn = ⋃

k<n Ak and
also set

Y1 = A1, Yn = An \
p−1⋃
i=0

(S◦
n)
iCn for n ≥ 2, and Y =

∞⋃
n=1

Yn.

Note that the last union is disjoint. For each n, we have S◦
nYn = Yn because (S◦

n)
p is the

identity on X and S◦
nAn = An. Then Yn ⊂ An \ Cn and

∑
n

∑p−1
i=1 μ((S

◦
n)
iCn 	 Cn) < ε

by inequality (3). Thus
∑
n μ((An \ Cn) \ Yn) < ε and μ(

⋃
n(An \ Cn) \ Y ) < ε. By the

definition of Cn, we have
⋃
n(An \ Cn) = ⋃

n An, and this is equal toX by [KTD, Lemma
5.1], where we use the assumption that μ(An) is uniformly positive. Thus
(4) μ(X \ Y ) < ε.

We pick g ∈ F and estimate
∑
n μ(g

◦Yn 	 Yn). Pick y ∈ Yn \ g◦Yn. Since
(g◦)−1y 
∈ Yn, either (g◦)−1y 
∈ An or (g◦)−1y ∈ Dn, where we set Dn = ⋃p−1

i=0 (S
◦
n)
iCn.

In the former case, y ∈ An \ g◦An. In the latter case,

y ∈ (g◦Dn \Dn) ∩ Yn ⊂
p−1⋃
i=0

⋃
k<n

(g◦(S◦
n)
iAk \ (S◦

n)
iAk) ∩ Yn.

Let N be a positive integer. We have

N∑
n=1

μ(Yn \ g◦Yn) ≤
N∑
n=1

μ(An \ g◦An)+
p−1∑
i=0

N∑
n=1

n−1∑
k=1

μ((g◦(S◦
n)
iAk \ (S◦

n)
iAk) ∩ Yn).

By inequality (1), on the right-hand side, the first term is less than ε. In general, for all
Borel subsets A, A′, B, B ′ ⊂ X,

μ(A \ B) ≤ 2μ(A	 A′)+ μ(B 	 B ′)+ μ(A′ \ B ′)

[KTD, Lemma 5.2]. This implies that the second term is less than or equal to

p−1∑
i=0

N∑
n=1

n−1∑
k=1

(μ((g◦Ak \ Ak) ∩ Yn)+ 3μ((S◦
n)
iAk 	 Ak))

< p

N∑
n=1

n−1∑
k=1

μ((g◦Ak \ Ak) ∩ Yn)+ 3ε < (p + 3)ε,

where the first inequality follows from inequality (3) and the last inequality follows from
inequality (1). Then

∑N
n=1 μ(Yn \ g◦Yn) < (p + 4)ε and therefore

(5)
∑
n μ(Yn \ g◦Yn) < (p + 4)ε for all g ∈ F .

We define a map R : X → G, patching the restrictions Sn|Yn together as follows. For
each n, we set R = Sn on Yn and set Rx = e if x ∈ X \ Y . Since S◦

n preserves Yn, the map
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R◦ is an automorphism of X and hence R is an element of [G]. Let B ⊂ X be the set of
p-periodic points of R◦ such that Rix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and Rpx = h.
Since S◦

n preserves Yn again and Yn is a subset of An, each point of Yn belongs to B and
therefore Y = B and μ(B) > 1 − ε by inequality (4).

We pick g ∈ F to estimate μ({g ◦ R 
= R ◦ g}). We have the following three inclusions.

{g ◦ R 
= R ◦ g} ⊂
⋃
n

({g ◦ R 
= R ◦ g} ∩ Yn) ∪ (X \ Y ),

{g ◦ R 
= R ◦ g} ∩ Yn ⊂ ({g ◦ R 
= R ◦ g} ∩ (Yn ∩ (g◦)−1Yn)) ∪ (Yn \ (g◦)−1Yn), and

{g ◦ R 
= R ◦ g} ∩ (Yn ∩ (g◦)−1Yn) ⊂ {g ◦ Sn 
= Sn ◦ g}.
It follows from inequalities (2), (5) and (4) that

μ({g ◦ R 
= R ◦ g}) ≤
∑
n

(μ({g ◦ Sn 
= Sn ◦ g})+ μ(Yn \ (g◦)−1Yn))+ μ(X \ Y )

< ε + (p + 4)ε + ε = (p + 6)ε.

The desired estimate is obtained after scaling ε.

The following lemma is similar in appearance to the last lemma. The difference between
them is the assumption on μ(An) and the second condition in the definition of the set Bn.
The following lemma deduces a stronger conclusion from the conclusion of the last lemma.

LEMMA 2.12. Let (Sn)n∈N be a central sequence in [G] and let p ≥ 2 be an integer. Let
h ∈ M and suppose that h is central inG. We defineAn ⊂ X as the set of p-periodic points
x of S◦

n such that (Sn)ix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and (Sn)px = h. Suppose
that μ(An) → 1.

Then there exists a central sequence (Rn) in [G] such that if we define Bn ⊂ X as the
set of p-periodic points x of R◦

n such that (Rn)ix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and
(Rn)

px = e, then μ(Bn) → 1.

Proof. We show that, for all large n ∈ N, if we choose a sufficiently large integer m >

n and set Rn = (Sm)
−1 ◦ Sn, then the obtained sequence (Rn) works. Let ε > 0 and fix

a large n ∈ N such that μ(An) > 1 − ε. If m is large enough, then μ(Am) > 1 − ε and
μ(C) > 1 − ε, where C is the set of points x ∈ X such that:
• (Sn ◦ (Sm)−1)x = ((Sm)

−1 ◦ Sn)x; and
• ((Sm)

−i ◦ (Sn)i)x = ((Sm)
−1 ◦ Sn)ix for all i ∈ {1, . . . , p}.

By [KTD, Lemma 5.6], for all i ∈ {1, . . . , p − 1},
μ({x ∈ X | (S◦

m)
ix = (S◦

n)
ix 
= x}) → 0

as m → ∞. Therefore, for all i ∈ {1, . . . , p − 1}, since (S◦
n)
ix 
= x for all x ∈ An, after

replacingm with a larger integer, we may assume that there exists a Borel subset A′
n ⊂ An

such that μ(An \ A′
n) < ε and (S◦

m)
ix 
= (S◦

n)
ix for all x ∈ A′

n. We set

D = C ∩ A′
n ∩

p−1⋂
i=0

(S◦
n)

−iAm.
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Then μ(D) > 1 − (3 + p)ε. We set R = (Sm)
−1 ◦ Sn and define B ⊂ X as the set of

p-periodic points of R◦ such that Rix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and Rpx = e.
We claim that D ⊂ B. This completes the proof of the lemma. Pick x ∈ D. We first show
that x is a p-periodic point of R◦ and Rpx = e. For each i ∈ {1, . . . , p − 1}, it follows
from x ∈ A′

n that (S◦
m)
ix 
= (S◦

n)
ix, and it follows from x ∈ C that

((Sm)
−i ◦ (Sn)i)◦x = (((Sm)

−1 ◦ Sn)i)◦x = (Ri)◦x = (R◦)ix.

Hence (R◦)ix 
= x. We also have

Rpx = ((Sm)
−1 ◦ Sn)px = ((Sm)

−p ◦ (Sn)p)x = ((Sm)
−px)h = e,

where the second equation follows from x ∈ C, the third equation follows from
x ∈ An, and the last equation follows from x ∈ Am = (S◦

m)
pAm. Finally, for each

i ∈ {1, . . . , p − 1},
Rix = ((Sm)

−1 ◦ Sn)ix = ((Sm)
−i ◦ (Sn)i)x = (Sm)

−i ((S◦
n)
ix)((Sn)

ix),

which belongs to CG(M) because x ∈ An ∩ (S◦
n)

−iAm and the set Am is preserved by S◦
m,

as shown in the second paragraph of the proof of Lemma 2.11.

Combining Lemmas 2.11 and 2.12, we obtain the following corollary, which also
reminds us of the notation fixed at the beginning of this subsection.

COROLLARY 2.13. Let G be a countable group and let M be a normal subgroup of G.
Let G/M � (X, μ) be a free ergodic p.m.p. action and let G act on (X, μ) through
the quotient map from G onto G/M . We set (G, μ) = G� (X, μ). Let (Sn) be a central
sequence in [G] and let p ≥ 2 be an integer. Let h ∈ M and suppose that h is central inG.
We define An ⊂ X as the set of p-periodic points x of S◦

n such that (Sn)ix ∈ CG(M) for
all i ∈ {1, . . . , p − 1} and (Sn)px = h. Suppose that μ(An) is uniformly positive.

Then there exists a central sequence (Rn) in [G] such that if we define Bn ⊂ X as the
set of p-periodic points x of R◦

n such that (Rn)ix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and
(Rn)

px = e, then μ(Bn) → 1.

2.6. A variant construction. Continuing from §2.4, we present another sufficient condi-
tion for a countable group G to admit a free p.m.p. Schmidt action, under the assumption
thatG admits a p.m.p. Schmidt action. In the following theorem, we assume that the given
p.m.p. actionG� (X, μ) is ergodic, as opposed to Theorem 2.5. This is because the proof
uses certain asymptotically invariant sequences of subsets, which are better controlled if
the action is ergodic.

THEOREM 2.14. Let G be a countable group and let M be a normal subgroup of G.
Let G/M � (X, μ) be a free ergodic p.m.p. action and let G act on (X, μ) through the
quotient map from G onto G/M . We set (G, μ) = G� (X, μ).

Let (Sn) be a central sequence in [G], let p ≥ 2 be an integer and let L < M be a
finite subgroup which is central in G. We define An ⊂ X as the set of p-periodic points
of S◦

n such that (Sn)ix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and (Sn)px ∈ L. Suppose that
μ(An) is uniformly positive. Then G has the Schmidt property.
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The scheme of the proof of this theorem is the same as that for Theorem 2.5. Lemma 2.6
will be used in the following lemma, which is analogous to Lemma 2.7.

LEMMA 2.15. With the notation and the assumption in Theorem 2.14, let R be the orbit
equivalence relation associated with the actionG/M � (X, μ). Then there exist a central
sequence (Tn)n∈N in [G] and a sequence (En+1)n∈N of Borel subsets of X satisfying
conditions (i), (iii) and (iv) of Lemma 2.7 together with the following condition.
(ii)′ For each n and each x ∈ X, we have Tnx ∈ CG(M).
Proof. The desired sequence (Tn, En+1)n∈N is constructed by induction, similarly to the
proof of Lemma 2.7. Fix a decreasing sequence (εn)n∈N of positive numbers converging
to zero. We inductively construct a sequence (Tn, En+1)n∈N satisfying conditions (ii)′, (iii)
and (iv) and satisfying the inequality μ({x ∈ X | Tnx 
= Snx}) < 7εn for all n. Let p be
the integer in Theorem 2.14. Since L is finite, by Corollary 2.13, we may assume, without
loss of generality, thatμ(Bn) → 1, where we defineBn ⊂ X as the set of p-periodic points
x of S◦

n such that (Sn)ix ∈ CG(M) for all i ∈ {1, . . . , p − 1} and (Sn)px = e.
To construct T1, we set D1 = B1. After replacing S1 with Sn for a large n, we may

assume that μ(X \D1) < ε1. We apply Lemma 2.6 by letting D = D1 and E = X and
letting � be a singleton. Then we obtain a periodic T1 ∈ [G] such that T1x ∈ CG(M) for
almost every x ∈ X and μ({x ∈ X | T1x 
= S1x}) < 5ε1 < 7ε1. Since T1 is periodic, we
can find a Borel fundamental domain E2 ⊂ X for the automorphism T ◦

1 of X and its Borel
partition E2 = ⊔

l∈N El2 such that Q1E
l
2 is equal to the set of l-periodic points of T ◦

1 ,
where Q1 is the subrelation of R generated by T ◦

1 . This completes the first step of the
induction.

Assuming that we have constructed T1, . . . , Tn−1 and E2, . . . , En, we construct Tn
and En+1. Let Qn−1 be the subrelation of R generated by T ◦

1 , . . . , T ◦
n−1. By the induction

hypothesis, we have a Borel transversal En ⊂ X of Qn−1 and its Borel partition En =⊔
l∈Nn−1 Eln. We choose a finite subset Ln ⊂ N

n−1 and set Fn = ⊔
l∈Ln E

l
n as in the proof

of Lemma 2.7. After replacing Sn with Sm for a sufficiently large m, for each l ∈ Ln, we
define Dln as the set of points x ∈ Eln ∩ ((S◦

n)
−1Eln) ∩ Bn such that (Sn ◦ T k)x = (T k ◦

Sn)x for each k = (k1, . . . , kn−1) ∈ �l , where we set T k = (Tn−1)
kn−1 ◦ · · · ◦ (T2)

k2 ◦
(T1)

k1 and define �l as before. Letting D = Dln and E = Eln and letting � be a singleton,
we apply Lemma 2.6 for each l ∈ Ln and obtain a periodic Tn ∈ [GFn]. The rest of the
construction of Tn ∈ [G], whose domain is extended to X, and a Borel transversal En+1 of
Qn is a verbatim translation of that in the proof of Lemma 2.7.

Proof of Theorem 2.14. The proof is a verbatim translation of that of Theorem 2.5, where
we apply Lemma 2.15 in place of Lemma 2.7 and let � be a singleton. We note that the
groupoid M ×X E in that proof then reduces to the direct product M × E .

We now prove Theorems 1.3 and 1.5 stated in §1.

COROLLARY 2.16. Let G be a countable group and let M be a finite central subgroup of
G. Let G/M � (X, μ) be a free ergodic p.m.p. action and let G act on (X, μ) through
the quotient map from G onto G/M . If the action G� (X, μ) is Schmidt, then G has the
Schmidt property.
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Proof. By assumption, we have a central sequence (Sn) in [G� (X, μ)] such that μ({x ∈
X | S◦

nx 
= x}) → 1. We will apply Theorem 2.5 or 2.14. The most remarkable difference
between the assumptions in those two theorems is the condition on the setApn of p-periodic
points of S◦

n and its measure. Passing to a subsequence of (Sn), we may assume that
either μ(Apn) → 0 for every integer p ≥ 2 or there is some integer p ≥ 2 for which the
values μ(Apn) are uniformly positive. If the former holds, then we apply Theorem 2.5 by
letting � be a singleton. We note that CG(M) = G since M is central in G. If the latter
holds, then we apply Theorem 2.14 by letting L = M . Thus the corollary follows from the
theorems.

Recall that a sequence (gn) in a countable group G is called central if, for each h ∈ G,
gn commutes with h for all sufficiently large n. The following is an immediate application
of Corollary 2.16.

COROLLARY 2.17. If a countable groupG admits a central sequence diverging to infinity,
then G has the Schmidt property.

Proof. Let G act on the set G \ {e} by conjugation, which induces the p.m.p. action of
G on the product space X := ∏

G\{e}[0, 1] equipped with the product measure μ of the
Lebesgue measure. We may assume thatG has finite center because otherwise the Schmidt
property of G is shown in [KTD, Example 8.8]. Let C be the center of G. Then C acts on
X trivially and the induced action G/C � (X, μ) is essentially free. By assumption, we
have a central sequence (gn) inG diverging to infinity, and we may assume that none of gn
belong to C. Then by Remark 2.1, (gn) is a central sequence in the full group [G� (X, μ)]
such that μ({x ∈ X | gnx 
= x}) = 1 for all n. Thus Corollary 2.16 is applied to G and its
finite center C.

Remark 2.18. Let G be a countable group. If M is a finite central subgroup of G and the
quotient group G/M admits a central sequence diverging to infinity, then G also admits
such a sequence and thus has the Schmidt property by Corollary 2.17.

To show this, choose a section s : G/M → G of the quotient map. Let (gn) be a central
sequence inG/M diverging to infinity. For each h ∈ G, the commutator [s(gn), h] belongs
to M if n is large enough. Since M is finite, after passing to a subsequence, we may
assume that, for each h ∈ G, the element [s(gn), h] is independent of n. Then the sequence
(s(gn)s(g1)

−1) is central in G and diverges to infinity.

3. Groups with infinite AC-center
3.1. Reduction to the proof for groups with infinite FC-center. We collect basic proper-
ties of groups with infinite AC-center. For a subset S of a group G, we denote by CG(S)
the centralizer of S in G and denote by 〈S〉G the normal closure of S in G, that is, the
minimal normal subgroup of G containing S. If S consists of elements g1, . . . , gn, then
CG(S) and 〈S〉G are also denoted by CG(g1, . . . , gn) and 〈g1, . . . , gn〉G, respectively.

LEMMA 3.1. Let G be a countable group and denote by R the AC-center of G, that is, the
set of elements g ∈ G such that the quotient group G/CG(〈g〉G) is amenable. Then:
(i) the set R is a normal subgroup of G;
(ii) for each finite subset S ⊂ R, the quotient group G/CG(〈S〉G) is amenable;
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(iii) the group R is amenable; and
(iv) the group R is generated by all normal subgroups M of G such that G/CG(M) is

amenable. Therefore R is equal to the AC-center introduced in [TD, 0.G].

Proof. Although some assertions in the lemma are proved in [TD, Theorem 13], we give
a proof here for the reader’s convenience. To make the symbols easier, in this proof, let us
write C̄(g) and C̄(S) for CG(〈g〉G) and CG(〈S〉G), respectively, given g ∈ G and S ⊂ G.
By its definition, the set R contains the trivial element and is closed under inverse. If
r , s ∈ R, then C̄(r) ∩ C̄(s) < C̄(rs). Thus G/(C̄(r) ∩ C̄(s)) surjects onto G/C̄(rs) and
injects into G/C̄(r)×G/C̄(s) diagonally. The last group is amenable and thus rs ∈ R.
Hence R is a subgroup of G, and, by its definition R is normal in G. Assertion (i) follows.

If S consists of finitely many elements r1, . . . , rn ∈ R, thenG/C̄(S) diagonally injects
into the direct product G/C̄(r1)× · · · ×G/C̄(rn), which is amenable. Thus G/C̄(S) is
amenable, and assertion (ii) follows. Moreover, the group 〈S〉 generated by S admits the
homomorphism intoG/C̄(S) induced by the inclusion intoG, whose kernel is 〈S〉 ∩ C̄(S)
and is thus abelian. Hence 〈S〉 is amenable, and assertion (iii) follows.

Let M be the set of normal subgroups M of G such that G/CG(M) is amenable, and
let R1 be the group generated by all members of M. If r ∈ R, then 〈r〉G ∈ M and thus
r ∈ R1. To show the converse, we note that if M1, M2 ∈ M, then the group generated by
M1 andM2 belongs to M since its centralizer inG is equal to CG(M1) ∩ CG(M2), and the
group G/(CG(M1) ∩ CG(M2)) diagonally injects into G/CG(M1)×G/CG(M2), which
is amenable. Therefore R1 is the union of members of M. If r ∈ R1, then r is contained
in some M ∈ M, and since CG(M) < C̄(r), we have r ∈ R. Assertion (iv) follows.

LetG be a countable group. Suppose that the AC-center ofG, denoted by R, is infinite.
We first assume that there exists a finite subset S ⊂ R such that the normal closure M :=
〈S〉G is infinite. Setting L := CG(M), we then have two commuting, normal subgroups
L, M of G such that M is amenable and the quotient group G/(LM) is amenable. If
L ∩M is finite, then the infinite group M/(L ∩M) injects into the group (LM)/L and
hence the index of L in LM is infinite. By [TD, Theorem 18 (H1)], we conclude that G
is stable and thus has the Schmidt property. If L ∩M is infinite, then LM has the infinite
central subgroup L ∩M . Since G/(LM) is amenable, the construction in the proof of
[TD, Theorem 15] yields an ergodic free p.m.p. action of G which is Schmidt.

We next assume that, for each finite subset S ⊂ R, the normal closure 〈S〉G is finite.
For each r ∈ R, the normal closure 〈r〉G is then finite. The group G acts on 〈r〉G by
conjugation, and some finite index subgroup ofG acts on it trivially. Hence the centralizer
CG(r) is of finite index in G, that is, r belongs to the FC-center of G. The AC-center
R is thus contained in the FC-center of G, and they coincide after all. Let us record the
following structural alternative obtained at this point.

PROPOSITION 3.2. Let G be a countable group with infinite AC-center. Then either:
(1) there exist two commuting, normal subgroups L, M of G such that one of them is

infinite and amenable and the quotient group G/(LM) is amenable; or
(2) the AC-center and the FC-center of G coincide, and for each finite subset of the

FC-center of G, its normal closure in G is finite.
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As shown above, if there exists a finite subset S ⊂ R such that the normal closure 〈S〉G
is infinite, then case (1) occurs, and if there exists no such S, then case (2) occurs. In
case (1), it has already been shown that G has the Schmidt property. Therefore, for the
proof of Theorem 1.1, it remains to show that G has the Schmidt property if G has infinite
FC-center and every finite subset of the FC-center has finite normal closure in G.

Finally, we point out the following permanence properties, which are concerned with
the question in Remark 1.4, but are not necessary for the proof of Theorem 1.1.

PROPOSITION 3.3. Let G be a countable group with a finite central subgroup Z. Then:
(i) the group G has infinite FC-center if and only if G/Z has infinite FC-center; and
(ii) the group G has infinite AC-center if and only if G/Z has infinite AC-center.

Proof. For each g ∈ G, let AG(g) denote the conjugacy class of g in G. We note that
an element g ∈ G belongs to the FC-center of G if and only if the set AG(g) is finite.
We set � = G/Z with π : G → � the quotient map. Let R0 be the FC-center of G and
let R0

1 be the FC-center of �. For each g ∈ G, the map π is a surjection from AG(g)

onto A�(π(g)), and is finite-to-one since Z is finite. This implies that π(R0) = R0
1, and

assertion (i) follows.
We now prove assertion (ii). Let R be the AC-center of G and let R1 be the AC-center

of �. It suffices to show that π(R) = R1. For each g ∈ G, we have π(CG(〈g〉G)) <
C�(〈π(g)〉�). We thus have the surjection fromG/CG(〈g〉G) onto �/C�(〈π(g)〉�). Hence
π(R) < R1.

We fix γ ∈ � and setM = 〈γ 〉� and L = C�(M). We choose a section s : � → G of π .
Let Hom(M , Z) be the group of homomorphisms from M into Z such that the product
of two elements τ1, τ2 ∈ Hom(M , Z) is given by the homomorphism m �→ τ1(m)τ2(m).
Since L and M commute, we obtain the homomorphism τ : L → Hom(M , Z) defined
by τl(m) = [s(l), s(m)] for l ∈ L and m ∈ M . We set L1 = ker τ . Then L/L1 is abelian
and hence amenable. If g ∈ G with π(g) = γ , then L1 < π(CG(〈g〉G)) because, for each
l ∈ L1, we have s(l) ∈ CG(s(M)) = CG(〈g〉G) and l = π(s(l)) ∈ π(CG(〈g〉G)).

Suppose that γ ∈ R1 and pick g ∈ G with π(g) = γ . We show that g ∈ R, which
implies that the inclusion R1 < π(R). We set N = CG(〈g〉G). The group G/N is
isomorphic to �/π(N) via π . Since L1 < π(N), we have the surjection from �/L1 onto
�/π(N), which surjects onto �/L because π(N) < L. It follows from γ ∈ R1 that �/L
is amenable. Since L/L1 is also amenable, so are �/L1, �/π(N) and G/N , and thus
g ∈ R.

3.2. An outline of §§4 and 5. Let G be a countable group with infinite FC-center R.
Suppose that every finite subset of R has finite normal closure in G. The proof of the
Schmidt property of G will be given throughout §§4 and 5. In this subsection, we outline
the proof along with a preliminary lemma on the structure of R.

In §4, we show that G has the Schmidt property under the assumption that the center
of R is finite. If we set N = ⋂

r∈R CG(r), then N ∩ R is the center of R. Since CG(r)
is of finite index in G for all r ∈ R, the group G/N is residually finite and thus admits a
free profinite action. Moreover,G/N has infinite FC-center because the FC-center ofG/N
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contains (RN)/N . Following Popa–Vaes [PV, Theorem 6.4] and Deprez–Vaes [DV, §3],
we construct a free profinite Schmidt action G/N � (X, μ) (after passing to some finite
index subgroup of G). We then apply Theorems 2.5 and 2.14 to the translation groupoid
G� (X, μ) and conclude thatG has the Schmidt property. We remark that the proof in §4
does not use the condition that every finite subset of R has finite normal closure in G.

In §5, we assume that the center of R is infinite. We then have an infinite abelian
subgroup A < R normalized by G. This subgroup A will appropriately be chosen and
is not necessarily the center of R. Since each finite subset of R has finite normal closure
in G, there exists a strictly increasing sequence A1 < A2 < · · · of finite subgroups of A
such that each An is normalized by G. Let us draw attention to the following condition.
(�) For every N ∈ N, we have limn |Fn,N |/|An| = 1, where Fn,N is the set of elements of

An whose order is more than N .
For example, if An = Z/2nZ and we embed An into An+1 arbitrarily, then the sequence
A1 < A2 < · · · fulfills this condition. In §5.3, we assume condition (�) and show that G
has the Schmidt property. In §5.4, we deal with the case where condition (�) is not fulfilled.
In this case, by applying Lemma 3.4 below, after replacing (An), we may assume, without
loss of generality, that, for some prime number p, each An is isomorphic to the direct sum
of copies of Z/pZ.

LEMMA 3.4. LetG be a countable group and letA be an infinite abelian normal subgroup
ofG contained in the FC-center ofG. Suppose that each finite subset ofA has finite normal
closure in G and let A1 < A2 < · · · be a strictly increasing sequence of finite subgroups
of A such that each An is normalized by G. Suppose further that, for this sequence,
condition (�) does not hold. Then there exist a prime number p and a strictly increasing
sequence B1 < B2 < · · · of finite subgroups of A such that each Bn is normalized by G
and is isomorphic to the direct sum of copies of Z/pZ.

Proof. Since condition (�) does not hold, after passing to a subsequence of (An), we may
assume that there exists N ∈ N such that the ratio |An \ Fn|/|An| is uniformly positive,
where Fn denotes the set of elements of An whose order is more than N . Let P be the set
of prime numbers. Then An is isomorphic to the direct sum

⊕
p∈P A

p
n , where Apn is the

subgroup of elements of An whose order is a power of p. This direct sum decomposition
is canonical and is thus preserved under G-conjugation. We aim to show that, for some
p ∈ P , the number of elements of Apn whose order is p diverges to infinity after passing
to a subsequence of (An).

Let Cpn be the set of elements of Apn whose order is less than or equal to N . Then Cpn
is a subgroup of Apn . We claim that, for some p ∈ P , after passing to a subsequence of
(An), we have |Cpn | → ∞ as n → ∞. Otherwise, for each p ∈ P , the sequence (|Cpn |)n∈N
would be bounded. Therefore |Cpn | is uniformly bounded among all n and all p ∈ P with
p ≤ N . This is absurd with the condition that |An \ Fn|/|An| is uniformly positive and
|An| → ∞ because each element of An whose order is less than or equal to N is a sum of
elements of Cpn with p ≤ N .

Since Cpn is isomorphic to a direct sum of groups Z/pkZ for some positive integers k
with pk ≤ N , it follows from |Cpn | → ∞ that the number of elements of Cpn whose order
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is p diverges to infinity. This is the claim that we aim to show. Note that elements of A
of order p are preserved under G-conjugation. Note also that each finite set of elements
of A of order p generates a group whose elements other than the trivial one have order p,
which is isomorphic to the direct sum of finitely many copies of Z/pZ. Hence we obtain a
desired sequence B1 < B2 < · · · of subgroups inductively as follows. Choose an element
of

⋃
n An of order p and let B1 be its normal closure in G. Having defined Bn, choose an

element a of
⋃
n An of order p which does not belong to Bn and let Bn+1 be the normal

closure of Bn ∪ {a} in G.

3.3. Examples. We present examples of groups with infinite FC-center such that their
Schmidt property does not follow from known results in [PV, KTD] immediately. Let us
recall those results.
(1) If a countable group G has infinite FC-center and is residually finite, then G has the

Schmidt property ([PV, Theorem 6.4]; see also [KTD, Example 8.10]).
(2) Suppose that a countable group � acts on a countably infinite amenable group A

by automorphisms and suppose further that each �-orbit in A is finite. Then the
semi-direct product � � A is stable [KTD, Example 8.11] and therefore has the
Schmidt property.

Here we recall that a free ergodic p.m.p. action of a countable group is called stable if the
associated orbit equivalence relation absorbs the ergodic p.m.p. hyperfinite equivalence
relation on an atomless standard probability space, under direct product. If a countable
group G admits a free ergodic p.m.p. action that is stable, then G is called stable.

Example 3.5. Let � be the group of Ershov [Er]. This is a countable, residually finite
group with property (T) whose FC-center R is not virtually abelian. (Note that these
conditions imply that R 
= �. Otherwise R = � would be amenable by Lemma 3.1 (iii)
and hence finite by property (T) of �, but this is absurd as R is not virtually abelian.)
Let H be a countable, non-residually-finite group and define G as the amalgamated free
product G = � ∗R (H × R), where R is identified with the subgroup {e} × R of H × R.
Then the FC-center ofG is equal to R, which is proved in the next paragraph, andG is not
residually finite. Moreover, G is not stable, as shown in Corollary 3.10 below.

We prove that the FC-center of G is equal to R. Pick r ∈ R. We naturally identify
H with the subgroup H × {e} of H × R. Let p : G → � be the surjection onto the first
factor. Then ker p = 〈H 〉G. Since R is a normal subgroup of G, it follows from H <

CG(R) that ker p < CG(R) < CG(r). On the other hand, since p is the identity on �,G is
identified with the semi-direct product � � ker p. Then CG(r) is identified with C�(r)�
ker p, which is of finite index in � � ker p. Thus r belongs to the FC-center ofG. We have
shown that R is contained in the FC-center of G. The converse inclusion holds because
the quotient group G/R is isomorphic to the free product (�/R) ∗H whose FC-center is
trivial.

Example 3.6. We set � = SLm(Z) withm ≥ 2. The group Z[1/2]/Z is identified with the
increasing union

⋃
n Z/2

n
Z, where the element 1 ∈ Z/2nZ is identified with the element

1/2n + Z ∈ Z[1/2]/Z. We set An = (Z/2nZ)m and A = (Z[1/2]/Z)m = ⋃
n An. The
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group � acts on each An by automorphisms, and the increasing sequence A1 < A2 < · · ·
fulfills condition (�) in §3.2.

The semi-direct product � � A is not residually finite. In fact, the group Z[1/2]/Z has
no finite index subgroup other than itself, which is proved as follows. Let B be a finite
index subgroup of Z[1/2]/Z and pick r ∈ Z[1/2]. Findm ∈ N with 2mr ∈ Z. SinceB is of
finite index, there exist k, l ∈ N such that 2−kr − 2−lr + Z ∈ B and k − l > m. Then the
element 2m+l(2−kr − 2−lr)+ Z = 2m+l−kr + Z belongs to B and so does r + Z. Thus
we have B = Z[1/2]/Z.

Let E be a countable group with property (T) containing A as a central subgroup. We
define G as the amalgamated free product G = (� � A) ∗A E. Then the FC-center of G
is equal to A, and G is not stable (Corollary 3.10).

We obtain such a group E as follows, relying on the construction of Cornulier [C]
(see Appendix A for the construction of analogous groups). Let H be the subgroup of
SL5(Z[1/2]) consisting of matrices of the form⎛

⎝1 ∗ ∗
0 h ∗
0 0 1

⎞
⎠ , (3.1)

where h runs through elements of SL3(Z[1/2]). Then H has property (T) [C, Proposition
2.7]. The center C of H consists of matrices such that each diagonal entry is 1 and the
(1, 5)-entry is the only off-diagonal entry that is possibly non-zero. Let Z be the subgroup
ofC consisting of matrices whose (1, 5)-entry belongs to Z. Then the groupE := (H/Z)m

is a desired one. Indeed, (C/Z)m is a central subgroup of E isomorphic to A, and E has
property (T) since H has property (T).

Example 3.7. Let p be a prime number and set A = ⊕
N
Z/pZ. For n ∈ N, we define An

as the group of elements (ai)i∈N ∈ A such that ai = 0 if i > n. Every non-trivial element
of A has order p. Thus the increasing sequence A1 < A2 < · · · does not fulfill condition
(�) in §3.2. Let N be the group of matrices (aij )i,j∈N with coefficient in Z/pZ such that
aii = 1 for all i ∈ N and aij = 0 for all i > j . The group N acts on the vector space A
by linear automorphisms, preserving the subspace An. We equip N with the topology of
pointwise convergence as automorphisms of A. Then N is a compact group.

Let � be a countable dense subgroup of N . In the paragraph after next, we will prove
that the FC-center of the semi-direct product � � A is equal to A. As in Example 3.6, let
E be a countable group with property (T) containing A as a central subgroup, and define
G as the amalgamated free product G = (� � A) ∗A E. Then the FC-center of G is equal
to A, and G is not stable (Corollary 3.10).

We find such a group E, relying on the construction of Cornulier [C] again. Let Fp be
the field of order p and let Fp[t] be the ring of polynomials over Fp in one indeterminate t .
We define E as the subgroup of SL5(Fp[t]) consisting of matrices of the form (3.1) with
h running through elements of SL3(Fp[t]). Then E has property (T) by [C, Lemma 2.2].
The center of E is isomorphic to Fp[t] and to A.

Let R be the FC-center of � � A. We prove that R is equal to A. For each n, the group
of elements of � acting on An trivially is of finite index in �. Thus An < R and A < R.
For the converse inclusion, it suffices to show that if an element g ∈ � centralizes a finite
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index subgroup of �, then g is trivial. Suppose otherwise by way of a contradiction. Write
g = (gij )i,j∈N as a matrix and pick positive integers k < l such that gkl 
= 0 and gkj = 0
if 1 < j < l. Since � is dense in N and g commutes with some finite index subgroup of
�, there exists an open neighborhood V of the identity in N such that g commutes with
each element of V . Then there exists an m ∈ N such that if a matrix h = (hij )i,j ∈ N
satisfies hij = 0 for all 1 ≤ i < j < m, then h belongs to V . We may assume that m > l.
Let h ∈ V be the matrix such that the (l, m)-entry is 1 and the other off-diagonal entries
are 0. Then the (k, m)-entries of gh and hg are gkl + gkm and gkm, respectively. We thus
have gh 
= hg, which is a contradiction.

We present a sufficient condition for a countable group not to be stable, and we apply it
to the groups in the above examples. We say that a mean on a countable groupG is diffuse
if its value on each finite subset of G is zero.

PROPOSITION 3.8. Let G be a countable group and let A be a subgroup of G. Suppose
that each diffuse, G-conjugation-invariant mean on G is supported on A and that the pair
(G, A) has property (T). Then G is not stable.

Proof. Suppose that G admits a free ergodic p.m.p. action G� (X, μ) which is stable.
Then we have a central sequence (Tn) in the full group [G� (X, μ)] and an asymptotically
invariant sequence (An) for G� (X, μ) such that T ◦

n An ∩ An = ∅ (and hence μ(An) =
1/2) for all n (see Remark 3.9 below). Property (T) of the pair (G, A) implies that there
exists anA-invariant Borel subsetBn ⊂ X such thatμ(An 	 Bn) → 0. Since the functions
on G defined by g �→ μ({x ∈ X | Tnx = g}) are asymptotically G-conjugation invariant,
the assumption on G-conjugation-invariant means on G implies that there exists a Borel
subset Dn ⊂ X such that Tnx ∈ A for all x ∈ Dn and μ(Dn) → 1. Then

T ◦
n Bn \ Bn ⊂ (T ◦

n (Dn ∩ Bn) \ Bn) ∪ T ◦
n (X \Dn) = T ◦

n (X \Dn),

where the last equation holds since Bn is A-invariant and Tnx ∈ A for all x ∈ Dn.
Thus μ(T ◦

n Bn 	 Bn) ≤ 2μ(X \Dn) → 0 and μ(T ◦
n An 	 An) → 0, which is a

contradiction.

Remark 3.9. Let the group
⊕

N
Z/2Z act on the compact group X0 = ∏

N
Z/2Z by

translation, equip X0 with the Haar measure and let R0 denote the associated orbit
equivalence relation. For each n ∈ N, let T̄n ∈ [R0] be the element of

⊕
N
Z/2Z such

that its coordinate indexed by n is 1 and the other coordinates are 0, and let Ān ⊂ X0 be
the subset consisting of points whose coordinate indexed by n is 0. Then (T̄n) is central in
[R0], (Ān) is asymptotically invariant for R0, and T̄nĀn ∩ Ān = ∅ for all n.

If a discrete p.m.p. equivalence relation R is stable, then we obtain similar sequences as
follows. By stability, we have a decomposition R = R0 × R1, where R1 is some discrete
p.m.p. equivalence relation on a standard probability space (X1, μ1). Define Tn ∈ [R] by
Tn(x, y) = (T̄n(x), y) for x ∈ X0 and y ∈ X1, and setAn = Ān ×X1. Then (Tn) is central
in [R], (An) is asymptotically invariant for R, and TnAn ∩ An = ∅ for all n.

COROLLARY 3.10. None of the groups G in Examples 3.5–3.7 are stable.
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Proof. LetG = � ∗R (H × R) be the group in Example 3.5. ThenG surjects onto the free
product (�/R) ∗H with kernel R. Since each conjugation-invariant mean on (�/R) ∗H
is supported on the trivial element [BH, Théorème 5 (c)], each G-conjugation-invariant
mean on G is supported on R. Since � has property (T), so does the pair (G, R). Thus
Proposition 3.8 applies.

Let G = (� � A) ∗A E be the group in Example 3.6 or 3.7. It similarly turns out that
each G-conjugation-invariant mean on G is supported on A. Since E has property (T), so
does the pair (G, A). Thus Proposition 3.8 applies.

Remark 3.11. Let � be a countable group acting on a countably infinite amenable
group A by automorphisms. The semi-direct product G := � � A then acts on A by
affine transformations, that is, � acts on A by automorphisms and A acts on A by left
multiplication. If the action ofG on A admits an invariant mean, then the pair (G, A) does
not have property (T). Indeed, the associated unitary representation of G on �2(A) weakly
contains the trivial representation, but has no A-invariant unit vector.

If each �-orbit in A is finite, then the action of G on A admits an invariant mean (see
the proof of [TD, Theorem 13, ii]). Therefore, for the stable group G = � � A reviewed
at the beginning of this subsection, the pair (G, A) does not have property (T). We refer to
[DV, Proposition 3.1], [Ki3, Theorem 1.1] and [TD, 0.H] for other relationships between
stability and relative property (T).

4. Groups with non-commutative FC-center
Let G be a countable group with infinite FC-center R. Suppose that the center of R is
finite. In this section, we aim to prove that G has the Schmidt property.

We set N = ⋂
r∈R CG(r). Then R and N commute and N ∩ R is exactly the center of

R. We may assume, without loss of generality, that N ∩ R is central in G after passing
to some finite index subgroup of G. Indeed, the subgroup G0 := ⋂

r∈N∩R CG(r) is of
finite index in G since N ∩ R is finite, and G0 commutes with N ∩ R. Since N ∩ R is
central in R, we have R < G0 and hence the FC-center of G0 is equal to R. If we set
N0 = ⋂

r∈R CG0(r), then N0 = N ∩G0 and hence N0 ∩ R is finite and central in G0. In
general, for a finite index inclusion � < � of countable groups, if � admits a free ergodic
p.m.p. action that is Schmidt, then the action of � induced (not co-induced) from it is also
Schmidt. Therefore, after replacingG withG0, we may assume thatN ∩ R is central inG.

Let G = H0 > H1 > H2 > · · · be a decreasing sequence of finite index subgroups of
G such that

⋂
n Hn = N . We can choose a sequence (rn)n∈N of elements of R \N such

that:
(i) if n 
= m, then rn and rm are distinct in the quotient group R/(N ∩ R); and
(ii) for each n ∈ N, rn belongs to CG(r1, . . . , rn−1) ∩Hn−1.
Indeed, we first note that R/(N ∩ R) is infinite since R is infinite and N ∩ R is finite. Let
r1 be an arbitrary element of R \N . If r1, . . . , rn−1 are chosen, then CG(r1, . . . , rn−1) ∩
Hn−1 is of finite index in G and hence its image in G/(N ∩ R) is of finite index. The
intersection of that image with R/(N ∩ R) is of finite index in R/(N ∩ R) and hence
infinite. If we let rn be an element of R \N whose image in R/(N ∩ R) belongs to that
intersection and is distinct from the images of r1, . . . , rn−1, then conditions (i) and (ii) are
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fulfilled. For an integer n ≥ 2, we set

Gn = CG(r1, . . . , rn−1) ∩Hn−1 ∩ CG(rn).
Let G� (X, μ) be the ergodic p.m.p. action obtained as the inverse limit of the system
of the p.m.p. actions G� G/Gn given by left multiplication. Then N acts on X trivially,
and the induced action G/N � (X, μ) is free because

⋂
n Hn = N .

We show that the translation groupoid (G, μ) := G� (X, μ) admits a central sequence
(Tn) in its full group such that T ◦

n x 
= x and Tnx ∈ R for all n and all x ∈ X. Let pn : X →
G/Gn be the projection obtained from the inverse limit construction. We define a map
Tn : X → G by Tnx = grng

−1 for x ∈ p−1
n (gGn) and g ∈ G. This does not depend on the

choice of g because rn commutes with every element of Gn by the definition of Gn. Since
rn belongs to Gn by condition (ii), T ◦

n preserves the subset p−1
n (gGn) for each g ∈ G.

Therefore Tn belongs to [G] and we have μ(T ◦
n A	 A) → 0 for every Borel subsetA ⊂ X.

For each h ∈ G, Tn commutes with the element φh ∈ [G] defined as the constant map with
value h. Indeed, if x ∈ p−1

n (gGn) with g ∈ G, then (Tn ◦ φh)x = Tn(hx)h = hgrng
−1,

which is equal to (φh ◦ Tn)x. Therefore (Tn) is a central sequence in [G], and we have
T ◦
n x 
= x for every x ∈ X because rn does not belong to N .

We thus obtained the ergodic p.m.p. actionG� (X, μ) such thatN acts onX trivially,
the induced action of G/N on X is free and there exists a central sequence (Tn) in the full
group [G� (X, μ)] such that Tnx 
= x and Tnx ∈ R for all n and all x ∈ X. Recall also
that R is contained in the centralizer CG(N) and that N ∩ R is finite and central in G. In
order to apply Theorem 2.5 or 2.14, we check that at least one of the assumptions in those
two theorems is fulfilled. For p ∈ N, let Apn ⊂ X be the set of p-periodic points of T ◦

n . If
every p ∈ N satisfies μ(Apn) → 0 as n → ∞, then, letting � be a singleton and Mω = N

in Theorem 2.5, we apply it and conclude the Schmidt property forG. Suppose otherwise,
that is, suppose that, for some integer p ≥ 2, the measure μ(Apn) does not converge to
zero as n → ∞. After passing to a subsequence, we may assume that μ(Apn) is uniformly
positive. If x ∈ Apn , then (T ◦

n )
px = x and hence (Tn)px ∈ N and (Tn)px ∈ N ∩ R. Letting

M = N and L = N ∩ R in Theorem 2.14, we apply it and conclude the Schmidt property
of G.

5. Groups with commutative FC-center
5.1. Groupoid extensions. Let G be a countable group and let A be an abelian normal
subgroup ofG. We set � = G/A and choose a section s : � → G of the quotient map, with
s(e) = e. We then have the 2-cocycle σ : � × � → A defined by σ(g, h)s(gh) = s(g)s(h)
for g, h ∈ �. The map σ satisfies the 2-cocycle identity

σ(g, h)σ(gh, k) = gσ (h, k)σ (g, hk)

for all g, h, k ∈ �, where we set ga = s(g)as(g)−1 for g ∈ � and a ∈ A. Note that ga does
not depend on the choice of the section s.

Fix a compact abelian metrizable groupL. We defineX as the group of homomorphisms
from A into L, identified with the closed subgroup of the product group

∏
A L. Let μ

denote the normalized Haar measure onX. The groupG acts onX by (gτ)(a) = τ(g−1ag)

for g ∈ G, a ∈ A and τ ∈ X, and this gives rise to the action of � onX. We set U = X × L
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and regard it as the bundle over X with respect to the projection onto the first coordinate.
We also regard U as the groupoid with unit space X such that the range and source maps
are the projection onto X, and the product is given by (τ , l)(τ , m) = (τ , lm) for τ ∈ X
and l, m ∈ L. The translation groupoid X � � acts on U by (τ , g)(g−1τ , l) = (τ , l) for
τ ∈ X, g ∈ � and l ∈ L.

Let (X � �)(2) be the set of composable pairs of the groupoid X � �, that is, the set
of all pairs of the form ((τ , g), (g−1τ , h)) for some τ ∈ X and g, h ∈ �. The pair of that
form is also denoted by (τ , g, h) for brevity. We define the 2-cocycle σ̃ : (X � �)(2) → U
by

σ̃ (τ , g, h) = (τ , 〈τ , σ(g, h)〉), (5.1)

where 〈τ , a〉 stands for τ(a) for τ ∈ X and a ∈ A. Indeed, the map σ̃ satisfies the 2-cocycle
identity

σ̃ (τ , g, h)σ̃ (τ , gh, k) = (τ ,g)σ̃ (g−1τ , h, k)σ̃ (τ , g, hk), (5.2)

where we set (τ ,g)(g−1τ , l) = (τ , l) for (τ , g) ∈ X � � and l ∈ L, which is the result of
the action of (τ , g) on (g−1τ , l) ∈ U . Let us check equation (5.2). For the first coordinate
in X, both sides are τ . For the second coordinate in L, the left-hand side is

〈τ , σ(g, h)〉〈τ , σ(gh, k)〉 = 〈τ , σ(g, h)σ(gh, k)〉 = 〈τ , gσ (h, k)σ (g, hk)〉
= 〈τ , gσ (h, k)〉〈τ , σ(g, hk)〉 = 〈g−1τ , σ(h, k)〉〈τ , σ(g, hk)〉,

which is equal to the second coordinate of the right-hand side.
We now construct the groupoid extension

1 → U → Gσ̃ → X � � → 1 (5.3)

associated with the 2-cocycle σ̃ (see [Se] for the extension associated with a 2-cocycle of
an equivalence relation with coefficient in a bundle of abelian Polish groups). As a set, we
define Gσ̃ as the fibered product U ×X (X � �) with respect to the range map of X � �.
The range and source of (u, g) ∈ Gσ̃ with u ∈ U and g ∈ X � � are defined as the range
and source of g, respectively. The product of Gσ̃ is given by

(u, g)(v, h) = (ugvσ̃ (g, h), gh) (5.4)

for (u, g), (v, h) ∈ Gσ̃ with (g, h) composable. This product is associative. Indeed, for
three elements (u, g), (v, h), (w, k) ∈ Gσ̃ with (g, h) and (h, k) composable,

(ugvσ̃ (g, h), gh)(w, k) = (ugvσ̃ (g, h)ghwσ̃ (gh, k), ghk)

= (ugvghwgσ̃ (h, k)σ̃ (g, hk), ghk) = (u, g)(vhwσ̃ (h, k), hk).

The inverse of an element (u, g) ∈ Gσ̃ is given by

((g
−1
u)−1σ̃ (g−1, g)−1, g−1) = ((g

−1
(u−1))(g

−1
(σ̃ (g, g−1)−1)), g−1), (5.5)

where the left-hand side is a left inverse of (u, g), the right-hand side is a right inverse of
(u, g), and these two coincide because it follows from s(e) = e that σ(g, e) = e = σ(e, g)
for every g ∈ �, and σ(g, g−1) = gσ (g−1, g) by the 2-cocycle identity. All these groupoid
operations are Borel, and we thus obtain a Borel groupoid Gσ̃ . We have the projection
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from Gσ̃ = U ×X (X � �) ontoX � �, whose kernel is identified with U via the inclusion
of U into Gσ̃ , (τ , l) �→ ((τ , l), (τ , e)) for τ ∈ X and l ∈ L. Consequently, the groupoid
extension (5.3) is obtained.

An element ((τ , l), (τ , γ )) ∈ Gσ̃ = U ×X (X � �) is also denoted by (τ , l, γ ) for
brevity. We define a homomorphism η : X �G → Gσ̃ by

η(τ , (a, γ )) = (τ , τ(a), γ )

for τ ∈ X, a ∈ A and γ ∈ �, where G is identified with A× � via the map (a, γ ) �→
as(γ ). To check that η is indeed a homomorphism, let us recall the product of two elements
of A× � inherited from G, that is,

(a, γ )(b, δ) = (aγ bσ(γ , δ), γ δ)

for a, b ∈ A and γ , δ ∈ �. If we put g = (a, γ ) and h = (b, δ) and regard them as elements
of G, then, for each τ ∈ X,

η(τ , gh) = (τ , τ(aγ bσ(γ , δ)), γ δ) = (τ , τ(a)(γ−1τ)(b)τ (σ (γ , δ)), γ δ)

= ((τ , τ(a))(τ ,γ )(γ−1τ , (γ−1τ)(b))σ̃ (τ , γ , δ), (τ , γ δ))

= (τ , τ(a), γ )(γ−1τ , (γ−1τ)(b), δ) = η(τ , g)η(γ−1τ , h),

where, in the fourth term, the element of Gσ̃ is written as a pair of an element of U and an
element of X � �. Therefore η is a homomorphism. The kernel of η is given by

ker η = {(τ , a) ∈ X � A | a ∈ ker τ }.
The image of X � A under η is given by

η(X � A) = {(τ , τ(a)) ∈ U | a ∈ A}.

5.2. A free action from co-induction. We keep the notation in the previous subsection,
where we constructed the groupoid Gσ̃ . In this subsection, we construct a free p.m.p.
action of Gσ̃ , which will be obtained as the action co-induced from the shift action of
U onto itself. This action was not treated in §2.3 since Gσ̃ is not necessarily discrete.
We do not aim to discuss co-induced actions for non-discrete Borel groupoids in full
generality.

We set G = Gσ̃ and Q = X � � for brevity. We have the groupoid extension

1 → U → G → Q → 1.

Recall that U = X × L is the bundle of a compact abelian metrizable group L, and denote
by Ux the fiber of U at x, that is, {x} × L. Each fiber Ux is often identified with L naturally
if there is no cause for confusion. The bundle U is a groupoid on X and acts on itself by
left multiplication. We co-induce this action to the action of G in the same manner as in
§2.3 as follows. For x ∈ X, we set

Zx = {f : Gx → L | f (gu−1) = uf (g) for all g ∈ Gx and all u ∈ Us(g)}
and define Z as the disjoint union Z = ⊔

x∈X Zx . For each f ∈ Zx , it is natural to regard
the value f (g) ∈ L at g ∈ Gx as an element of Us(g). The set Z is fibered with respect to
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the projection p : Z → X sending each element of Zx to x. Then G acts on Z by

(gf )(h) = f (g−1h)

for g ∈ Gx , h ∈ Gr(g) and f ∈ Zx with x ∈ X.
We define a measure-space structure on Z. Recall that, as a set, G is the fibered product

U ×X Q with respect to the range map of Q. For γ ∈ �, we define a map ψγ : X → G by
ψγ (x) = ((x, e), (x, γ )) for x ∈ X. Then, for each x ∈ X, we have ψγ (x) ∈ Gx and the
family {ψγ (x)}γ∈� is a complete set of representatives of all the equivalence classes in
Gx , where the equivalence relation on Gx is defined as follows: two elements g, h ∈ Gx are
equivalent if and only if g−1h ∈ U . Then Z is identified with the product spaceX × ∏

� L

under the map sending each f ∈ Zx with x ∈ X to (x, (f (ψγ (x)))γ ). The measure-space
structure on Z is induced by this identification, where the space X × ∏

� L is equipped
with the product measure of μ and the normalized Haar measure on L. The action of G on
Z is Borel and preserves the probability measure on Z in the following sense.

PROPOSITION 5.1. We use the above notation.
(i) For all γ ∈ �, x ∈ X and l ∈ L, we have

ψγ (x)
−1(x, l)ψγ (x) = (γ−1x, l),

where we identify U with a subset of G under the injection of U into G.
(ii) We define an action of the group L on Z by lf = (x, l)f for l ∈ L and f ∈ Zx with

x ∈ X. Then this action is Borel, p.m.p. and free.
(iii) For each γ ∈ �, the action of ψγ on Z is Borel and p.m.p., that is, the map from Z

into itself sending each f ∈ Zx with x ∈ X to ψγ (γ x)f ∈ Zγx is Borel and p.m.p.
(iv) Suppose that either L is infinite and |�| ≥ 3 or L is non-trivial and � is infinite.

Then the action of G on Z is essentially free, that is, for almost every f ∈ Z, letting
x ∈ X be the point with f ∈ Zx , we have gf 
= f for each g ∈ Gx except for the
unit at x.

Proof. To prove assertion (i), we pick γ ∈ �, x ∈ X and l ∈ L and set g = (x, γ ) ∈ Q. It
follows from formula (5.5) that ψγ (x)−1 = (σ̃ (g−1, g)−1, g−1) and therefore

ψγ (x)
−1(x, l)ψγ (x) = (σ̃ (g−1, g)−1, g−1)((x, l), g)

= (σ̃ (g−1, g)−1g−1
(x, l)σ̃ (g−1, g), (γ−1x, e)) = ((γ−1x, l), (γ−1x, e)),

where the first and second equations are derived from formula (5.4). Assertion (i) follows.
We prove assertion (ii). Pick l ∈ L and f ∈ Zx with x ∈ X. The element f is identified

with the element of X × ∏
� L given by the pair of x and the function γ �→ f (ψγ (x)).

Let us describe the element of X × ∏
� L corresponding to lf , which is the pair of x and

the function γ �→ (lf )(ψγ (x)). For each γ ∈ �,

(lf )(ψγ (x)) = f ((x, l)−1ψγ (x)) = f (ψγ (x)ψγ (x)
−1(x, l−1)ψγ (x))

= f (ψγ (x)(γ
−1x, l−1)) = l(f (ψγ (x))),

where we apply assertion (i) in the third equation. Therefore the action of l on X × ∏
� L

is given by (x, (lγ )γ ) �→ (x, (llγ )γ ), and the action of L on Z is Borel, p.m.p. and free.
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We prove assertion (iii). Pick γ ∈ � and f ∈ Zx with x ∈ X. The element f is
identified with the element of X × ∏

� L given by the pair of x and the function δ �→
f (ψδ(x)). The element ψγ (γ x)f corresponds to the pair of γ x and the function

δ �→ (ψγ (γ x)f )(ψδ(γ x)) = f (ψγ (γ x)
−1ψδ(γ x)).

We set g = (γ x, γ ) and h = (γ x, δ). By formula (5.5),ψγ (γ x)−1 = (σ̃ (g−1, g)−1, g−1).
For each δ ∈ �, if we define k ∈ L by

(x, k) = σ̃ (g−1, g)−1σ̃ (g−1, h), (5.6)

then we have

ψγ (γ x)
−1ψδ(γ x) = (σ̃ (g−1, g)−1, g−1)((γ x, e), h)

= (σ̃ (g−1, g)−1σ̃ (g−1, h), g−1h) = (x, k)ψγ−1δ(x)

= ψγ−1δ(x)ψγ−1δ(x)
−1(x, k)ψγ−1δ(x) = ψγ−1δ(x)((γ

−1δ)−1x, k),

where the second equation follows from formula (5.4) and the fifth equation follows from
assertion (i). Therefore

f (ψγ (γ x)
−1ψδ(γ x)) = k−1(f (ψγ−1δ(x))),

and the action of ψγ on X × ∏
� L is given by

(x, (lδ)δ) �→ (γ x, (k−1
γ ,δ,xlγ−1δ)δ),

where the element k = kγ ,δ,x ∈ L is determined by equation (5.6). By the definition of σ̃
in (5.1), the function x �→ kγ ,δ,x is Borel. Hence the action of ψγ is Borel and also p.m.p.
by the above description of the action. Assertion (iii) follows.

We prove assertion (iv). Recall that each g ∈ Gx with x ∈ X is written as (γ x, l, γ )
for some γ ∈ � and l ∈ L. By assertion (ii), it suffices to show that, for each non-trivial
γ ∈ �, there exists a conull subset Z̄ ⊂ Z such that, for all f ∈ Z̄ and all l ∈ L, letting
x ∈ X be the point with f ∈ Zx , we have (γ x, l, γ )f 
= f . We fix a non-trivial γ ∈ �.
The action of g = (γ x, l, γ ) on X × ∏

� L is described as

(x, (lδ)δ) �→ (γ x, (lk−1
γ ,δ,xlγ−1δ)δ).

Thus if g fixes the point (x, (lδ)δ), then lk−1
γ ,δ,xlγ−1δ = lδ for all δ ∈ �.

Suppose that L is infinite and |�| ≥ 3. Pick a non-trivial element γ1 ∈� with γ1 
= γ−1.
We fix x ∈ X. If a point (lδ)δ is such that, for some l ∈ L, we have lk−1

γ ,δ,xlγ−1δ = lδ for all
δ ∈ �, then lk−1

γ ,e,xlγ−1 = le and lk−1
γ ,γ1,xlγ−1γ1

= lγ1 . Deleting l, we thus obtain

lγ1 = lel
−1
γ−1 lγ−1γ1

kγ ,e,xk
−1
γ ,γ1,x , (5.7)

which says that lγ1 is determined if le, lγ−1 and lγ−1γ1
are determined. The element γ1 is

distinct from all of e, γ−1 and γ−1γ1. Hence, by Fubini’s theorem, the set of points (lδ)δ
satisfying equation (5.7) is null, where we use the assumption that L is infinite and thus
each singleton subset of L is null. Since x is an arbitrary point of X, by Fubini’s theorem
again, the set of points (x, (lδ)δ) ∈ X × ∏

� L satisfying equation (5.7) is null. Thus it
suffices to let Z̄ be the complement of that null set.
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Next suppose that L is non-trivial and � is infinite. Then there exists an infinite subset
S ⊂ � such that S and γ−1S are disjoint. We fix x ∈ X. Let (lδ)δ be a point such that, for
some l ∈ L, we have lk−1

γ ,δ,xlγ−1δ = lδ for all δ ∈ �. As in the previous paragraph, for all
distinct γ0, γ1 ∈ S, we then have

lγ1 = lγ0 l
−1
γ−1γ0

lγ−1γ1
kγ ,γ0,xk

−1
γ ,γ1,x . (5.8)

The element γ1 is distinct from all of γ0, γ−1γ0 and γ−1γ1. Hence, by Fubini’s theorem,
for all distinct γ0, γ1 ∈ S, the set of points (lδ)δ satisfying equation (5.8) has measure less
than one, where we use the assumption that L is non-trivial and thus each singleton subset
of L has measure less than one. Since we have mutually disjoint, infinitely many pairs
of distinct elements of S, the set of points (lδ)δ satisfying equation (5.8) for all distinct
γ0, γ1 ∈ S is null. We thus obtain Z̄ as well, as before, and assertion (iv) follows.

5.3. The case where condition (�) holds. Let G be a countable group and let A be an
infinite abelian normal subgroup of G contained in the FC-center of G. Suppose that each
finite subset of A has finite normal closure in G and let A1 < A2 < · · · be a strictly
increasing sequence of finite subgroups of A such that each An is normalized by G.
Suppose, further, that condition (�) introduced in §3.2 holds, that is, for all N ∈ N, we
have limn |Fn,N |/|An| = 1, where Fn,N is the set of elements of An whose order is more
than N . Under these assumptions, we aim to construct a free p.m.p. Schmidt action of G.
We may assume that G/A is infinite because otherwise G is amenable. This assumption
will be used in applying Proposition 5.1 (iv) later, and not used for other purposes.

We set � = G/A and choose a section s : � → G of the quotient map with s(e) = e.
We then obtain the 2-cocycle σ : � × � → A. We define X as the dual group Â of A, that
is, the group of homomorphisms from A into the torus T = {z ∈ C | |z| = 1}. Let μ be the
normalized Haar measure on X. We recall the construction in §5.1. Define the action of G
on X by (gτ)(a) = τ(g−1ag) for g ∈ G, a ∈ A and τ ∈ X, which induces the action of �
on X. Let U := X × T be the bundle over X, which is a groupoid with unit space X. Then
we obtain the 2-cocycle σ̃ : (X � �)(2) → U by formula (5.1) and obtain the groupoid
extension

1 → U → Gσ̃ → X � � → 1

together with the homomorphism η : X �G → Gσ̃ such that

ker η = {(τ , a) ∈ X � A | a ∈ ker τ }
and η(τ , a) = (τ , τ(a)) ∈ U for all a ∈ A and τ ∈ X.

Let Gσ̃ � (Z, ζ ) be the free p.m.p. action constructed in §5.2, that is, the action
co-induced from the shift action of U on itself. The space Z is fibered over X. The fiber
at τ ∈ X is denoted by Zτ . For n ∈ N, let �n be the group of elements of � acting on An
trivially. Let � � (Y , ν) be the profinite p.m.p. action associated with the system of the
p.m.p. action � � �/�n given by left multiplication. Through the quotient map from Gσ̃
onto � factoring through X � �, we obtain the p.m.p. action Gσ̃ � (Y , ν). Then Gσ̃ acts
on Y × Z diagonally, where Y × Z is fibered over X with respect to the map sending each
element of Y × Zτ to τ for each τ ∈ X.
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Through the homomorphism η : X �G → Gσ̃ , we obtain the p.m.p. action of X �G

on the product space (W , ω) := (Y × Z, ν × ζ ). We then obtain the p.m.p. action G�

(W , ω) given by g(y, z) = (gτ , g)(y, z) for g ∈ G, y ∈ Y and z ∈ Zτ with τ ∈ X. The
action of A on W is given by a(y, z) = (y, (τ , τ(a))z) for each a ∈ A. Recall that
we defined the action of T on Z by tz = (τ , t)z for t ∈ T and z ∈ Zτ with τ ∈ X in
Proposition 5.1 (ii). Thus, with respect to this action, the element (y, (τ , τ(a))z) is written
as (y, τ(a)z).

We now construct a central sequence (TN) in the full group of the translation groupoid
G� (W , ω). Pick N ∈ N. By condition (�), for some n = nN ∈ N, we have |Fn|/|An| ≥
1 − 1/N , where Fn is the set of elements ofAn whose order is more thanN . Since the dual
Ân of An is isomorphic to An [F, Corollary 4.8], if En denotes the set of elements of Ân
whose order is more thanN , then |En|/|Ân| ≥ 1 − 1/N . The setEn is further �-invariant.
The map pn : X = Â → Ân induced by the inclusion of An into A is surjective [F,
Corollary 4.42]. For each τ ∈ En, since its order is more than N , there exists aτ ∈ An
such that

0 < |τ(aτ )− 1| < | exp(2πi/N)− 1|. (5.9)

We define a map TN : W → A as follows. Let Yn denote the inverse image of the coset e�n
under the projection from Y onto �/�n. For y ∈ gYn with g ∈ � and z ∈ Zτ with τ ∈ X,
if τ belongs to p−1

n (En), then we set

TN(y, z) = gag−1pn(τ)
,

and, otherwise, we set TN(y, z) = e. This is well defined because �n acts on An and Ân
trivially. The map fromW into itself, w �→ (TNw)w, is an automorphism ofW because A
acts on Y trivially and preserves each fiber Zτ with τ ∈ X. Thus TN is an element of the
full group [G� (W , ω)].

LEMMA 5.2. We use the above notation.
(i) For each N ∈ N and g ∈ G, we have φg ◦ TN = TN ◦ φg , where φg : X → G is the

element of the full group [G� (W , ω)] given by the constant map with value g.
(ii) For each Borel subset B ⊂ W , we have ω(T ◦

NB 	 B) → 0 as N → ∞.
(iii) We define BN ⊂ W as the set of periodic points of T ◦

N whose period is more thanN .
Then ω(BN) ≥ 1 − 1/N for all N ∈ N.

Proof. To prove assertion (i), we pick N ∈ N and g ∈ G. Let n = nN ∈ N be the integer
chosen before to obtain the subset En ⊂ Ân. We also pick y ∈ hYn with h ∈ � and z ∈ Zτ
with τ ∈ X, and set w = (y, z). If τ ∈ p−1

n (En), then (φg ◦ TN)w = g(hah−1pn(τ)
) and

(TN ◦ φg)w = TN(ḡy, gz)g = (ḡha(ḡh)−1pn(gτ)
)g = g(hah−1pn(τ)

),

where ḡ denotes the image of g in �. Thus φg ◦ TN = TN ◦ φg at w. If τ 
∈ p−1
n (En), then

(φg ◦ TN)w = g, and (TN ◦ φg)w = g because gτ 
∈ p−1
n (En). Assertion (i) follows.

We prove assertion (ii). Let the group T act on W by t (y, z) = (y, tz) for t ∈ T, y ∈ Y
and z ∈ Z. Since T is compact, the action T � W is isomorphic to the action T � D × T

given by t (w, s) = (w, ts) for t , s ∈ T and w ∈ D, where D is a Borel subset ofW that is
the product of Y with a Borel fundamental domain for the action T � Z.
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We pick N ∈ N and let n = nN . For y ∈ gYn with g ∈ � and z ∈ Zτ with τ ∈ X, if τ
belongs to p−1

n (En), then

T ◦
N(y, z) = (y, τ(gag−1pn(τ)

)z) = (y, 〈g−1τ , ag−1pn(τ)
〉z), (5.10)

and, otherwise, T ◦
N(y, z) = (y, z). This shows that, for each y ∈ Y and τ ∈ X, the map

T ◦
N preserves the set {y} × Zτ , and on that set, the map T ◦

N is equal to the transformation
given by some single element of T. Moreover, {y} × Zτ is T-invariant. Therefore if T ◦

N is
regarded as a automorphism ofD × T under the isomorphism betweenW andD × T, then
T ◦
N preserves each orbit {w} × T with w ∈ D, and on that orbit, the map T ◦

N is equal to the
transformation given by some single element of T. By inequality (5.9), those elements of
T, that is, the values 〈g−1τ , ag−1pn(τ)

〉 in equation (5.10), are uniformly close to 1 if N is
so large that exp(2πi/N) is close to 1. Thus assertion (ii) follows.

We pick N ∈ N and let n = nN . If y ∈ gYn with g ∈ � and z ∈ Zτ with τ ∈ p−1
n (En),

then the value 〈g−1τ , ag−1pn(τ)
〉 ∈ T has order more thanN by inequality (5.9). Moreover,

freeness of the action T � Z, shown in Proposition 5.1 (ii), and equation (5.10) imply that
(y, z) is a periodic point of T ◦

N whose period is more than N . Assertion (iii) follows from
this together with the inequality |En|/|Ân| ≥ 1 − 1/N .

We are going to apply Theorem 2.5. Let us check that the assumption in it is fulfilled for
the p.m.p. action G� (W , ω), the G-equivariant measure-preserving map π : (W , ω) →
(X, μ) and the central sequence (TN) in the full group [G� (W , ω)], where we define the
map π by π(y, z) = τ for y ∈ Y and z ∈ Zτ with τ ∈ X. We first note that (TN) is indeed
central by Lemma 5.2 (i) and (ii). The stabilizer of a point of W in G depends only on its
image under π . Indeed, the action Gσ̃ � (Z, ζ ) is essentially free by Proposition 5.1 (iv)
and thus the stabilizer of almost every w ∈ W is equal to the kernel of π(w) ∈ X = Â.
As pointed out in the proof of Lemma 5.2 (ii), T ◦

N preserves the set of the form {y} × Zτ

with y ∈ Y and τ ∈ X and thus preserves each fiber of π . For each w ∈ W , since A is
abelian and the kernel of π(w) is a subgroup of A, the element TNw ∈ A belongs to the
centralizer of the stabilizer ofw inG. The inequality ω(BN) ≥ 1 − 1/N shown in Lemma
5.2 (iii) implies that ω({w ∈ W | T ◦

Nw 
= w}) → 1 asN → ∞. By Lemma 5.2 (iii) again,
for each p ∈ N, if BpN ⊂ W denotes the set of p-periodic points of T ◦

N , then ω(BpN) → 0
as N → ∞. Thus the assumption in Theorem 2.5 is fulfilled, and, by the theorem, G has
the Schmidt property.

5.4. The other case. LetG be a countable group and let A be an infinite abelian normal
subgroup of G contained in the FC-center of G. Suppose that each finite subset of A
has finite normal closure in G and let A1 < A2 < · · · be a strictly increasing sequence of
finite subgroups ofA such that eachAn is normalized byG. In this subsection, we suppose
that condition (�) in §3.2 does not hold for this sequence and then construct a free p.m.p.
Schmidt action ofG. By Lemma 3.4, we may assume, without loss of generality, that there
exists a prime number p such that each An is isomorphic to the direct sum of finitely many
copies of Z/pZ. We may also assume that A = ⋃

n An and that G/A is infinite as in the
previous subsection.
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We set � = G/A and choose a section s : � → G of the quotient map with s(e) = e. We
then obtain the 2-cocycle σ : � × � → A. We define X as the group of homomorphisms
from A into the direct product L := ∏

N
Z/pZ, while X denoted the dual group Â of A

in the previous subsection. Let μ be the normalized Haar measure on X. Note that if we
fix an embedding of Z/pZ into the torus T, then the dual Â is identified with the group
of homomorphisms from A into Z/pZ since all elements of A = ⋃

n An, except for the
trivial one, have order p. Under this identification, we often identify X with the product
group

∏
N
Â unless there is cause for confusion.

We recall the construction in §5.1. Define the action ofG onX by (gτ)(a) = τ(g−1ag)

for g ∈ G, a ∈ A and τ ∈ X, which induces the action of � on X. Let U = X × L be
the bundle over X, which is a groupoid with unit space X. Then we obtain the 2-cocycle
σ̃ : (X � �)(2) → U by formula (5.1) and obtain the groupoid extension

1 → U → Gσ̃ → X � � → 1

together with the homomorphism η : X �G → Gσ̃ such that

ker η = {(τ , a) ∈ X � A | a ∈ ker τ }
and η(τ , a) = (τ , τ(a)) ∈ U for all a ∈ A and τ ∈ X.

LEMMA 5.3. We use the above notation.
(i) For each N ∈ N, the set of points τ = (τi)i∈N ∈ X such that

⋂N
i=1 ker τi = ker τ is

μ-null.
(ii) For μ-almost every τ ∈ X, we have ker τ = {e}. Therefore the groupoid X � A

embeds into U via η if it is restricted to some μ-conull subset of X.

Proof. The set in assertion (i) is written as

⊔
τ1,...,τN∈Â

{τ1} × · · · × {τN } ×
∞∏

i=N+1

{ξ ∈ Â | ⋂N
j=1 ker τj < ker ξ}. (5.11)

We note that if a is a non-trivial element of A, then the subgroup {ξ ∈ Â | a ∈ ker ξ} is
of index p in Â and thus has measure 1/p, where Â is equipped with the normalized
Haar measure. Then, for each τ1, . . . , τN ∈ Â, the set {ξ ∈ Â | ⋂N

i=1 ker τi < ker ξ} has
measure at most 1/p because this is contained in the set {ξ ∈ Â | a ∈ ker ξ} if a is chosen
to be a non-trivial element of

⋂N
i=1 ker τi . By Fubini’s theorem, the set in (5.11) is μ-null.

For each non-trivial a ∈ A, the set {τ ∈ X | a ∈ ker τ } is identified with the product set∏
N
{ξ ∈ Â | a ∈ ker ξ} and hence is μ-null. Assertion (ii) follows.

Let Gσ̃ � (Z, ζ ) be the free p.m.p. action constructed in §5.2, that is, the action
co-induced from the shift action of U on itself. The space Z is fibered over X. The
fiber at τ ∈ X is denoted by Zτ . For n ∈ N, let �n be the group of elements of �
acting on An trivially. Let � � (Y , ν) be the profinite p.m.p. action associated with
the system of the p.m.p. action � � �/�n given by left multiplication. As with the
previous subsection, let Gσ̃ act on Y × Z diagonally, where Y × Z is fibered over X
with respect to the map sending each element of Y × Zτ to τ for each τ ∈ X. Through
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the homomorphism η : X �G → Gσ̃ , we obtain the p.m.p. action of G on the product
space (W , ω) := (Y × Z, ν × ζ ). We note that the action G� (W , ω) is essentially free
because the action Gσ̃ � (Z, ζ ) is essentially free by Proposition 5.1 (iv) and ker η is
trivial in the sense of Lemma 5.3 (ii).

We now construct a central sequence (TN) in the full group of the translation groupoid
G� (W , ω). Pick N ∈ N. For each a ∈ A, we set

Xa = {τ = (τi)i∈N ∈ X | τ1(a) = · · · = τN(a) = 0, τ(a) 
= 0}.
By Lemma 5.3 (i), X = ⋃

a∈A Xa up to null sets. Let Yn denote the inverse image of the
coset e�n under the projection from Y onto �/�n. Then

X × Y =
∞⋃
n=1

⋃
a∈An\An−1

⋃
g�n∈�/�n

Xa × gYn,

where we setA0 = {e}. If a ∈ An \ An−1 and g, h ∈ �, then h(Xa × gYn) = Xh·a × hgYn

with respect to the diagonal action � � X × Y , where the dot stands for the action of �
on A. Thus the saturation �(Xa × gYn) is the disjoint union of the translates h(Xa × gYn)

with h running through representatives of elements of �/�n. Let us call such a subset a
(�/�n)-base, that is, call a Borel subset B ⊂ X × Y a (�/�n)-base if B is �n-invariant
and the saturation �B is the disjoint union of the translates hB with h running through
representatives of elements of �/�n.

LEMMA 5.4. With the above notation, there exist Borel subsets of X, B1, B2, . . . , such
that X × Y = ⊔∞

m=1 �Bm and each Bm is a (�/�n)-base contained in Xa × gYn for
some n ∈ N, a ∈ An \ An−1 and g ∈ �.

Proof. For each n ∈ N, let D(n, 1), D(n, 2), . . . , D(n, kn) be an enumeration of the
(�/�n)-bases Xa × gYn indexed by a ∈ An \ An−1 and a representative g of an element
of �/�n, with kn = |An \ An−1| |�/�n|. Let (Em)m∈N be the enumeration of the sets
D(n, k) with respect to the lexicographic order of the indices (n, k).

We inductively define a Borel subset Bm ⊂ X × Y . We set B1 = E1. Suppose that
B1, . . . , Bm−1 are defined. We set Bm = Em \ ⋃m−1

i=1 �Bi . Then Em = D(n, k) for some
n and k and thus Bm is a (�/�n)-base. By construction, �Bm and �Bl are disjoint for all
distinct m, l. Since the sets Em cover X × Y , the sets �Bm cover X × Y .

We define a map TN : W → A as follows. Let q : W → X × Y be the projection that
sends a point (y, z) ∈ W with z ∈ Zτ and τ ∈ X to the point (τ , y). By Lemma 5.4, the set
X × Y is covered by the mutually disjoint sets �Bm withm ∈ N. For eachm ∈ N, we have
nm ∈ N, am ∈ Anm \ Anm−1 and gm ∈ � such that the set Bm is a (�/�nm)-base contained
in Xam × gmYnm . For w ∈ q−1(hBm) with h ∈ �, we set

TNw = h · am.

This is well defined because Bm is a (�/�nm)-base and am is fixed by �nm . The map from
W into itself, w �→ (TNw)w, is an automorphism of W because A preserves each fiber
of q. Thus TN is an element of the full group [G� (W , ω)].
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LEMMA 5.5. We use the above notation.
(i) For every N ∈ N and g ∈ G, we have φg ◦ TN = TN ◦ φg , where φg : X → G is

the element of the full group [G� (W , ω)] given by the constant map with value g.
(ii) For every Borel subset B ⊂ W , we have ω(T ◦

NB 	 B) → 0 as N → ∞.
(iii) For every N ∈ N and every w ∈ W , we have T ◦

Nw 
= w.

Proof. We prove assertion (i). If w ∈ q−1(hBm) with h ∈ �, then we have (TN ◦ φg)w =
TN(gw)g = ((ḡh) · am)g with ḡ being the image of g in �, and we also have (φg ◦
TN)w = g(h · am). These two coincide.

We prove assertion (ii). The proof is similar to that of Lemma 5.2 (ii). Using the action
of U on Z, which restricts the action of Gσ̃ , we define an action of L on Z by lf = (τ , l)f
for l ∈ L and f ∈ Zτ with τ ∈ X. This is the action defined in Proposition 5.1 (ii). Let L
act on W by l(y, z) = (y, lz) for l ∈ L, y ∈ Y and z ∈ Z.

Fix N ∈ N. Recall that the group A acts on W via the homomorphism η : X �G →
Gσ̃ , which satisfies η(τ , a) = (τ , τ(a)) for all τ ∈ X and a ∈ A. Hence, if w = (y, z) ∈
q−1(hBm) with z ∈ Zτ , τ = (τi)i∈N ∈ X and h ∈ �, then

T ◦
Nw = (y, 〈τ , TNw〉z) = (y, τ(h · am)z).

Since q(w) = (τ , y) ∈ hBm, we have τ ∈ Xh·am and thus τ1(h · am) = · · · = τN(h ·
am) = 0 and τ(h · am) 
= 0. This says that the element τ(h · am) ∈ L = ∏

N
Z/pZ is

non-trivial and is close to the identity if N is large. The definition of TNw depends only
on q(w), and the action of L onW preserves each fiber of q. Hence, on each L-orbit inW ,
the map T ◦

N is equal to the transformation given by some single element of L. Assertion
(ii) then follows from the existence of a Borel fundamental domain for the action L� Z

as well as in the proof of Lemma 5.2 (ii).
Assertion (iii) follows from the condition that τ(h · am) 
= 0, shown above, and freeness

of the action of L on Z, which was shown in Proposition 5.1 (ii).

Therefore the groupoid G� (W , ω) is Schmidt, and so is its almost every ergodic
component by Lemma 2.2. We have already shown that the action G� (W , ω) is
essentially free, in the paragraph after Lemma 5.3. Thus G has the Schmidt property.

6. Another construction using ultraproducts
Let G be a countable group with infinite FC-center. We construct a free p.m.p. Schmidt
action of G by way of ultraproducts. This construction is self-contained and independent
of the construction given so far.

Step 1. Setting up the sequence of actions. Let A denote the FC-center of G. Then A has
an infinite abelian subgroup B, which is found as follows. First, pick a non-trivial a1 ∈ A.
If 〈a1〉 is infinite, let B = 〈a1〉. Otherwise, pick an element a2 of the set CA(a1) \ 〈a1〉,
which is non-empty because CA(a1) is of finite index in A and hence infinite. If 〈a1, a2〉 is
infinite, let B = 〈a1, a2〉. Otherwise, pick an element a3 of the set CA(a1, a2) \ 〈a1, a2〉,
which is non-empty by the same reason. Repeat this procedure. Then either it stops in finite
steps and the group B = 〈a1, . . . , an〉 for some n is infinite and abelian, or it does not stop
and the group B = 〈a1, a2, . . .〉 is infinite and abelian.
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We may write B as an increasing union of finitely generated subgroups B = ⋃
n∈N Bn.

Let Gn := CG(Bn), so that Gn is a finite index subgroup of G which contains B. Since
B is abelian, we may find a free ergodic compact action B �

β (Y , μY ) of B, where Y is
a compact abelian metrizable group and β : B → Y is an injective homomorphism with
dense image, and B is acting on Y by left translation via β. Let Gn �βn (Y , μY )Gn/B be
the p.m.p. action co-induced from the action β of B. Explicitly, this is defined as follows.
We pick a section tn : Gn/B → Gn of the projection map Gn → Gn/B with tn(eB) = e,
and we let wn : Gn ×Gn/B → B be the associated cocycle for the action Gn � Gn/B

given bywn(g, hB) := tn(ghB)
−1gtn(hB) for g, h ∈ Gn. Then the actionGn �βn YGn/B

is given by

(βn(g)x)(hB) := β(wn(g, g−1hB))x(g−1hB)

for g, h ∈ Gn. For each n, pick a section sn : G/Gn → G of the projection map G →
G/Gn with sn(eGn) = e, and let vn : G×G/Gn → Gn be the associated cocycle for
the p.m.p. action G� (G/Gn, μG/Gn) (where μG/Gn is the normalized counting mea-
sure), given by vn(g, hGn) := sn(ghGn)

−1gsn(hGn) for g, h ∈ G. Then we equip Zn :=
G/Gn × YGn/B with the product measure ηn := μG/Gn × μ

Gn/B
Y and we let G�

αn

(Zn, ηn) be the skew product action, which is the p.m.p. action defined by

αn(g)(kGn, x) := (gkGn, βn(vn(g, kGn))x)

for g ∈ G and (kGn, x) ∈ Zn.

Step 2. The ultraproduct and its quotients. Fix a non-principal ultrafilter V on N and let
G�

α (ZV , ηV ) be the ultraproduct of the sequence of actions (G�
αn (Zn, ηn))n∈N with

respect to V . Thus ZV = (
∏
n Zn)/∼V , where ∼V is the equivalence relation on

∏
n Zn

such that (yn) ∼V (zn) if and only if {n ∈ N | yn = zn} ∈ V; we write [(zn)]V for the
equivalence class of the sequence (zn). For a sequence (Dn) of Borel sets Dn ⊂ Zn, let
[(Dn)]V be the associated basic measurable subset of ZV , that is,

[(Dn)]V = {[(zn)]V | lim
n→V

1Dn(zn) = 1},
where 1Dn is the indicator function of Dn. The assignment [(Dn)]V �→ limn→V ηn(Dn)
defines a premeasure on the algebra of all such basic measurable sets, and hence this
assignment extends uniquely to a countably additive measure ηV on the completion BV
of the sigma algebra generated by the basic measurable sets. This is how the measure ηV
is defined. The action α, of G on ZV , is given by α(g)[(zn)]V := [(gzn)]V .

Likewise, let G� (XV , μV ) denote the ultraproduct with respect to V , of the
sequence of actions (G� (G/Gn, μG/Gn))n∈N. Then the projection map p : (ZV , ηV ) →
(XV , μV ), [(knGn, xn)]V �→ [(knGn)]V , is measure-preserving and G-equivariant.

LetG� (P , μP ) denote the profinite action that is the inverse limit of the finite actions
G� G/Gn. Elements of P consist of sequences (gmGm) with gmGm ⊃ gm+1Gm+1 for
allm. For each [(knGn)]V ∈ XV and eachm ∈ N, let�m[(knGn)]V be the unique left coset
gGm ofGm for which the set {n ∈ N | knGn ⊂ gGm} belongs to V . Then each�m : XV →
G/Gm is G-equivariant and measure-preserving, and �m[(knGn)]V ⊃ �m+1[(knGn)]V ,
so we obtain the measure-preserving G-equivariant map � : (XV , μV ) → (P , μP ) given
by �[(knGn)]V = (�m[(knGn)]V )m.
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For each n, let πn : Zn → Y be the map πn(kGn, x) := x(eB) projecting to the
identity-coset coordinate of x ∈ YGn/B . Let π : ZV → Y be defined by

π [(knGn, xn)]V := lim
n→V

πn(knGn, xn) = lim
n→V

xn(eB)

(note that this limit exists since Y is compact). By [BTD, Proposition 8.4], this map
is measurable and measure-preserving, with ηV (π−1(E)	 [(π−1

n (E))]V ) = 0 for every
Borel subset E of Y . Let Y denote the subalgebra of BV consisting of all sets of the form
π−1(E) with E ⊂ Y Borel, and let P denote the subalgebra of BV consisting of all sets of
the form (� ◦ p)−1(C) with C ⊂ P Borel.

Step 3. The central sequence. For each b ∈ B, the conjugacy class bG of b in G is finite,
and the map Tb : ZV → bG given by

Tb[(knGn, xn)]V := lim
n→V

knbk
−1
n

is well defined, since, if m(b) ∈ N is the least such that Gm(b) < CG(b), then,
for all n ≥ m(b), the conjugate knbk

−1
n depends only on the coset knGn of Gn.

Letting (gmGm)m∈N := �[(knGn)]V , we have {n ∈ N | knGn ⊂ gm(b)Gm(b)} ∈ V and
hence Tb[(knGn, xn)]V = gm(b)bg

−1
m(b) = limm→∞ gmbg

−1
m . In particular, the map Tb

is P-measurable. We have Tb(gz) = gTb(z)g
−1 for all g ∈ G and z ∈ ZV . The map

T ◦
b : ZV → ZV given by T ◦

b (z) = α(Tb(z))z is an automorphism of (ZV , ηV ) which
commutes with α(g) for all g ∈ G. Then the map p is T ◦

b -invariant, and, in particular,
every set in P is T ◦

b -invariant.
For each b ∈ B and [(knGn, xn)]V ∈ ZV , since the set {n ∈ N | Tb[(knGn, xn)]V =

knbk
−1
n } belongs to V , the transformation T ◦

b is given by

T ◦
b [(knGn, xn)]V = [(knGn, βn(vn(knbk−1

n , knGn))xn)]V .

For all large enough n, we have Gn < CG(b), and for such n, since B < Gn, we have
vn(knbk

−1
n , knGn) = vn(kn, eGn)vn(b, eGn)vn(kn, eGn)−1 = b. Since this holds for all

large n, we obtain

T ◦
b [(knGn, xn)]V = [(knGn, βn(b)xn)]V .

Also, for all n with Gn < CG(b), for each hB ∈ Gn/B we have b−1hB = hB and
wn(b, b−1hB) = b, so that (βn(b)xn)(hB) = β(b)xn(hB), and therefore

π(T ◦
b [(knGn, xn)]V ) = lim

n→V
(βn(b)xn)(eB) = lim

n→V
β(b)xn(eB)

= β(b)π([(knGn, xn)]V ). (6.1)

Let (bi)i∈N be a sequence of distinct elements in B with β(bi) converging weakly to the
identity element of Y . Then, for each Borel subset E of Y , we have μY (β(bi)E 	 E) → 0
as i → ∞, so it follows from (6.1) that ηV (T ◦

bi
(π−1(E))	 π−1(E)) → 0 as i → ∞.

Thus both P and Y belong to the sigma subalgebra D of BV consisting of all D ∈ BV
such that limi→∞ ηV (T ◦

bi
D 	D) = 0. Since each Tbi commutes with α(G), the sigma

algebra D is α(G)-invariant.
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Step 4. Ensuring essential freeness for the action of A on the upcoming separable
quotient. We pick a ∈ A \ {e} and let Fa ⊂ XV be the fixed point set of a in XV .
Then we have XV \ Fa = [(Ca,n)n]V , where Ca,n := {kGn ∈ G/Gn | akGn 
= kGn}. We
can write the set Ca,n as a union of three pairwise disjoint sets Ca,n,0, Ca,n,1, Ca,n,2

such that aCa,n,i ∩ Ca,n,i = ∅ (indeed, let Ca,n,0 be a maximal subset of Ca,n such
that aCa,n,0 ∩ Ca,n,0 = ∅ and set Ca,n,1 := aCa,n,0 ∩ Ca,n and Ca,n,2 := Ca,n \ (Ca,n,0 ∪
Ca,n,1)). Each of the sets Da,i := (� ◦ p)−1([(Ca,n,i )n]V ) is T ◦

b -invariant for all b ∈ B
and hence belongs to D. For c ∈ aG, we define Fa,c as the set of all [(knGn)]V ∈ Fa
for which limn→V sn(knGn)−1asn(knGn) = c, so that Fa,c is a basic measurable subset of
XV corresponding to the sequence of sets {kGn ∈ G/Gn | sn(kGn)asn(kGn)−1 = c} with
n ∈ N. The sets Fa,c with c ∈ aG partition Fa . Each of the sets p−1(Fa,c) is T ◦

b -invariant
for all b ∈ B and hence belongs to D.

Step 5. Defining the separable quotient of the ultraproduct. Since D isG-invariant and both
the algebras P and Y are countably generated and G is countable, we can find a countably
generated G-invariant sigma subalgebra D0 of D which contains both P and Y as well
as all of the sets Da,i and p−1(Fa,c) for a ∈ A \ {e}, c ∈ aG and i ∈ {0, 1, 2}. Then we
may find a point realizationG� (W0, μ0) for the action ofG on the measure algebra D0,
along with a G-equivariant measure-preserving map ϕ : (ZV , ηV ) → (W0, μ0) which is a
point realization of the measure algebra inclusion D0 ↪→ BV . For each b ∈ B, since the
map Tb is P-measurable and P ⊂ D0, Tb descends via ϕ to a map Sb : W0 → bG, which
satisfies Sb(gw) = gSb(w)g

−1 for all g ∈ G and w ∈ W0. The map S◦
b : W0 → W0 given

by S◦
b(w) = Sb(w)w is an automorphism of (W0, μ0) with ϕ ◦ T ◦

b = S◦
b ◦ ϕ. Since Y ⊂

D0 is invariant under the group {T ◦
b | b ∈ B}, the map π descends to a measure-preserving

map π0 : (W0, μ0) → (Y , μY ) with π0(S
◦
bw) = β(b)π0(w) for all b ∈ B. It follows that

the group {S◦
b | b ∈ B} acts essentially freely on W0 since β(B) acts freely on Y .

Since D0 ⊂ D, it follows that (Sbi )i∈N is a central sequence in the full group of the
action G� (W0, μ0) with S◦

bi
w 
= w for almost every w ∈ W0. However, it is not clear

whether this action of G is essentially free, so we take an essentially free action G/A�

(W1, μ1) and let G� (W0 ×W1, μ0 × μ1) be the product action, where G acts on W1

via the projection onto G/A. Then each Sb : W0 → bG lifts to the map S̃b : W0 ×W1 →
bG via the projection from W0 ×W1 onto W0, and it satisfies S̃b(gw) = gS̃b(w)g

−1 for
all g ∈ G and w ∈ W0 ×W1. The map S̃◦

b is given by S̃◦
b(w0, w1) = Sb(w0)(w0, w1) =

(S◦
b(w0), w1) and hence an automorphism of W0 ×W1, and the group {S̃◦

b | b ∈ B} acts
essentially freely on W0 ×W1. Since A acts trivially on W1, it follows that (S̃bi )i∈N is a
central sequence in the full group of the action G� (W0 ×W1, μ0 × μ1), and it satisfies
S̃◦
bi
w 
= w for almost every w ∈ W0 ×W1.
Thus the proof will be complete once we show that the action G� (W0 ×W1, μ0 ×

μ1) is essentially free. For this, it is enough to show that the action A� (W0, μ0) is
essentially free.

Step 6. Verifying that the actionA� (W0, μ0) is essentially free. Fix a ∈ A \ {e}. Suppose
that there is some c ∈ aG for which the set Fa,c has positive measure. We first show
that, for almost every z ∈ p−1(Fa,c), π(α(a)z) and π(z) are distinct. Since Fa,c is a
subset of Fa , if [(knGn)]V ∈ Fa,c, then, for V-almost every n ∈ N, we have vn(a, knGn) =
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sn(knGn)
−1asn(knGn) = c and hence c ∈ Gn. Since the sequence (Gn) is decreasing,

this implies that c ∈ Gn for all n ∈ N, and hence the element β(wn(c, c−1B)) ∈ Y
is well defined for all n. Let yc denote the limit along V of this sequence, yc :=
limn→V β(wn(c, c−1B)) ∈ Y . For each z = [(knGn, xn)]V ∈ p−1(Fa,c), we have α(a)z =
[(knGn, βn(c)xn)]V , and hence

π(α(a)z) = lim
n→V

β(wn(c, c−1B))xn(c
−1B) = yc lim

n→V
xn(c

−1B) and

π(z) = lim
n→V

xn(eB).
(6.2)

To see that these are almost surely distinct, we consider the two possibilities of whether
c ∈ B or c 
∈ B. If c ∈ B, then xn(c−1B) = xn(eB) and yc = limn→V β(wn(c, B)) =
β(c) 
= e, and hence π(α(a)z) = β(c)π(z) 
= π(z), as was to be shown. Now suppose
that c 
∈ B. By [BTD, Proposition 8.4], the map πc : (ZV , ηV ) → (Y , μY ) defined by
πc[(knGn, xn)]V := yc limn→V xn(c−1B) is measurable and measure-preserving, and, for
each Borel subset E of Y , we have ηV (π−1

c (E)	 [(π−1
c,n (E))n]V ) = 0, where the map

πc,n : (Zn, ηn) → (Y , μY ) is defined by πc,n(kGn, x) := ycx(c
−1B). Since c 
∈ B, the

random variables πn, πc,n are independent for every n. Therefore the random variables
π , πc are also independent. Since μY is atomless, it follows that π(z) 
= πc(z) for almost
every z ∈ ZV . By (6.2), for almost every z ∈ p−1(Fa,c), we thus have π(α(a)z) = πc(z) 
=
π(z), as was to be shown.

It now follows that π(α(a)z) 
= π(z) for almost every z ∈ p−1(Fa). Since π = π0 ◦
ϕ and since each of the sets p−1(Fa) belongs to D0, it follows that π0(aw) 
= π0(w)

and hence aw 
= w for almost every w ∈ ϕ(p−1(Fa)). In addition, since each of the sets
Da,i for i ∈ {0, 1, 2} belongs to D0, it follows that aw 
= w for almost every w ∈ W0 \
ϕ(p−1(Fa)). This shows that the action of A on W0 is essentially free.
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A. Appendix. A Kazhdan group with prescribed center
Given a countable abelian group A, we construct a countable group G with property (T)
such that the center of G is isomorphic to A. We rely on the construction of Cornulier
[C] as well as Examples 3.6 and 3.7. Let R := Z[t] be the ring of polynomials over Z

in one indeterminate t . In the course of the construction, we will use property (T) of the
group SL3(R) (e.g., [EJZ, Theorem 1.1] and [M, Theorem 1.8]) and property (T) of the
pair (SL3(R)� R

3, R3) [Ka, Theorem 1.9, a)]. Note that the statements in those papers
are given in terms of the group generated by elementary matrices in SL3(R), which is, in
fact, equal to SL3(R) by [Su, Corollary 6.6].

Let H be the subgroup of SL5(R) consisting of matrices of the form

g =
⎛
⎝1 u c

0 h v

0 0 1

⎞
⎠ , (A.1)
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where h ∈ SL3(R), c ∈ R, and u and v are row and column vectors of R3, respectively.
Let C be the center of H , which consists of matrices g such that h = I , u = 0 and v = 0.
Then H/C is isomorphic to the semi-direct product � := SL3(R)� (R

3 × R3), where
SL3(R) acts on R3 × R3 by h(u, v) = (uh−1, hv) for h ∈ SL3(R), a row vector u ∈ R3

and a column vector v ∈ R3. In fact, the map sending a matrix g ∈ H of the form (A.1) to
the element (h, (u, h−1v)) of � induces an isomorphism.

The group � has property (T). To see this, recall the following fact. If G is a countable
group andN is a normal subgroup ofG such that the groupG/N and the pair (G, N) have
property (T), then G has property (T) [BHV, Remark 1.7.7]. Property (T) of the group
SL3(R) and the pair (SL3(R)� R

3, R3) thus implies that SL3(R)� R
3 has property (T).

The group � is written as the semi-direct product (SL3(R)� R
3)� R3, and the above fact

again implies that � has property (T).
Hence the group H/C has property (T). The commutator subgroup [H , H ] contains

C, and thus the abelianization H/[H , H ] is finite. It follows from [BHV, Theorem 1.7.11]
that H has property (T).

We obtained the group H with property (T) whose center C is isomorphic to R and
to the direct sum

⊕
N
Z. Let A be an arbitrary countable abelian group. There exists a

surjection from C onto A. Let C1 be the kernel of this surjection and setH1 = H/C1. The
group H1 has property (T) and has the central subgroup C/C1 isomorphic to A. In fact,
the center of H1 is exactly C/C1 because H/C � � has trivial center.
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