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Nearly sharp Lang–Weil bounds
for a hypersurface

Kaloyan Slavov

Abstract. We improve to nearly optimal the known asymptotic and explicit bounds for the number
of Fq-rational points on a geometrically irreducible hypersurface over a (large) finite field. The proof
involves a Bertini-type probabilistic combinatorial technique. Namely, we slice the given hypersurface
with a random plane.

1 Introduction

Let n ≥ 2 and d ≥ 1, and let Fq be a finite field. Let X ⊂ Pn be a geometrically
irreducible hypersurface of degree d over Fq . Lang and Weil [4] have established the
bound

∣#X(Fq) − #Pn−1(Fq)∣ ≤ (d − 1)(d − 2)qn−3/2 + On ,d(qn−2),(1.1)

where the implicit constant can depend only on d and n (but not on q or X). We
prove that, in fact, the implicit constant can be taken to be an absolute constant—
independent of n and d altogether—in the regime of interest q≫d 1.

Theorem 1.1 Let X ⊂ Pn
Fq

be a geometrically irreducible hypersurface of degree d. Then

∣X(Fq)∣ ≥ qn−1 − (d − 1)(d − 2)qn−3/2 − Od(qn−5/2) and

∣X(Fq)∣ ≤ qn−1 + (d − 1)(d − 2)qn−3/2 + (1 + π2/6)qn−2 + Od(qn−5/2).

Example 1.2 (Cone over a maximal curve) Let (d , q0) be such that there exists a
(nonsingular) maximal curve C = { f = 0} inP

2 overFq0 of degree d. Let q be a power
of q0, and let X = { f = 0} ⊂ Pn

Fq
be a projective cone over C. Then

#X(Fq) = qn−1 ± (d − 1)(d − 2)qn−3/2 + qn−2 + qn−3 +⋯+ 1,

with ± depending on whether q is an odd or an even power of q0. Thus, the constant
1 + π2/6 in the upper bound exhibited in Theorem 1.1 cannot possibly be improved
by more than π2/6, and the constant 0 in the lower bound in Theorem 1.1 cannot be
improved by more than 1.
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In most of this article, we work in affine space. For a geometrically irreducible
hypersurface X ⊂ An

Fq
of degree d, [4] states that

∣#X(Fq) − qn−1∣ ≤ (d − 1)(d − 2)qn−3/2 + Cd qn−2 ,(1.2)

where Cd can depend only on d and n. Our notation highlights the more important
dependence of Cd on d and suppresses the dependence on n (usually one thinks of n
as being fixed from the beginning).

The problem of giving explicit versions of (1.2) and of improving the dependence
of Cd on d has a long history, which we now briefly summarize. See [2] for a more
detailed account.
• Schmidt has shown that in the case of the lower bound, one can take Cd = 6d2 for

q≫n ,d 1 (see [5]) and in the case of the upper bound, one can take Cd = 4d2k2k
,

where k = (d+1
2 ) (see Theorem 4C on page 208 and Theorem 5A on page 210 in [6]).

• Ghorpade and Lachaud [3] use �-adic étale cohomology techniques to prove that
one can take Cd to be a polynomial in d (of degree that depends on n) in the case
of the upper bound as well. Explicitly, one can take Cd = 12(d + 3)n+1 in (1.2).

• Cafure and Matera [2] prove that one can take Cd = 5d 13/3 in (1.2); moreover, if
q > 15d 13/3, one can take Cd = 5d2 + d + 1 (this is a polynomial whose degree does
not grow with n).

• The author [7] has established the lower bound (for any ε > 0)

∣X(Fq)∣ ≥ qn−1 − (d − 1)(d − 2)qn−3/2 − (d + 2 + ε)qn−2

for q≫ε 1.
• The author’s Theorem 8 in the preprint [8] implies that for every ε > 0 and ε′ > 0,

we have

∣X(Fq)∣ ≤ qn−1 + (d − 1)(d − 2)qn−3/2 + ((2 + ε)d + 1 + ε′)qn−2

as long as q≫ε ,ε′ 1.
• When dim X = 1 (equivalently, n = 2), Aubry and Perret have proved (apply

Corollary 2.5 in [1] to the closure of X in P
2) that one can take Cd = d − 1 in

the case of the lower bound and Cd = 1 in the case of the upper bound:

q − (d − 1)(d − 2)√q − d + 1 ≤ ∣X(Fq)∣ ≤ q + (d − 1)(d − 2)√q + 1.(1.3)

1.1 Upper bounds

The affine version of the asymptotic upper bound in Theorem 1.1 reads as follows.

Theorem 1.3 Let X ⊂ An
Fq

be a geometrically irreducible hypersurface of degree d.
Then

∣X(Fq)∣ ≤ qn−1 + (d − 1)(d − 2)qn−3/2 + (1 + π2/6) qn−2 + Od(qn−5/2),(1.4)

where the implied constant depends only on d and can be computed effectively.

We can give an explicit bound, as in the following theorem.
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Theorem 1.4 Let X ⊂ An
Fq

be a geometrically irreducible hypersurface of degree d.
Suppose that q > 15d 13/3. Then

∣X(Fq)∣ ≤ qn−1 + (d − 1)(d − 2)qn−3/2 + 5qn−2 .(1.5)

Example 1.5 (Cylinder over a maximal curve) Let d ≥ 3 be such that d − 1 is a prime
power. Let q be an odd power of (d − 1)2. Consider the curve C = {yd−1 + y = xd} in
A

2
Fq

. It is known (see, for example, [9]) that #C(Fq) = q + (d − 1)(d − 2)√q. Then the
number of Fq-points on C ×An−2 is qn−1 + (d − 1)(d − 2)qn−3/2. Thus, the constant 5
in (1.4) cannot possibly be improved by more than 5.

Remark 1.6 While the cylinder C ×An−2 in Example 1.5 is nonsingular, its Zariski
closure in P

n has a large (in fact, (n − 3)-dimensional) singular locus. In general,
let X ⊂ An be a geometrically irreducible hypersurface such that #X(Fq) ≥ qn−1 +
(d − 1)(d − 2)qn−3/2 − Od(qn−2) for large q. Theorem 6.1 in [3] implies that the
Zariski closure of X in P

n must have singular locus of dimension n − 3 or n − 2.

We exhibit a forbidden interval for ∣X(Fq)∣ that improves Theorem 4 in [7]. The
statement below does not require X to be geometrically irreducible.

Theorem 1.7 Let X ⊂ An
Fq

be a hypersurface of degree d. If

∣X(Fq)∣ ≤
3
2

qn−1 − (d − 1)(d − 2)qn−3/2 − (d2 + d + 1)qn−2 ,(1.6)

then in fact

∣X(Fq)∣ ≤ qn−1 + (d − 1)(d − 2)qn−3/2 + 12qn−2 .(1.7)

Remark 1.8 Let us write g(d) +⋯ for an effectively computable g(d) + g1(d),
where g1(d) = o(g(d)) for d →∞. Theorem 1.7 has content when the right-hand
side of (1.6) exceeds the right-hand side of (1.7), which takes place for q > 16d4 +⋯.
Thus, in the presence of Theorem 1.4, Theorem 1.7 addresses the range 16d4 +⋯ <
q < 15d 13/3. Notice that in the Lang–Weil bound (1.2), the approximation term qn−1

dominates the error precisely when q > d4 +⋯. This is why it is reasonable to frame
the entire discussion of the Lang–Weil bound in the range q > d4 +⋯. For example,
any lower Lang–Weil bound is trivial for q below this threshold.

1.2 Lower bounds

The proof of Theorem 4 in [7] actually gives a lower bound which is tighter for q≫ 1
than the one stated in [7].

Theorem 1.9 Let X ⊂ An
Fq

be a geometrically irreducible hypersurface of degree d.
Then

∣X(Fq)∣ ≥ qn−1 − (d − 1)(d − 2)qn−3/2 − dqn−2 − Od(qn−5/2),(1.8)

where the implied constant depends only on d and can be computed explicitly.
We give a version with an explicit lower bound as well.
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Theorem 1.10 Let X ⊂ An
Fq

be a geometrically irreducible hypersurface of degree d.
Suppose that q > 15d 13/3. Then

∣X(Fq)∣ ≥ qn−1 − (d − 1)(d − 2)qn−3/2 − (d + 0.6)qn−2 .(1.9)

Example 1.11 As in Example 1.5, let d ≥ 3 be such that q0 ∶= d − 1 is a prime
power. The curve {yd−1z + yzd−1 = xd} in P

2 over Fq0 intersects the line x = 0 at
d distinct points defined over an extension Fq1 of Fq0 . Let q be an even power
of q1. Then the affine curve C ∶= {yd−1z + yzd−1 = 1} in A

2
Fq

satisfies #C(Fq) =
q − (d − 1)(d − 2)√q − d + 1. Consequently, the number of Fq-points on the
hypersurface C ×An−2 in A

n is qn−1 − (d − 1)(d − 2)qn−3/2 − (d − 1)qn−2. Therefore,
the constant d + 0.6 in (1.9) cannot possibly be improved by more than 1.6.

We can elaborate on (1.8) by pushing the implied constant further down.

Corollary 1.12 Let X ⊂ An
Fq

be a geometrically irreducible hypersurface of degree d.
Then

∣X(Fq)∣ ≥ qn−1 − (d − 1)(d − 2)qn−3/2 − dqn−2 − 2(d − 1)(d − 2)qn−5/2

− (2(d − 1)2(d − 2)2 + d2/2 + d + 2 + π2/6)qn−3 − Od(qn−7/2).(1.10)

A lower Lang–Weil bound can be useful in proving that a geometrically irreducible
hypersurface X ⊂ An

Fq
has an Fq-rational point. It is known (see Theorem 5.4 in [2]

and its proof) that if q > 1.5d4 +⋯, then X(Fq) ≠ ∅. Notice that the approximation
term qn−1 in (1.10) dominates the remaining explicit terms already for q > d4 +⋯.
Based on this heuristic, we state the following conjecture.

Conjecture 1.13 There exists an effectively computable function g1(d) = O(d7/2)
as d →∞ with the following property. Let X ⊂ An

Fq
be a geometrically irreducible

hypersurface of degree d. Then X(Fq) ≠ ∅ as long as q > d4 + g1(d).

Remark 1.14 In contrast to the upper bounds, all lower bounds in the affine cases
above (including (1.3) and Example 1.11) contain a d in the coefficient of qn−2. This is an
artifact of affine space; the discrepancy disappears in projective space (Theorem 1.1).

1.3 Outline

This paper builds upon the author’s earlier work [7] and is inspired by Tao’s discussion
[10] of the Lang–Weil bound through random sampling and the idea of Cafure–
Matera [2] to slice X with planes (a plane is a two-dimensional affine linear subvariety
of An

Fq
). If H ⊂ An

Fq
is any plane, then #(X ∩H)(Fq) is either q2, 0, or ≈ kq, where k

is the number of geometrically irreducible Fq-irreducible components of X ∩H. For
0 ≤ k ≤ d, we exhibit a small interval Ik = [ak , bk] containing kq so that if we also
define I∞ = {q2}, then each #(X ∩H)(Fq) belongs to ⋃ Ik .
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The problem when it comes to the upper bound is that when k is large, planes H
with #(X ∩H)(Fq) ∈ Ik contribute significantly toward the count #X(Fq). However,
it turns out that the number of such H’s decreases quickly as k grows.

2 A collection of small intervals

Lemma 2.1 [5, Lemma 5] Let C ⊂ A2
Fq

be a curve of degree d. Let k be the number of
geometrically irreducible Fq-irreducible components of C. Then

∣#C(Fq) − kq∣ ≤ (d − 1)(d − 2)√q + d2 + d + 1.

It will be crucial to give a refined upper bound when k = 1.

Lemma 2.2 Let C ⊂ A2
Fq

be a curve of degree d. Suppose that C has exactly one
geometrically irreducible Fq-irreducible component. Then

∣C(Fq)∣ ≤ q + (d − 1)(d − 2)√q + 1.

Proof Let C1 , . . . , Cs be the Fq-irreducible components of C. Suppose that C1
is geometrically irreducible, but C i is not for i ≥ 2. Let e = deg(C1). Note that
(d , e) ≠ (2, 1).

Using the Aubry–Perret bound (1.3) for C1 and Lemma 2.3 in [2] for each C i with
i ≥ 2, we estimate

∣C(Fq)∣ ≤ ∣C1(Fq)∣ +
s
∑
i=2
∣C i(Fq)∣

≤ q + (e − 1)(e − 2)√q + 1 +
s
∑
i=2
(deg C i)2/4

≤ q + (e − 1)(e − 2)√q + 1 + (d − e)2/4
≤ q + (d − 1)(d − 2)√q + 1;

to justify the last inequality in the chain, note that it is equivalent to

(d − e) ((d + e − 3)√q − d − e
4
) ≥ 0

and holds true because either e = d, or else d − e > 0, and we can write

(d + e − 3)√q − d − e
4
≥ (d + e − 3)

√
2 − d − e

4
≥ (4
√

2 − 1)d + (4
√

2 + 1)e − 12
√

2
4

> 0

(using that e ≥ 1 and d ≥ 3 on the last step). ∎

Let a0 = 0, b0 = d2/4, a1 = q − (d − 1)(d − 2)√q − d + 1, and b1 = q + (d − 1)
(d − 2)√q + 1. For 2 ≤ k ≤ d, set ak = kq − (d − 1)(d − 2)√q − d2 − d − 1 and
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bk = kq + (d − 1)(d − 2)√q + d2 + d + 1. Finally, set a∞ = b∞ = q2. Define Ik ∶=
[ak , bk] for k ∈ {0, . . . , d} ∪ {∞}.

Lemma 2.3 Let X ⊂ An
Fq

be a hypersurface of degree d. Let H ⊂ An
Fq

be a plane. Then
#(X ∩H)(Fq) ∈ Ik for some k ∈ {0, . . . , d} ∪ {∞}.

Proof If X ∩H = ∅, then #(X ∩H)(Fq) = 0 ∈ I0. If H ⊂ X, then X ∩H = H and
#(X ∩H)(Fq) = q2 ∈ I∞. Suppose that X ∩H ≠ ∅ and H /⊂ X. Let k be the number
of geometrically irreducible Fq-irreducible components of the degree d plane curve
X ∩H ⊂ H ≃ A2

Fq
. Then 0 ≤ k ≤ d. If k = 0, the proof of Lemma 11 in [7] gives

#(X ∩H)(Fq) ≤ d2/4. If k = 1, we use Lemma 2.2 and the lower bound from (1.3)
applied to a geometrically irreducible Fq-irreducible component (necessarily of
degree ≤ d) of X. For 2 ≤ k ≤ d, use Lemma 2.1. ∎

Alternatively, one could take bd = dq by the Schwartz–Zippel lemma.
When it comes to giving an upper bound for ∣X(Fq)∣, it will be more convenient

to work with J1 ∶= I0 ∪ I1 and J i ∶= I i for i ∈ {2, . . . , d} ∪ {∞}.

3 Probability estimates

We spell out in detail the proof of Theorem 1.3; the proofs of the remaining results
will then require only slight modifications. The implied constant in each O-notation
is allowed to depend only on d (a priori, possibly also on n), but not on q or X.

Proof of Theorem 1.3 Set N ∶= ∣X(Fq)∣. For a plane H ⊂ An
Fq

chosen uniformly at
random, consider #(X ∩H)(Fq) as a random variable. Let μ and σ 2 denote its mean
and variance. Lemma 10 in [7] and (1.2) imply

μ = N
qn−2 and σ 2 ≤ N

qn−2 ≤ q + O(√q).(3.1)

Write

N
qn−2 = μ ≤ ∑

k∈{1, . . . ,d}∪{∞}
Prob(#(X ∩H)(Fq) ∈ Jk)bk .(3.2)

For k ∈ {1, . . . , d} ∪ {∞}, denote

pk ∶= Prob(#(X ∩H)(Fq) ∈ Jk).

We can assume that q is large enough so that the intervals J1 , . . . , Jd are pairwise
disjoint.

Let k ∈ {2, . . . , d}. If H is a plane such that #(X ∩H)(Fq) ∈ Jk ∪ ⋅ ⋅ ⋅ ∪ Jd , then

∣#(X ∩H)(Fq) − μ∣ ≥ ak −
N

qn−2 ≥ (k − 1)q − O(√q).(3.3)
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Define t via (k − 1)q − O(√q) = tσ ; then Chebyshev’s inequality and the variance
bound (3.1) imply

pk +⋯+ pd = Prob(#(X ∩H)(Fq) ∈ Jk ∪ ⋅ ⋅ ⋅ ∪ Jd) ≤
1
t2

= σ 2

((k − 1)q − O(√q))2

≤
q + O(√q)

((k − 1)q − O(√q))2

= 1
(k − 1)2q

+ O(q−3/2).(3.4)

If H is a plane such that #(X ∩H)(Fq) = q2, then

∣#(X ∩H)(Fq) − μ∣ = q2 − N
qn−2 ≥ q2 − O(q).

Define t via q2 − O(q) = tσ ; then

p∞ ≤
1
t2 =

σ 2

(q2 − O(q))2 ≤
q + O(√q)
(q2 − O(q))2 = q−3 + O(q−7/2), and hence p∞b∞ = O(q−1).

Note that bk − bk−1 = q + O(1) for 2 ≤ k ≤ d. We now go back to (3.2) and apply
the Abel summation formula:

N
qn−2 = μ ≤ (p1 +⋯+ pd)b1 + (p2 +⋯+ pd)(b2 − b1) +⋯ + pd(bd − bd−1) + p∞b∞

≤ b1 +
1
12 +⋯+

1
(d − 1)2 + O(q−1/2)

≤ q + (d − 1)(d − 2)√q + 1 + π2/6 + O(q−1/2).

Multiply both sides by qn−2 to arrive at (1.4).
Going through all the explicit inequalities with an O-term, one can compute

explicitly a possible value of the constant implicit in (1.4). In fact, since the Cafure–
Matera bound gives a choice of Cd in the Lang–Weil bound that depends only on
d and not on n, a second look at all the inequalities written down in the proof
above reveals that the implied constant in (1.4) can likewise be chosen not to depend
on n. ∎

For the rest of the paper, we follow the notation and proof of Theorem 1.3.

Proof of Theorem 1.9 Say that a plane H is “bad” if #(X ∩H)(Fq) ∈ I0 and “good”
otherwise. If H ⊂ A2

Fq
is a bad plane, then

∣#(X ∩H)(Fq) − μ∣ ≥ N
qn−2 −

d2

4
≥ q − O(√q).

By computations similar to the ones in the proof of Theorem 1.3, the probability that
a plane is bad is at most q−1 + O(q−3/2). Every good plane contributes at least a1 to
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the mean. Therefore,
N

qn−2 = μ ≥ (1 − q−1 − O(q−3/2))(q − (d − 1)(d − 2)√q − d + 1),

giving (1.8). ∎

Proof of Corollary 1.12 In fact, the proofs of Theorems 1.3 and 1.9 give an
algorithm that takes as input a half-integer r ≥ 0 and constants1 C( j)

d and D( j)
d for

each half-integer 1/2 ≤ j ≤ r such that

∣X(Fq)∣ ≤ qn−1 +
r
∑

j=1/2
C( j)

d qn−1− j + Od(qn−r−3/2) (summation over half-integers)

and

∣X(Fq)∣ ≥ qn−1 −
r
∑

j=1/2
D( j)

d qn−1− j − Od(qn−r−3/2) (summation over half-integers),

and returns as output four additional C(r+1/2)
d , C(r+1)

d , D(r+1/2)
d , and D(r+1)

d such that

∣X(Fq)∣ ≤ qn−1 +
r+1
∑

j=1/2
C( j)

d qn−1− j + Od(qn−r−5/2) (summation over half-integers)

and

∣X(Fq)∣ ≥ qn−1 −
r+1
∑

j=1/2
D( j)

d qn−1− j − Od(qn−r−5/2) (summation over half-integers).

Initiating the algorithm with r = 0 and the rather weak version

qn−1 − Od(qn−3/2) ≤ ∣X(Fq)∣ ≤ qn−1 + Od(qn−3/2)
of (1.2), we obtained (1.4) and (1.8). In turn, taking the upper bound for N from (1.4)
and the lower bound for N from (1.8) as input, we obtain (1.10). ∎

Proof of Theorem 1.1 We now slice with a random plane H ⊂ Pn
Fq

. The mean
μ of #(X ∩H)(Fq) is Nρ1, where N = ∣X(Fq)∣ and ρ1 = (q3 − 1)/(qn+1 − 1) is the
probability that a plane passes through a given point. Let ρ2 be the probability that
a plane passes through two distinct given points. Explicitly (in terms of q-binomial
coefficients), ρ2 = (n−1

1 )q/(
n+1

3 )q . One verifies directly that ρ2 ≤ ρ2
1 and expresses σ 2

as in [10]:

N2ρ2
1 + σ 2 = μ2 + σ 2 = μ + N(N − 1)ρ2 ≤ μ + N2ρ2

to deduce σ 2 ≤ μ.
We can still take I0 = [0, d2/4]. Use the projective version of (1.3) (Corollary 2.5

in [1]). Adapt I1 with a1 = q − (d − 1)(d − 2)√q + 1. Use I∞ = {q2 + q + 1}. Up to a
summand d to account for points at infinity, the remaining ak and bk are unchanged.

1We refer to C( j)
d and D( j)

d interchangeably as constants or as functions of d depending on the context.
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Proceed as in the proof of Theorems 1.3 and 1.9. On the very last step in proving
either bound, multiply by 1/ρ1 rather than by qn−2 and use that 1/ρ1 = qn−2 +
O(qn−5). ∎

4 Explicit versions

Proof of Theorem 1.4 The statement clearly holds for d = 1, so assume that d ≥ 2.
We will use the explicit Cafure–Matera bound for N . Replace the variance bound
(3.1) by

σ 2 ≤ N
qn−2 ≤ q + (d − 1)(d − 2)√q + 5d2 + d + 1 ≤ (8.44/7.44)q;

to verify the last inequality above, we argue as follows. For any c1 > 0 and c2 > 0, the
function q ↦ q/(c1

√q + c2) is increasing. Therefore,

q
(d − 1)(d − 2)√q + 5d2 + d + 1

> 15d 13/3

(d − 1)(d − 2)
√

15d 13/6 + 5d2 + d + 1
.

It remains to check that the function g(d) on the right-hand side above satisfies
g(d) > 7.44 for any integer d ≥ 2. On the one hand, g grows like d 1/6, so one easily
exhibits a d0 such that g(d) > 7.44 for d > d0. Then a simple computer calculation
checks that g(d) > 7.44 for integers d ∈ {2, . . . , d0} as well.

In the same way, one readily checks that the intervals J1 , . . . , Jd are pairwise
disjoint.

For k ∈ {2, . . . , d}, replace (3.3) by

ak −
N

qn−2 ≥ (k − 1)q − 2(d − 1)(d − 2)√q − 2(3d2 + d + 1) ≥ (5.45/7.45)(k − 1)q;

to check the last inequality, one has to consider only k = 2 and to argue as above.
For k ∈ {2, . . . , d}, (3.4) is now replaced by

pk +⋯+ pd ≤
(8.44/7.44)q

((5.45/7.45)(k − 1)q)2 <
2.12

(k − 1)2q
.

To bound p∞b∞, note that q > 15d 13/3 > 15 × 213/3 > 302, so

p∞b∞ ≤
(8.44/7.44)q

(q2 − (8.44/7.44)q)2 q2 = 8.44 × 7.44q
(7.44q − 8.44)2 < 0.01.

Since bk − bk−1 = q for 3 ≤ k ≤ d, but b2 − b1 = q + d2 + d, we have to estimate
(d2 + d)/q < (d2 + d)/15d 13/3 < 0.02. The Abel summation argument now gives

N
qn−2 ≤ q + (d − 1)(d − 2)√q + 1 + 2.12(π2/6 + 0.02) + 0.01 < q + (d − 1)(d − 2)√q + 5.

∎
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Proof of Theorem 1.7 Again, assume d ≥ 2. We can assume that the right-hand
side of (1.7) is less than the right-hand side of (1.6); i.e.,

4(d − 1)(d − 2)√q + 2(d2 + d + 13) < q.

This inequality implies in particular that the intervals J1 , . . . , Jd are pairwise disjoint.
Note that it is equivalent to q > r(d)2, where r(d) is the positive root of the quadratic
equation x2 − 4(d − 1)(d − 2)x − 2(d2 + d + 13) = 0.

Due to (1.6), now we can use the variance bound σ 2 ≤ N/qn−2 ≤ (3/2)q.
Furthermore, (1.6) gives

ak −
N

qn−2 = kq − (d − 1)(d − 2)√q − (d2 + d + 1) − N
qn−2 ≥

k − 1
2

q

for 2 ≤ k ≤ d. Therefore, pk +⋯+ pd is now bounded by 6/((k − 1)2q).
We bound (d2 + d)/q by (d2 + d)/(r(d))2 < 0.16 for d ≥ 2. Finally, note that

q > r(2)2 = 38, so q ≥ 41, and we can bound p∞b∞ by 6q/(2q − 3)2 < 0.04. Therefore,

N
qn−2 ≤ q + (d − 1)(d − 2)√q + 1 + 6(π2/6 + 0.16) + 0.04 < q + (d − 1)(d − 2)√q + 12.

∎

Proof of Theorem 1.10 As above, assume that d ≥ 2. We bound the variance as

σ 2 ≤ N
qn−2 ≤ q + (d − 1)(d − 2)√q + 5d2 + d + 1 ≤ (8.44/7.44)q.

Moreover,

N
qn−2 −

d2

4
≥ q − (d − 1)(d − 2)√q − 21d2/4 − d − 1 ≥ (6.44/7.44)q.

From here, we bound the probability that a plane is bad by 1.6/q. Thus,

N
qn−2 ≥ (1 − 1.6

q
)(q − (d − 1)(d − 2)√q − d + 1) ≥ q − (d − 1)(d − 2)√q − (d + 0.6).

∎
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