
Adv. Appl. Probab. 1–30 (2024)
doi:10.1017/apr.2024.14

CHANGE OF MEASURE IN A HESTON–HAWKES STOCHASTIC
VOLATILITY MODEL

DAVID R. BAÑOS,∗ ∗∗
SALVADOR ORTIZ-LATORRE,∗ ∗∗∗ AND

ORIOL ZAMORA FONT ,∗ ∗∗∗∗ University of Oslo

Abstract

We consider the stochastic volatility model obtained by adding a compound Hawkes
process to the volatility of the well-known Heston model. A Hawkes process is a self-
exciting counting process with many applications in mathematical finance, insurance,
epidemiology, seismology, and other fields. We prove a general result on the existence
of a family of equivalent (local) martingale measures. We apply this result to a particular
example where the sizes of the jumps are exponentially distributed. Finally, a practical
application to efficient computation of exposures is discussed.
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1. Introduction

Valuation of assets and financial derivatives constitutes one of the core subjects of modern
financial mathematics. There have been several approaches to asset pricing, all of which can be
classified into two larger groups: equilibrium pricing and rational pricing. The latter gives rise
to the commonly used methodology of pricing financial instruments by ruling out arbitrage
opportunities. As is well known, the absence of arbitrage is closely related to the existence
of a probability measure, the so-called risk-neutral measure, here denoted by Q. Prices of
derivatives are expectations under this measure. This connection is known as the fundamental
theorem of asset pricing [18].

In contrast, markets evolve in time, and they do so under the so-called real-world measure,
here denoted by P. While we can attempt to model market movements under P, we also need
the dynamics under Q for pricing purposes. If we are only interested in pricing, then modelling
under Q and calibrating is possible by matching market prices to theoretical ones. However,
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2 D. R. BAÑOS ET AL.

for asset liability management, investors often need to assess their positions under P. A com-
mon risk management practice is to compute the risk exposure as a way to set economic and
regulatory capital levels. Stein [51] shows that exposures computed under the risk-neutral mea-
sure are essentially arbitrary. They depend on the choice of numéraire and can be manipulated
by choosing a different numéraire. Even when one chooses commonly used numéraires, these
exposures can differ by a factor of two or more. Furthermore, a crucial feature when assess-
ing risk exposures is their distribution. While models under Q may have well-known tractable
distributional properties, this need not be the case upon passage to the P-world and vice versa.
For instance, the Vasicek model for interest rates is invariant under a restricted family of mea-
sure changes. This is a desired property of the Vasicek model, but it does not need to hold for
other models. Another example in which the passage from P to Q is relevant is that of certain
commodity markets. In such markets the modelling of the convenience yield is of consider-
able importance because of risks related to the storage of goods. For instance, see [11, 25,
28] for modelling commodity markets using Hawkes processes. In particular, [28] employs a
modelling framework with jumps in the volatility term. As well as in the study of commodity
markets, the change of measure is also important for the term structure of interest rates. For
example, [8] includes a marked Hawkes process in the original Heath–Jarrow–Morton setup
and investigates the pricing of vanilla fixed-income derivatives.

It is common practice in the literature to assume that such a measure change exists and set
up a model under the risk-neutral measure. Nonetheless, such an assumption is not innocuous,
and nonsensical results can occur if it is not satisfied; see e.g. the discussion in [52] and the
references therein. For instance, [9, 48] show examples of models for which no equivalent local
martingale measure exists. See also [47] for conditions to check the existence of equivalent
martingale measures under Markovian models without jumps.

From the modelling perspective, we adopt a stochastic volatility model with jumps where
the volatility process is itself not Markovian. The non-Markovianity can be justified by the
clustering of volatility; see e.g. [16]. It is true, however, that when we enlarge the state space to
include the information provided by the intensity process, the model is Markovian. However,
the underlying intensity process cannot be directly observed from data in most cases. Some
filtering techniques are needed to estimate it; see e.g. [12]. Some recent works modelling clus-
tering of volatility using Markov models in higher dimensions are [5, 7, 17, 29, 32, 37, 43,
46, 49].

The literature on non-Markovian stochastic volatility models is vast. Here we mention some
works on fractional volatility models, which appear when the fractional Brownian motion
is used as a driving noise for the volatility. The main characteristics of such noise are the
possibility of modelling short- and long-range dependence due to the fractional decay of its
auto-correlation function and the ability to generate trajectories which are Hölder continuous
of index different from 1/2, corresponding to the case of Brownian motion. Fractional models
with long-range dependence were first studied in [15]. Then [2] introduced Malliavin calcu-
lus to study the asymptotics of the implied volatility in general stochastic volatility models,
including fractional models with long- and short-term dependence. The popularity of rough
models (short-term dependence models) started with the findings of [26]. Their name stems
from the roughness of the underlying noise in the stochastic evolution of volatility. Several
studies in this direction have been carried out; see e.g. [22, 23, 26, 31], to name a few. None
of the aforementioned works discusses change of measure. In fact, it is not clear whether the
volatility process in the rough Heston model (see e.g. [22, 23]) is strictly positive, which is a
necessary condition for a proper change of measure to be possible.
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Change of measure in a Heston-Hawkes stochastic volatility model 3

The rough Heston model extends the classical Heston model to a model with fractional
noise. Moreover, it is proven in [21, 35, 36] that the rough Heston model can be obtained as a
limit of diffusion processes where the noise is a Hawkes process. The latter justifies our choice
of model with a self-exciting Hawkes factor.

The inclusion of jumps in the volatility may not be so clear at first glance. Often, researchers
include jumps in the stock process in order to capture sudden changes of asset returns; see for
instance [3, 14, 24]. Classical stochastic volatility models without jumps, such as the Heston
model, have the property that returns conditional on volatility are normally distributed. This
property fails to explain many features of asset price behaviour. By adding jumps in the returns,
one can model sudden changes such as economic crashes, as well as having more freedom in
the modelling of distributions of asset returns. Nevertheless, jumps in returns are transient; in
other words, a jump in returns today has no impact on the future distribution of returns [24].
Hence, Markov models for jumps in the asset dynamics, such as Poisson processes, are often
used. On the other hand, volatility is highly persistent. If the dynamics is driven by a Brownian
motion, then volatility can only increase gradually by a sequence of small normally distributed
increments. Self-exciting jumps in the volatility provide a rapidly moving persistent factor.
This justifies our use of the Hawkes component in the volatility.

Several works support the presence of jumps in the diffusive volatility. The papers [6, 20, 44]
provide evidence for the presence of positive jumps in volatility. For example, [44, Section 5.4]
contains an empirical study on the higher moments of the volatility process, seeking evidence
of jumps in volatility as first conjectured by [6]. The findings of [44] indicate the possibility of
jumps (with positive mean jump size) in the stochastic volatility process, or at least fatter-tailed
innovations in the volatility process. This justifies the choice of positive self-exciting jumps
in our volatility, which we model by compounding a Hawkes process with independent jump
sizes. The positivity of jumps also allows us to keep volatility from hitting zero with probability
one, but on the other hand, the self-exciting property of the Hawkes process may cause the
process to explode. For this reason, we assume a stability property to prevent explosion; see
[34, Section 3.1.1].

In this work, we look at a Heston-type stochastic volatility model with correlated Brownian
motions and add a jump part to the volatility process, namely, a compound Hawkes process
with an exponential kernel in the intensity process. In this setting our model can be embedded
into a Markovian framework by adding the intensity component, as in e.g. [19, 20]. In [19] the
authors provide a thorough discussion on the general topic of affine processes and a charac-
terization of regular affine processes. We show that a passage from P to Q and vice versa is
possible for a rich enough family of probability measures. It is worth noting that our model has
three non-tradable noises and one tradable asset, being thus incomplete. This gives rise to non-
unique choices of measure change. The proof of existence of equivalent martingale measures
for the classical Heston model is conducted in [52].

The paper is organized as follows. In Section 2 we present our stochastic volatility model
with correlated Brownian noises and a compound Hawkes component in the volatility. We also
present some useful results on the existence and positivity of the volatility process. In Section 3
we prove the main results of this paper. First we study the integrability of the exponential
of the integrated variance, and then we prove the existence of (local) martingale measures
in our model. Finally, in Appendix 5, we prove some technical lemmas on the existence
of solutions of ordinary differential equations (ODEs) that appear in the proofs of the main
results.
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4 D. R. BAÑOS ET AL.

2. Stochastic volatility model

Let T ∈R, T > 0 be a fixed time horizon. On a complete probability space (�,A, P), we
consider a two-dimensional standard Brownian motion (B,W) = {(Bt,Wt) , t ∈ [0, T]} and its
minimally augmented filtration F (B,W) = {F (B,W)

t , t ∈ [0, T]
}
. On (�,A, P), we also consider

a Hawkes process N = {Nt, t ∈ [0, T]} with stochastic intensity given by

λt = λ0 + α

∫ t

0
e−β(t−s)dNs,

or, equivalently,

dλt = −β(λt − λ0)dt + αdNt,

where λ0 > 0 is the initial intensity, β > 0 is the speed of mean reversion, and α ∈ (0, β) is the
self-exciting factor. Note that the stability condition

α

∫ ∞

0
e−βsds = α

β
< 1

holds. See [4, Section 2] and [34, Section 3.1.1] for the definition of N. We then consider
a sequence of independent and identically distributed (i.i.d.), strictly positive, and integrable
random variables {Ji}i≥1 and the compound Hawkes process L = {Lt, t ∈ [0, T]} given by

Lt =
Nt∑

i=1

Ji.

We assume that (B, W), N and {Ji}i≥1 are independent of each other. We write FL ={FL
t , t ∈ [0, T]

}
for the minimally augmented filtration generated by L and

F = {Ft =F (B,W)
t ∨FL

t , t ∈ [0, T]
}

for the joint filtration. We assume that A=FT , and we work with F . Since (B, W) and L are
independent processes, (B, W) is also a two-dimensional (F , P)-Brownian motion.

Finally, with all these ingredients, we introduce our stochastic volatility model. We assume
that the interest rate is deterministic and constant, equal to r, but a non-constant interest rate
can easily be fitted into this framework. The stock price S = {St, t ∈ [0, T]} and its variance
v = {vt, t ∈ [0, T]} are given by

dSt

St
=μtdt + √

vt

(√
1 − ρ2dBt + ρdWt

)
,

dvt = −κ(vt − v̄) dt + σ
√

vtdWt + ηdLt, (2.1)

where S0 > 0 is the initial price of the stock, μ : [0, T] →R is a measurable and bounded
function, ρ ∈ (−1, 1) is the correlation factor, v0 > 0 is the initial value of the variance, κ > 0
is the variance’s mean reversion speed, v̄> 0 is the long-term variance, σ > 0 is the volatility
of the variance, and η > 0 is a scaling factor. We assume that the Feller condition 2κ v̄ ≥ σ 2 is
satisfied; see [1, Proposition 1.2.15].

Note that our stochastic volatility model is the well-known Heston model but with a com-
pound Hawkes process added in the variance process. The procedure for proving strong
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Change of measure in a Heston-Hawkes stochastic volatility model 5

existence and pathwise uniqueness of the stochastic differential equation (SDE) in (2.1) is
essentially given in [45, Chapter V.10, Theorem 57]. Informally, between jump times, the SDE
is just a standard Cox–Ingersoll–Ross (CIR) model with an initial condition that depends on
the value of the compound Hawkes after the jump has occurred. Since strong existence and
pathwise uniqueness are proven for the SDE that defines the CIR model (see [1, Theorem
1.2.1]), one can properly interlace the solutions of the continuous-path SDE and the jumps as
is done in [45, Chapter V.10, Theorem 57] and prove strong existence and pathwise uniqueness
for our SDE in (2.1). In particular, this implies that v is a positive process.

Proposition 2.1. Equation (2.1) has a pathwise unique strong solution.

Since the sizes of the jumps of the compound Hawkes process are strictly positive, one
expects that our variance is greater than or equal to the Heston variance. We prove this property
following the proof of [38, Chapter 5.2.C, Proposition 2.18]. The procedure is the same as
there, but in our case some extra computations will appear because of the jump contribution of
the compound Hawkes process. Recall that the variance of the Heston model is strictly positive,
because the Feller condition is assumed to hold; see the reference from before [1, Proposition
1.2.15]. In particular, we will prove that the process v is also strictly positive.

Proposition 2.2. Let ṽ = {̃vt, t ∈ [0, T]} be the pathwise unique strong solution of

ṽt = v0 − κ

∫ t

0
(̃vs − v̄) ds + σ

∫ t

0

√̃
vsdWs. (2.2)

Then

P({ω ∈� : ṽt(ω) ≤ vt(ω) ∀t ∈ [0, T]})= 1,

where v is the pathwise unique strong solution of (2.1).

Proof. See [1, Theorem 1.2.1] for a reference on the solution of the SDE in (2.2). There
exists a strictly decreasing sequence {an}∞n=0 ⊂ (0, 1] with a0 = 1, limn→∞ an = 0, and∫ an−1

an

du

u
= n,

for every n ≥ 1. Precisely, an = exp
(
− n(n+1)

2

)
.

For each n ≥ 1, there exists a continuous function ρn on R with support in (an, an−1) such
that

0 ≤ ρn(x) ≤ 2

nx
(2.3)

holds for every x> 0 and
∫ an−1

an
ρn(x)dx = 1.

Then the function

ψn(x) =
∫ |x|

0

∫ y

0
ρn(u)dudy (2.4)

is even and twice continuously differentiable, with |ψ ′
n(x)| ≤ 1 and limn→∞ ψn(x) = |x| for

x ∈R. Furthermore, {ψn}∞n=1 is non-decreasing.
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6 D. R. BAÑOS ET AL.

Next, define the non-decreasing function ϕn(x) =ψn(x)1(0,∞)(x). Note that

lim
n→∞ ϕn(x) = max{x, 0} =: x+.

Define It := ṽt − vt for t ∈ [0, T]. Applying Itô’s formula, we get

ϕn(It) = ϕn(0) +
∫ t

0
ϕ′

n(Is−)dIs + 1

2

∫ t

0
ϕ′′

n (Is−)d[I]c
s

+
∑

0<s≤t

[
ϕn(Is) − ϕn(Is−) − ϕ′

n(Is−)Is
]

.

Note that

dIs = −κ (̃vs − vs)ds + σ
(√̃

vs − √
vs

)
dWs − ηdLs,

d[I]s = σ 2
(√̃

vs − √
vs

)2
ds + η2d[L]t.

The latter implies that d[I]c
s = σ 2

(√
ṽs − √

vs

)2
ds and Is = −vs = −ηLs.

Therefore,

ϕn(It) = − κ

∫ t

0
ϕ′

n(Is)Isds + σ

∫ t

0
ϕ′

n(Is−)
(√̃

vs − √
vs

)
dWs

− η

∫ t

0
ϕ′

n(Is−)dLs + σ 2

2

∫ t

0
ϕ′′

n (Is)
(√̃

vs − √
vs

)2
ds

+
∑

0<s≤t

[
ϕn(Is) − ϕn(Is−)

]+ η
∑

0<s≤t

ϕ′
n(Is−)Ls.

Note that η
∫ t

0 ϕ
′
n(Is−)dLs = η

∑
0<s≤t ϕ

′
n(Is−)Ls. Since Is − Is− = −ηLs ≤ 0 and ϕn is a

non-decreasing function, we have
∑

0<s≤t

[
ϕn(Is) − ϕn(Is−)

]≤ 0.
By (2.3) and (2.4), and using that |√x − √

y| ≤ √|x − y| for x, y ≥ 0, we obtain

ϕ′′
n (Is)

(√̃
vs − √

vs

)2 ≤ 2

n

(√̃
vs − √

vs
)2

ṽs − vs
≤ 2

n
.

Since |ϕ′
n(x)| ≤ 1, we can conclude that

ϕn(It) ≤ κ

∫ t

0
I+
s ds + σ

∫ t

0
ϕ′

n(Is−)
(√̃

vs − √
vs

)
dWs + σ 2t

n
. (2.5)

In order to use the zero mean property of the Itô integral,

E

[∫ t

0
ϕ′

n(Is−)
(√̃

vs − √
vs

)
dWs

]
= 0, (2.6)

we need to check that

E

[∫ t

0
ϕ′

n(Is)
2
(√̃

vs − √
vs

)2
ds

]
<∞. (2.7)
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Change of measure in a Heston-Hawkes stochastic volatility model 7

Now,

E

[∫ t

0
ϕ′

n(Is)
2
(√̃

vs − √
vs

)2
ds

]
=E

[∫ t

0
ϕ′

n(Is)
2
(√̃

vs − √
vs

)2
1{Is>0}ds

]
≤E

[∫ t

0

(√̃
vs − √

vs

)2
1{Is>0}ds

]
≤E

[∫ t

0
ṽsds

]
=
∫ t

0
E[̃vs] ds. (2.8)

In [27, Section 2, Equation (2.3)], we see that for t ∈ (0, T],

ṽt ∼ e−κtv0

k(t)
χ ′2
δ (k(t)) with k(t) := 4κv0e−κt

σ 2
(
1 − e−κt

) and δ := 4κ v̄

σ 2
,

where χ ′2
δ (k(t)) denotes a non-central chi-squared random variable with δ degrees of freedom

and non-centrality parameter k(t). Then

E[̃vt] = σ 2
(
1 − e−κt

)
4κ

(δ+ k(t))= v0e−κt + v̄
(
1 − e−κt).

Since t �→E[̃vt] is a continuous function on [0, T], the integral in (2.8) is finite, which
implies that the integral in (2.7) is finite and (2.6) holds. Taking expectations in (2.5), we
have

E[ϕn(It)] ≤ κ
∫ t

0
E
[
I+
s

]+ σ 2t

n
.

Sending n to infinity yields E
[
I+
t
]≤ κ ∫ t

0 E
[
I+
s

]
ds. One can check that∫ t

0

∣∣E[I+
s

]∣∣ ds<∞. (2.9)

In fact, ∫ t

0

∣∣E[I+
s

]∣∣ ds =
∫ t

0
E
[
I+
s

]
ds =

∫ t

0
E
[
Is1{Is>0}

]
ds ≤

∫ t

0
E[̃vs] ds<∞,

where the last integral is finite, as we have seen before.
Applying a version of Gronwall’s inequality where only the condition (2.9) is required, we

get E[I+
t ] = 0 for all t ∈ [0, T]. This means that

P({ω ∈� : ṽt(ω) ≤ vt(ω)})= 1 ∀t ∈ [0, T].

Since the sample paths of ṽ are continuous and the sample paths of v are càdlàg, we get
that

P({ω ∈� : ṽt(ω) ≤ vt(ω) ∀t ∈ [0, T]})= 1.
�
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8 D. R. BAÑOS ET AL.

Corollary 2.1. The variance v = {vt, t ∈ [0, T]} is a strictly positive process.

Proof. Recall that we have assumed that the Feller condition 2κ v̄ ≥ σ 2 is satisfied.
Therefore the process ṽ defined by (2.2) is strictly positive; see [1, Proposition 1.2.15]. Finally,
by Proposition 2.2 we have that

P({ω ∈� : ṽt(ω) ≤ vt(ω) ∀t ∈ [0, T]})= 1.

We conclude that the process v is also strictly positive. �

3. Risk-neutral probability measures

To prove the existence of a family of risk-neutral probability measures, we follow the clas-
sical approach, employing Girsanov’s theorem in connection with Novikov’s condition. Thus,
we need to study the integrability of the exponential of the integrated variance, that is, what
values c> 0, if any, satisfy

E

[
exp

(
c
∫ T

0
vudu

)]
<∞.

By Corollary 2.1, v is strictly positive and the expectation above is finite for c ≤ 0, but for
our applications is essential that c can be strictly positive. Looking at the proof of [52, Lemma

3.1], one can see that for c ≤ κ2

2σ 2 the following holds:

E

[
exp

(
c
∫ T

0
ṽudu

)]
<∞, (3.1)

where ṽ is the standard Heston volatility given by

ṽt = v0 − κ

∫ t

0
(̃vs − v̄) ds + σ

∫ t

0

√̃
vsdWs.

The procedure for proving that (3.1) holds is to show that

E

[
exp

(
c
∫ T

0
ṽudu

)]
≤ exp(−(κ v̄)�(0) − v0ψ(0)) <∞, (3.2)

where � and ψ satisfy the following generalized Riccati equations:

ψ ′(t) = σ 2

2
ψ2(t) + κψ(t) + c, (3.3)

−�′(t) =ψ(t),

ψ(T) =�(T) = 0.

Because of the jump contribution of the compound Hawkes process, this procedure is more
delicate in our model. However, we can obtain a bound similar to that of (3.2), with an addi-
tional function that will be the solution of an ODE involving the moment generating function
of J1 and the Hawkes parameters α and β.
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Change of measure in a Heston-Hawkes stochastic volatility model 9

We start by making an assumption on the moment generating function of J1. We write MJ

for the moment generating function of J1, that is, MJ(t) =E
[
exp(tJ1)

]
. Since J1 is strictly

positive, MJ is well defined at least on the interval (−∞, 0].

Assumption 3.1. There exists εJ > 0 such that MJ is well defined on (−∞, εJ), and it is the
maximal domain in the sense that

lim
t→ε−J

MJ(t) = ∞.

Since εJ > 0, all positive moments of J1 are finite.

Note that this assumption holds for the gamma distribution, the chi-squared distribution, the
uniform distribution, and others.

We start studying the functions that will appear in a bound like (3.2) for our variance. To
find the ODEs that define those functions, one can consider the process M = {M(t), t ∈ [0, T]}
defined by

M(t) = exp

(
F(t) + G(t)vt + H(t)λt + c

∫ t

0
vudu

)
,

for some unknown functions F,G,H : [0, T] →R satisfying F(T) = G(T) = H(T) = 0. Note
that

M(T) = exp

(
c
∫ T

0
vudu

)
.

Hence, E[M(T)] is exactly the expectation that we want to study. Now, if there exist func-
tions F, G, and H such that M is a local martingale, since it is non-negative, it will be a
supermartingale and then

E

[
exp

(
c
∫ T

0
vudu

)]
=E[M(T)] ≤ M(0) = exp(F(0) + G(0)v0 + H(0)λ0) ,

where the last expression will be finite as long as F, G, and H exist and are well defined on
[0, T].

The generalized Riccati equations for F, G, and H are obtained by applying Itô’s formula
to M and equating the drift terms to 0. This is done formally in Proposition 3.1. In the next
lemma we study the existence of solutions of the generalized Riccati equations for our model.
Note that the ODE for G is slightly different from the ODE for ψ in (3.3); this depends on
whether one considers the expectation in (3.1) with the parameter c or −c and on how one
defines the process M. The proof of the next lemma is deferred to the appendix, because it is
rather technical and based on ODE theory.

Remark 3.1. It is worth pointing out that our model is based on a three-dimensional affine pro-
cess according to [19, 20, 40]. However, the results in Lemma 3.1 and Proposition 3.1 cannot
be deduced from the general setup of those papers. For instance, the existence of the exponen-
tial moment proved in Proposition 3.1 is actually an assumption in [20, Proposition 1], which
is required to prove the (exponential) affine transform formula. Similarly, in [19, Theorem
2.16(ii)] the authors prove that the exponential moment exists under the assumption that the
solutions of some generalized Riccati equations admit an analytic extension. Nevertheless, they
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10 D. R. BAÑOS ET AL.

do not give conditions to guarantee such an extension of the solutions. That is our contribution
in Lemma 3.1 and Proposition 3.1, where we find the generalized Riccati equations for our
particular model and study the existence of solutions to them. An analogous situation occurs
with [40, Theorem 2.14(b)].

It is also important to note that Lemma 3.1 is, essentially, based on qualitative ODE theory
to study the maximal lifetime of solutions to generalized Riccati ODEs. Similar arguments are
used in [39] to characterize moment explosions in some affine stochastic volatility models.
Even though Proposition 3.1 can be related to moment explosions, the results in [39] cannot be
straightforwardly applied to prove Proposition 3.1. The reason is that in the setting of [39] it is
assumed that the variance process is a Markov process, while in our case we need to enlarge it
with the intensity of the Hawkes process to obtain a Markov process. Therefore, an additional
differential equation appears in our work that needs to be studied. In conclusion, even though
Lemma 3.1 involves ODE theory arguments similar to those of [39], a detailed investigation is
required in our setting.

Lemma 3.1. For c ≤ κ2

2σ 2 , define D(c) := √
κ2 − 2σ 2c,

�(c) := 2ηc
(
eD(c)T − 1

)
D(c) − κ + (D(c) + κ) eD(c)T

,

and

cl := sup

{
c ≤ κ2

2σ 2
:�(c)< εJ and MJ(�(c))≤ β

α
exp

(
α

β
− 1

)}
.

Then 0< cl ≤ κ2

2σ 2 , and for c< cl, the following hold:

(i) The ODE

G′(t) = −1

2
σ 2G2(t) + κG(t) − c,

G(T) = 0

has a unique solution in the interval [0, T]. The solution is strictly decreasing and is
given by

G(t) = 2c
(
eD(c)(T−t) − 1

)
D(c) − κ + (D(c) + κ) eD(c)(T−t)

.

(ii) The function t �→ MJ(ηG(t)) is well defined for t ∈ [0, T].

(iii) Define U := supt∈[0,T] MJ(ηG(t)). Then U = MJ(ηG(0)) and

1<U ≤ β

α
exp

(
α

β
− 1

)
.

(iv) The ODE

H′(t) = βH(t) − MJ(ηG(t)) exp(αH(t))+ 1,

H(T) = 0

has a unique solution in [0, T].

Proof. See Lemma A.1 in the appendix. �
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Change of measure in a Heston-Hawkes stochastic volatility model 11

Observation 3.1. One could also assume that the domain of MJ is big enough so that the

function t �→ MJ(ηG(t)) is well defined on the interval [0, T] for any value of c ≤ κ2

2σ 2 . Then
one can prove the existence of H by applying the Picard–Lindelöf theorem (see [30, Chapter
II, Theorem 1.1]), which yields the following conditions:

c ≤ κ2

2σ 2
and β + f (U)α ≤ 1

T
,

where f (U) is some function of U. Therefore, there would be more admissible values of c, but
α and β would have to satisfy an inequality involving T , which is quite restrictive; for the sake
of generality, we prefer to avoid this.

Note that, a priori, there is no explicit expression for cl in the previous lemma, because it is
not possible to solve the inequalities

�(c)< εJ and MJ(�(c))≤ β

α
exp

(
α

β
− 1

)
.

Moreover, cl depends on MJ , η, κ , σ , T , εJ , α, and β. However, one can get an explicit value
for cl that is suboptimal but does not depend on T . We obtain an expression for that suboptimal
value and give some examples.

Corollary 3.1. Define cs by

cs = min

{
κεJ

2η
,
κ

2η
M−1

J

(
β

α
exp

(
α

β
− 1

))
,
κ2

2σ 2

}
.

Then 0< cs < cl.

Proof. See Lemma A.1 in the appendix. �
Note that we can apply Lemma 3.1 for any c< cs, because cs < cl. We now give some

examples of the value cs.

Example 3.1.

(i) If J1 ∼ Exponential(λ), then

cs = min

{
κλ

2η

(
1 − α

β
exp

(
1 − α

β

))
,
κ2

2σ 2

}
.

(ii) If J1 ∼ Gamma(μ, λ) with μ, λ> 0 as the shape and the rate, respectively, then

cs = min

⎧⎪⎨⎪⎩κλ2η

⎛⎜⎝1 − 1(
β
α

exp
(
α
β

− 1
))1/μ

⎞⎟⎠ , κ2

2σ 2

⎫⎪⎬⎪⎭ .

(iii) If J1 = j> 0, then

cs = min

{
κ

2ηj

(
ln

(
β

α

)
+ α

β
− 1

)
,
κ2

2σ 2

}
.

Proof. See Example A.1 in the appendix. �
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12 D. R. BAÑOS ET AL.

We have studied the conditions under which the generalized Riccati equations have a well-
defined solution on the interval [0, T]. We now proceed to studying the integrability of the
exponential of the integrated variance, following the method noted at the beginning of this
section.

Proposition 3.1. Let c< cl; then

E

[
exp

(
c
∫ T

0
vudu

)]
<∞.

Proof. By Corollary 2.1, v is strictly positive and the expectation is finite for c ≤ 0. We
focus on the case when 0< c< cl. We first define the function f : [0, T] ×R3 →R by

f (t, x, y, z) = exp(F(t) + G(t)x + H(t)y + cz) ,

where G and H are the solutions of the generalized Riccati equations given in Lemma 3.1,
that is,

G′(t) = −1

2
σ 2G2(t) + κG(t) − c, (3.4)

G(T) = 0

and

H′(t) = βH(t) − MJ(ηG(t)) exp(αH(t))+ 1, (3.5)

H(T) = 0,

and F is given by

F′(t) = −κ v̄G(t) − βλ0H(t), (3.6)

F(T) = 0.

Note that with the assumption we have made on c, the functions F, G, and H are well defined
on [0, T].

We also define the integrated variance Vt := ∫ t
0 vudu. We let Yt := (t, vt, λt, Vt) and define

the process M = {M(t), t ∈ [0, T]} by M(t) = f (t, vt, λt, Vt) = f (Yt). Applying Itô’s formula to
the process M, we get

M(t) = M(0) +
∫ t

0
∂tf (Ys−)ds +

∫ t

0
∂xf (Ys−)dvs +

∫ t

0
∂yf (Ys−)dλs

+
∫ t

0
∂zf (Ys−)dVs + 1

2

∫ t

0
∂2

xxf (Ys−)d[v]c
s

+
∑

0<s≤t

[
f (Ys) − f (Ys−) − ∂xf (Ys−)vs − ∂yf (Ys−)λs

]
.

We have used that

[λ]t = α2[N]t = α2Nt =⇒ [λ]c
t = 0,

[V]t = 0,

[v, λ]t = αη[L,N]t = αηLt =⇒ [v, λ]c
t = 0,

[v, V]t = [λ, V]t = 0.
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Change of measure in a Heston-Hawkes stochastic volatility model 13

Moreover,

[v]t =
∫ t

0
σ 2vsds + η2[L]t =⇒ [v]c

t =
∫ t

0
σ 2vsds,

dvt = −κ(vt − v̄)dt + σ
√

vtdWt + ηdLt,

dλt = −β(λt − λ0)dt + αdNt.

Hence,

M(t) − M(0) =
∫ t

0

[
∂tf (Ys) − κ∂xf (Ys)(vs − v̄) − β∂yf (Ys)(λs − λ0)

+ ∂zf (Ys)vs + 1

2
∂2

xxf (Ys)σ
2vs

]
ds

+
∫ t

0
∂xf (Ys−)σ

√
vsdWs +

∫ t

0
∂yf (Ys−)ηdLs +

∫ t

0
∂yf (Ys−)αdNs

+
∑

0<s≤t

[
f (Ys) − f (Ys−) − ∂xf (Ys−)vs − ∂yf (Ys−)λs

]
.

Since vs = ηLs and λs = αNs, we have∫ t

0
∂xf (Ys−)ηdLs =

∑
0<s≤t

∂xf (Ys−)vs,∫ t

0
∂yf (Ys−)αdNs =

∑
0<s≤t

∂yf (Ys−)λs,

and we get

M(t) − M(0) =
∫ t

0

[
∂tf (Ys) − κ∂xf (Ys)(vs − v̄) − β∂yf (Ys)(λs − λ0)

+ ∂zf (Ys)vs + 1

2
∂2

xxf (Ys)σ
2vs

]
ds

+
∫ t

0
∂xf (Ys−)σ

√
vsdWs +

∑
0<s≤t

[
f (Ys) − f (Ys−)

]
.

Next, we can write∑
0<s≤t

[
f (Ys) − f (Ys−)

]= ∑
0<s≤t

[
f (s, vs− +vs, λs− +λs, Vs) − f (Ys−)

]
=
∑

0<s≤t

[
f (s, vs− + ηLs, λs− + αNs, Vs) − f (Ys−)

]
=
∑

0<s≤t

g(s, Ls, Ns),

where

g(s, u1, u2) := f (s, vs− + ηu1, λs− + αu2, Vs) − f (Ys−).
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14 D. R. BAÑOS ET AL.

We now define Us = (Ls,Ns), and for t ∈ [0, T], A ∈B(R2 \ {0, 0}), we let

NU(t, A) = #{0< s ≤ t, Us ∈ A}.
We add and subtract the compensator of the counting measure NU to split the expression

into a local martingale plus a predictable process of finite variation. Note that the compensator
of the Hawkes process is given by �N

t = ∫ t
0 λudu; see [4, Theorem 3]. One can check that the

compensator of the compound Hawkes process is given by �L
t =E[J1]

∫ t
0 λudu. Thus,∑

0<s≤t

[
f (Ys) − f (Ys−)

]= ∫ t

0

∫
(0,∞)2

g(s, u1, u2)NU(ds, du)

=
∫ t

0

∫
(0,∞)2

g(s, u1, u2)
(
NU(ds, du) − λsPJ1 (du1)δ1(du2)ds

)
+
∫ t

0

∫
(0,∞)2

g(s, u1, u2)λsPJ1 (du1)δ1(du2)ds.

Note that∫ t

0

∫
(0,∞)2

g(s, u1, u2)λsPJ1 (du1)δ1(du2)ds =
∫ t

0

∫
(0,∞)

g(s, u1, 1)λsPJ1 (du1)ds.

We conclude that

M(t) − M(0) =
∫ t

0

[
∂tf (Ys) − κ∂xf (Ys)(vs − v̄) − β∂yf (Ys)(λs − λ0)

+ ∂zf (Ys)vs + 1

2
∂2

xxf (Ys)σ
2vs +

∫
(0,∞)

g(s, u1, 1)λsPJ1 (du1)
]
ds

+
∫ t

0
∂xf (Ys−)σ

√
vsdWs

+
∫ t

0

∫
(0,∞)

g(s, u1, 1)
(
NU(ds, du) − λsPJ1 (du1)ds

)
.

Recall that f (t, x, y, z) = exp(F(t) + G(t)x + H(t)y + cz); thus,

∂tf (t, x, y, z) = (F′(t) + G′(t)x + H′(t)y
)

f (t, x, y, z),

∂xf (t, x, y, z) = G(t)f (t, x, y, z),

∂yf (t, x, y, z) = H(t)f (t, x, y, z),

∂zf (t, x, y, z) = cf (t, x, y, z).

Furthermore,

g(s, u1, 1) = f (s, vs− + ηu1, λs− + α, Vs) − f (s, vs−, λs−, Vs)

= f (s, vs−, λs−, Vs)
[
exp(ηu1G(s)) exp(αH(s))− 1

]
.

Therefore,∫
(0,∞)

g(s, u1, 1)λsPJ1 (du1) = f (Ys−)λs
[
MJ(ηG(s)) exp(αH(s))− 1

]
.
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Change of measure in a Heston-Hawkes stochastic volatility model 15

Using the specific form of the derivatives and the previous result, we see that the drift part
of M(t) − M(0) vanishes. That is, we have the following:

• Coefficient multiplying v in the drift:

f (Yt)

[
G′(t) − κG(t) + 1

2
G(t)2σ 2 + c

]
= 0,

where we have substituted Equation (3.4).

• Coefficient multiplying λ in the drift:

f (Yt)
[
H′(t) − βH(t) + MJ(ηG(t)) exp(αH(t))− 1

]= 0,

where we have substituted Equation (3.5).

• Free coefficient in the drift:

f (Yt)
[
F′(t) + κ v̄G(t) + βλ0H(t)

]= 0,

where we have substituted Equation (3.6).

Therefore, the process M can be written as

M(t) = M(0) +
∫ t

0
∂vf (Ys−)σ

√
vsdWs

+
∫ t

0

∫
(0,∞)

g(s, u1, 1)
(
NU(ds, du) − λsPJ1 (du1)ds

)
.

We conclude that M is a local martingale. Moreover, since M is non-negative, it is a
supermartingale. Then

E[M(T)] =E
[
exp(F(T) + G(T)vT + H(T)λT + cVT)

]
=E

[
exp

(
c
∫ T

0
vudu

)]
≤ M(0) = exp(F(0) + G(0)v0 + H(0)λ0) <∞.

Note that F(0),G(0),H(0)<∞, because the functions F, G, and H are well defined on the
entire interval [0, T]. �

We write Ŝ = {̂St, t ∈ [0, T]} for the discounted stock price; that is, Ŝt = e−rtSt. We prove
the existence of a family of equivalent local martingale measures Q(a) parametrized by a
number a. Namely, Q(a) ∼ P is such that Ŝ is an (F ,Q(a))-local martingale.

Theorem 3.1. Let a ∈R and define θ (a)
t := 1√

1−ρ2

(
μt−r√

vt
− aρ

√
vt

)
,

Y (a)
t := exp

(
−
∫ t

0
θ (a)

s dBs − 1

2

∫ t

0

(
θ (a)

s

)2
ds

)
,

Z(a)
t := exp

(
−a
∫ t

0

√
vsdWs − 1

2
a2
∫ t

0
vsds

)
,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2024.14
Downloaded from https://www.cambridge.org/core. IP address: 3.16.139.7, on 18 Sep 2024 at 11:24:00, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2024.14
https://www.cambridge.org/core


16 D. R. BAÑOS ET AL.

and X(a)
t := Y (a)

t Z(a)
t . The set

E :=
{
Q(a) given by

dQ(a)

dP
= X(a)

T with |a|<√2cl

}
(3.7)

is a set of equivalent local martingale measures.

Proof. Define the process
(
BQ(a),WQ(a)

)= {(BQ(a)
t ,WQ(a)

t
)
, t ∈ [0, T]

}
by

dBQ(a)
t = dBt + θ

(a)
t dt,

dWQ(a)
t = dWt + a

√
vtdt. (3.8)

The dynamics of the stock is now given by

dSt

St
=
[
μt − √

vt

(√
1 − ρ2θ

(a)
t + aρ

√
vt

)]
dt + √

vt

(√
1 − ρ2dBQ(a)

t + ρdWQ(a)
t

)
.

Note that

μt − √
vt

(√
1 − ρ2θ

(a)
t + aρ

√
vt

)
= r,

which is a necessary condition for Q(a) to be an equivalent local martingale measure. The
choice of the market price of risk processes θ (a) and a

√
vt is the same as in [52, Equations

(3.4) and (3.7)]. This choice preserves the standard Heston variance dynamics after the change
of measure.

To apply Girsanov’s theorem we need to check that the process X(a) is an (F , P)-martingale.
Since X(a) is a positive (F , P)-local martingale with X(a)

0 = 1, it is an (F , P)-supermartingale
and it is an (F , P)-martingale if and only if

E

[
X(a)

T

]
= 1.

Using the fact that Z(a)
T is FW

T ∨FL
T -measurable, we have

E

[
X(a)

T

]
=E

[
Y (a)

T Z(a)
T

]
=E

[
E

[
Y (a)

T Z(a)
T |FW

T ∨FL
T

]]
=E

[
Z(a)

T E

[
Y (a)

T |FW
T ∨FL

T

]]
. (3.9)

By Corollary 2.1, the variance process v is strictly positive. This implies that
∫ T

0

(
θ

(a)
s
)2

ds<
∞, P-almost surely. Since θ (a) is

{FW
t ∨FL

t

}
t∈[0,T]-adapted,

Y (a)
T |FW

T ∨FL
T ∼ Lognormal

(
−1

2

∫ T

0

(
θ (a)

s

)2
ds,
∫ T

0

(
θ (a)

s

)2
ds

)
,

and we obtain that E
[
Y (a)

T |FW
T ∨FL

T

]= 1. Therefore, substituting this in the last expression in

(3.9), we obtain E
[
X(a)

T

]=E
[
Z(a)

T

]
and we only need to check that E

[
Z(a)

T

]= 1. Since |a|<√
2cl, 1

2 a2 < cl, we can apply Proposition 3.1 and get that

E

[
exp

(
1

2
a2
∫ T

0
vudu

)]
<∞. (3.10)
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Change of measure in a Heston-Hawkes stochastic volatility model 17

Hence, Novikov’s condition is satisfied, Z(a) is an (F , P)-martingale, and we conclude that
E
[
X(a)

T

]=E
[
Z(a)

T

]= 1.
Then X(a) is an (F , P)-martingale, Q(a) ∼ P is an equivalent probability measure

defined by

dQ

dP
= X(a)

T ,

dX(a)
t = X(a)

t

[
−θ (a)

t dBt − a
√

vtdWt

]
,

and
(
BQ(a),WQ(a)

)
as defined in (3.8) is a two-dimensional standard (F ,Q(a))-Brownian

motion. The dynamics of the stock under Q(a) is given by

dSt

St
= rdt + √

vt

(√
1 − ρ2dBQ(a)

t + ρdWQ(a)
t

)
.

This implies that the discounted stock Ŝ is an (F ,Q(a))-local martingale. Therefore, the set
E defined in (3.7) is a set of equivalent local martingale measures. �
Observation 3.2. As pointed out at the beginning of this section, since 1

2 a2 is multiplying the
integrated variance in (3.10), it is important that cl is strictly positive in Lemma 3.1.

Observation 3.3. The dynamics of the variance under Q(a) ∈ E is given by

dvt = −κ(vt − v̄) dt + σ
√

vt

(
dWQ(a)

t − a
√

vtdt
)

+ ηdLt

= − (κ(vt − v̄)+ aσvt) dt + σ
√

vtdWQ(a)
t + ηdLt

= −κ (a)
(

vt − v̄(a)
)

dt + σ
√

vtdWQ(a)
t + ηdLt, (3.11)

where κ (a) = κ + aσ and v̄(a) = kv̄
k+aσ .

So far, we have proven that there exists a set of equivalent local martingale measures.
However, we need to study when those measures are actually equivalent martingale measures.
We prove that under the condition ρ2 < cl, there exists a subset of E of equivalent martingale
measures. The condition ρ2 < cl may look quite restrictive. However, an inequality involving
the correlation factor ρ also appears in the proof of the existence of equivalent martingales
measures in the standard Heston model (see [52, Theorem 3.6]).

Theorem 3.2. If ρ2 < cl, the set

Em :=
{
Q(a) ∈ E : |a|<min

{√
2cl

2
,

√
cl − ρ2

}}
(3.12)

is a set of equivalent martingale measures.

Proof. Let Q(a) ∈ Em ⊂ E . By Theorem 3.1, Ŝ is an (F ,Q(a))-local martingale with the
following dynamics:

d̂St

Ŝt
= √

vt

(√
1 − ρ2dBQ(a)

t + ρdWQ(a)
t

)
.
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18 D. R. BAÑOS ET AL.

Hence,

Ŝt = S0 exp

(√
1 − ρ2

∫ t

0

√
vsdBQ(a)

s + ρ

∫ t

0

√
vsdWQ(a)

s − 1

2

∫ t

0
vsds

)
.

Since Ŝ is a positive (F ,Q(a))-local martingale with Ŝ0 = S0, it is an (F ,Q(a))-
supermartingale and it is an (F ,Q(a))-martingale if and only if EQ(a)

[̂
ST
]= S0.

Similarly as we did in Theorem 3.1, we define the processes

YQ(a)
t := exp

(√
1 − ρ2

∫ t

0

√
vsdBQ(a)

s − 1 − ρ2

2

∫ t

0
vsds

)
,

ZQ(a)
t := exp

(
ρ

∫ t

0

√
vsdWQ(a)

s − ρ2

2

∫ t

0
vsds

)
.

Thus, Ŝt = S0YQ(a)
t ZQ(a)

t . Using that ZQ(a)
T is FWQ(a)

T ∨FL
T -measurable, we have

EQ(a)[̂ST
]= S0E

Q(a)
[
YQ(a)

T ZQ(a)
T

]
= S0E

Q(a)
[
EQ(a)

[
YQ(a)

T ZQ(a)
T |FWQ(a)

T ∨FL
T

]]
= S0E

Q(a)
[
ZQ(a)

T EQ(a)
[
YQ(a)

T |FWQ(a)

T ∨FL
T

]]
. (3.13)

Since
∫ T

0 vudu<∞, Q(a)-almost surely, and v is
{FWQ(a)

t ∨FL
t

}
t∈[0,T]-adapted,

YQ(a)
T |FWQ(a)

T ∨FL
T ∼ Lognormal

(
−1 − ρ2

2

∫ T

0
vsds, (1 − ρ2)

∫ T

0
vsds

)
,

and we have that EQ(a)
[
YQ(a)

T |FWQ(a)

T ∨FL
T

]= 1. Substituting this in the last expression

in (3.13), we obtain that EQ(a)
[̂
ST
]= S0E

Q(a)
[
ZQ(a)

T

]
, and hence we only need to check

EQ(a)
[
ZQ(a)

T

]= 1. We will prove that Novikov’s condition holds, that is,

EQ(a)
[

exp

(
ρ2

2

∫ T

0
vudu

)]
<∞. (3.14)

Unlike in the proof of [52, Theorem 3.6], here we cannot directly apply Proposition 3.1
with the volatility parameters κ (a) and v̄(a) given in (3.11) to prove that the expectation above
is finite. One reason is that under Q(a) the Brownian motion WQ(a) and the compound Hawkes
process L are no longer independent, because

dWQ(a)
t = dWt + a

√
vtdt;

therefore, the dynamics of v is different under Q(a). In order to check (3.14) we note that

EQ(a)
[

exp

(
ρ2

2

∫ T

0
vudu

)]
=E

[
exp

(
ρ2

2

∫ T

0
vudu

)
dQ(a)

dP

]
,

where

dQ(a)

dP
= Y (a)

T Z(a)
T ,

and Y (a)
T and Z(a)

T are given in the statement of Theorem 3.1.
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Change of measure in a Heston-Hawkes stochastic volatility model 19

Repeating the same argument as in Theorem 3.1, we can write

EQ(a)
[

exp

(
ρ2

2

∫ T

0
vudu

)]
=E

[
exp

(
ρ2

2

∫ T

0
vudu

)
Y (a)

T Z(a)
T

]
=E

[
E

[
exp

(
ρ2

2

∫ T

0
vudu

)
Y (a)

T Z(a)
T

∣∣∣FW
T ∨FL

T

]]
=E

[
exp

(
ρ2

2

∫ T

0
vudu

)
Z(a)

T E

[
Y (a)

T |FW
T ∨FL

T

]]
=E

[
exp

(
ρ2

2

∫ T

0
vudu

)
Z(a)

T

]
=E

[
exp

(
−a
∫ T

0

√
vsdWs − 1

2

(
a2 − ρ2) ∫ T

0
vsds

)]
,

Then, adding and subtracting a2
∫ T

0 vsds in the exponential and applying the Cauchy–
Schwarz inequality, we obtain

E

[
exp

(
−a
∫ T

0

√
vsdWs − 1

2

(
a2 − ρ2) ∫ T

0
vsds

)]
=

=E

[
exp

(
−a
∫ T

0

√
vsdWs − a2

∫ T

0
vsds

)
exp

(
1

2

(
a2 + ρ2) ∫ t

0
vsds

)]

≤E

[
exp

(
−2a

∫ T

0

√
vsdWs − 2a2

∫ T

0
vsds

)] 1
2

E

[
exp

((
a2 + ρ2) ∫ t

0
vsds

)] 1
2

. (3.15)

Note that the first factor in (3.15) is the expectation of a Doléans–Dade exponential. Since

|a|<
√

2cl
2 (recall the choice of a in (3.12)), 2a2 < cl, and by Proposition 3.1, Novikov’s

condition holds:

E

[
exp

(
2a2

∫ T

0
vsds

)]
<∞.

Therefore, we have that

E

[
exp

(
−2a

∫ T

0

√
vsdWs − 2a2

∫ T

0
vsds

)]
= 1.

For the second term in (3.15), we again apply Proposition 3.1. We need a2 + ρ2 < cl, which
is true because |a|<√cl − ρ2. Thus

E

[
exp

((
a2 + ρ2) ∫ t

0
vsds

)]
<∞

and

EQ(a)
[

exp

(
ρ2

2

∫ T

0
vudu

)]
<∞.

We conclude that EQ(a)
[
ZQ(a)

T

]= 1, EQ(a)
[̂
ST
]= S0, and Ŝ is an (F ,Q(a))-martingale.

Therefore, Em is a set of equivalent martingale measures. �
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4. Application: efficient computation of risk exposures

A common risk management practice is the computation of exposures, such as potential
future exposures, expected exposures, and expected positive exposures, among others. The
objective of such computations is to estimate the capital that the firm needs to hold in order
to manage its risks and comply with economic regulations. Therefore, computing exposures
correctly and efficiently is a fundamental risk management procedure that firms need to deal
with.

Stein [51] shows that exposures computed under the risk-neutral measure are essentially
arbitrary; they must be calculated under the real-world measure. It is proven in [51] that, under
the Black–Scholes model, exposures can differ by a factor of two or more across commonly
used numéraires and their corresponding risk-neutral measures.

On the other hand, efficient computation of such exposures is relevant for firms to optimize
the time and effort used in those calculations. As explained in [50, 51], computing exposures
under the real-world measure for a portfolio of derivatives can be computationally expensive.
The reason is that to compute exposures on derivative portfolios, one simulates risk factors to
the horizon date under the real-world measure, and then the portfolio is repriced under a risk-
neutral measure. Essentially, this requires performing a Monte Carlo within a Monte Carlo,
which can be extremely time-consuming. Moreover, such exposures are usually computed for a
variety of horizon times, making the computations even more costly. This is one of the reasons
motivating firms (wrongly) to compute exposures under the risk-neutral measure.

However, if a change of measure exists and the Radon–Nikodym derivative of that change is
known, such computations can be done in a far more efficient way. Following the explanation
in [51], let V be a portfolio of derivatives and consider a risk exposure of the type

R =E[Y(VT )] (4.1)

for some function Y . Now, assuming that ρ2 < cl, let Q(a) ∈ Em be a risk-neutral measure, and
let dQ(a)

dP = X(a)
T be as given in Theorem 3.1. Then R can be computed in the following way:

R =E[Y(VT )] =EQ(a)
[

Y(VT )
dP

dQ(a)

]
=EQ(a)

[
Y(VT )

1

X(a)
T

]
. (4.2)

The exposure R can often be calculated much more efficiently using the expression on the
right-hand side of (4.2) than using (4.1), because the calculations can be done entirely under
Q(a). Monte Carlo techniques such as least-squares Monte Carlo [42], stochastic mesh [10],
or stochastic grid [33] can be used to compute VT , and the same scenarios can used to obtain
the expression on the right-hand side of (4.2) [13].

To summarize, an important practical application of our results to risk management is
the correct and efficient computation of exposures on derivative portfolios, which is pos-
sible thanks to the existence of risk-neutral measures and an explicit expression for the
Radon–Nikodym derivative.

4.1. Numerical example

We give a numerical simulation in which we quantify the error obtained if, under our
stochastic volatility model, the exposures are wrongly computed under a risk-neutral mea-
sure. The objective is to illustrate the importance of computing exposures under the real-world
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Change of measure in a Heston-Hawkes stochastic volatility model 21

TABLE 1. Parameters used for the Monte Carlo simulation.

T S0 μ ρ r v0 κ v̄ σ η k λ0 α β

1 1 0.08 –0.9 0.05 0.4 10 0.07 1 0.5 1.5 2 1 7
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FIGURE 1. Expected exposure computed under P and under Q(0) as functions of the strike for a call
option.

measure. Assume that ρ2 < cl. Let Q(a) ∈ Em, and let V be a portfolio consisting of a single
call option with strike K and maturity time T , that is,

Vt = e−r(T−t)EQ(a) [max{ST − K, 0}|Ft] , t ∈ [0, T].

Following [51], the expected exposure at time t ∈ [0, T] is defined by EE(V, t) :=
E[max{Vt, 0}]. For the sake of simplicity, we compute the expected exposure at maturity
time T . Then EE(V, T) =E[max{ST − K, 0}], and we define the (wrong) expected exposure
under Q(a) by EE(a)(V, T) =EQ(a) [max{ST − K, 0}].

We employ an Euler–Maruyama scheme to approximate the processes λ, v, and S; we
then run a Monte Carlo simulation to compute EE(V , T) and EE(a)(V, T) for different strikes
and values of a. For convenience, we assume that the drift μ of S is constant and that
J1 ∼ Exponential(k). The parameters used for the simulation are given in Table 1; we have
taken as a reference the ones given in [41, Table IV].

One can check that the stability condition for the Hawkes process, the Feller condition,
and the condition ρ2 < cl are satisfied. In Figure 1 we compare EE(V , T) and EE(0)(V, T) for
different strikes, and in Figure 2 we make the same comparison for EE(V , T) and EE(1)(V, T).
In Table 2 we give the average and maximum relative errors between the exposures computed
under risk-neutral measures and the correct exposures across the different strikes. Note that the
relative errors given in Table 2 are of significant size for risk management purposes. Finally, in
Figure 3 we compute EE(a)(V, T) for different values of a and for a fixed strike value K = 1.4.
We also plot the correct value and the relative error.
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22 D. R. BAÑOS ET AL.

TABLE 2. Average and maximum relative errors between exposures computed under risk-neutral
measures and exposures computed under the real-world measure.

Exposures under Q(0) Exposures under Q(1)

Average relative error 14.18% 20.37%
Maximum relative error 35.18% 54.11%
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FIGURE 2. Expected exposure computed under P and under Q(1) as functions of the strike for a call
option.
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FIGURE 3. Expected exposure computed under Q(a) for different values of a and a fixed strike value
K = 1.4.
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It is worth mentioning that it would be of interest to compute EE(V , t) for t ∈ [0, T) and
other types of exposures under our stochastic volatility model for more complex derivative
portfolios. Nevertheless, the goal is to show that even with a simple portfolio and exposure
one can obtain significantly different exposure values if they are wrongly computed under the
risk-neutral measure.

Appendix A. Technical lemmas

We now give the proofs that were postponed in Section 3.

Lemma A.1. For c ≤ κ2

2σ 2 , define D(c) := √
κ2 − 2σ 2c,

�(c) := 2ηc
(
eD(c)T − 1

)
D(c) − κ + (D(c) + κ) eD(c)T

,

and

cl := sup

{
c ≤ κ2

2σ 2
:�(c)< εJ and MJ (�(c))≤ β

α
exp

(
α

β
− 1

)}
.

Then 0< cl ≤ κ2

2σ 2 and for c< cl, the following hold:

(i) The ODE

G′(t) = −1

2
σ 2G2(t) + κG(t) − c, (A.1)

G(T) = 0

has a unique solution in the interval [0, T]. The solution is strictly decreasing and is
given by

G(t) = 2c
(
eD(c)(T−t) − 1

)
D(c) − κ + (D(c) + κ) eD(c)(T−t)

.

(ii) The function t �→ MJ(ηG(t)) is well defined for t ∈ [0, T].

(iii) Define U := supt∈[0,T] MJ(ηG(t)). Then U = MJ(ηG(0)) and

1<U ≤ β

α
exp

(
α

β
− 1

)
.

(iv) The ODE

H′(t) = βH(t) − MJ (ηG(t)) exp(αH(t))+ 1, (A.2)

H(T) = 0

has a unique solution in [0, T].

Proof. We first check that cl > 0. Since

lim
c→0+ �(c) = 0, (A.3)
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there exist positive values of c satisfying the inequality �(c)< εJ . Using that α < β, one can

check that β
α

exp
(
α
β

− 1
)
> 1. Since the limit in (A.3) holds, MJ(0) = 1, and MJ is a continuous

function, there exist positive values of c satisfying the inequality MJ (�(c))≤ β
α

exp
(
α
β

− 1
)

.

Therefore, cl > 0. From now on, let c< cl.
(i) To find the solution we can transform Equation (A.1) to a second-order linear equation

with constant coefficients and then apply the standard method to solve it using the fact that

c< κ2

2σ 2 . To see that G is strictly decreasing, one can check that

G′(t) = −4cD(c)2eD(c)(T−t)(
D(c) − κ + (D(c) + κ) eD(c)(T−t)

)2 < 0.

(ii) Since G is strictly decreasing and η > 0,

sup
t∈[0,T]

ηG(t) = ηG(0) = 2ηc
(
eD(c)T − 1

)
D(c) − κ + (D(c) + κ)eD(c)T

=�(c).

By the definition of cl we have �(c)< εJ . Then ηG(t)< εJ for t ∈ [0, T] and MJ(ηG(t)) is
well defined for t ∈ [0, T].

(iii) Since G is strictly decreasing and MJ is strictly increasing, we have MJ(ηG(0)) ≥
MJ(ηG(t)) for all t ∈ [0, T]. Therefore, U = MJ(ηG(0)). Since ηG(0)>ηG(T) = 0, we have
that

U = MJ(ηG(0))>MJ(ηG(T)) = MJ(0) = 1.

Moreover, by the definition of cl we have

U = MJ(ηG(0))

= MJ

(
2ηc(eD(c)T − 1)

D(c) − κ + (D(c) + κ)eD(c)T

)
= MJ(�(c))

≤ β

α
exp

(
α

β
− 1

)
.

(iv) Let us make the change of variables h(t) := H(T − t). Then the ODE in (A.2) is
transformed to

h′(t) = f (t, h(t)) = MJ (ηG(T − t)) exp(αh(t))− βh(t) − 1, (A.4)

h(0) = 0

where f (t, x) := MJ(ηG(T − t)) exp(αx)− βx − 1. Note that for t ∈ [0, T] and x ∈R,

fm(x) := −βx − 1 ≤ f (t, x) ≤ U exp(αx)− βx − 1 =: fM(x). (A.5)

First, we focus on the ODE

h′
M(t) = fM(hM(t)) = U exp(αhM(t))− βhM(t) − 1, (A.6)

hM(0) = 0.
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Since fM is continuously differentiable in R, it is Lipschitz continuous on bounded intervals
and there exists a unique local solution for every initial condition; see [30, Chapter II, Theorem
1.1]. We want fM(0)> 0 and the existence of xp > 0 such that fM(xp) ≤ 0, which would imply
the existence of a stable equilibrium point in the interval (0, xp). Therefore, the solution of
(A.6) would be well defined on [0,∞) and we would have hM(t)< xp for all t ∈ [0,∞).

Note that fM(0) = U − 1> 0, as seen in the previous part.

The minimum of fM is achieved at xmin = 1
α

ln
(
β
αU

)
. Note that xmin > 0 if and only if U <

β
α

.

Then

fM(xmin) = β

α

(
1 − ln

(
β

αU

))
− 1 ≤ 0

if and only if U ≤ β
α

exp
(
α
β

− 1
)
, which is guaranteed by (iii). Moreover, note that

β
α

exp
(
α
β

− 1
)
<

β
α

and then xmin > 0.

We conclude that the point we were searching is xp = xmin. This guarantees that hM is well
defined on [0,∞) and hM(t)< xp for all t ∈ [0, T].

Now we focus on the ODE

h′
m(t) = fm(hm(t)) = −βhm(t) − 1,

hm(0) = 0.

The solution is given by hm(t) = e−βt−1
β

. The function hm is well defined on [0,∞) and

hm(t) ≥ −1
β

for all t ∈ [0,∞).
Consider again the ODE in (A.4), and recall that

f (t, x) = MJ (ηG(T − t)) exp(αx))− βx − 1.

Define the open interval V := (− 1
β

− 1, xp + 1
)
. Note that f : [0, T] × V →R is a continu-

ous function, Lipschitz in x, because the exponential function is Lipschitz on bounded intervals.
For (t, x1), (t, x2) ∈ [0, T] × V we have

|f (t, x1) − f (t, x2)| ≤ |MJ(ηG(T − t))|| exp(αx1)− exp(αx2) | + β|x1 − x2|
≤ U| exp(αx1)− exp(αx2) | + β|x1 − x2|
≤ K1|x1 − x2|,

for some constant K1 > 0. Then, by the Picard–Lindelöf theorem (see [30, Chapter II, Theorem
1.1]), there is a unique solution h : I → V for some interval I ⊂ [0, T]. Moreover, by [30,
Chapter II, Theorem 3.1], only two cases are possible:

(1) I = [0, T]. In this case, there is nothing more to prove.

(2) I = [0, ε) with ε ≤ T and

lim
t→ε−

h(t) ∈
{
− 1

β
− 1, xp + 1

}
. (A.7)
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That is, h approaches the boundary of V as t approaches ε. In this case, as a consequence of
(A.5), we will prove that hm(t) ≤ h(t) ≤ hM(t), for all t ∈ [0, ε).

First we prove that hm(t) ≤ h(t) for all t ∈ [0, ε). Define the function g(t) := hm(t) − h(t) for
t ∈ [0, ε). Note that g(0) = 0 and we want to prove that g(t) ≤ 0 for all t ∈ [0, ε). Assume there
exists s ∈ (0, ε) such that g(s)> 0. Since g is continuous and g(0) = 0, there exists r ∈ [0, s)
with g(r) = 0 and g(t)> 0 for t ∈ (r, s]. Now, for t ∈ [r, s] we have

g′(t) = h′
m(t) − h′(t)

= fm(hm(t)) − f (t, h(t))

≤ f (t, hm(t)) − f (t, h(t))

= MJ(ηG(T − t)) (exp(αhm(t))− exp(αh(t)))− β(hm(t) − h(t))

≤ U(exp(αhm(t))− exp(αh(t)))− β(hm(t) − h(t))

≤ K2|hm(t) − h(t)| = K2|g(t)| = K2g(t),

for some constant K2 > 0, where in the last inequality we have used the fact that since hm and
h are continuous, they are bounded in [r, s], and we can use the Lipschitz property because the
exponential function is Lipschitz on bounded intervals. Applying Gronwall’s inequality, we
have that g(s) ≤ g(r)eK2(s−r) = 0, which is a contradiction. We conclude that hm(t) ≤ h(t) for
all t ∈ [0, ε). A similar argument can be employed to prove that h(t) ≤ hM(t) for all t ∈ [0, ε).

For t ∈ [0, ε) we have

hm(t) ≤ h(t) ≤ hM(t) =⇒ −1

β
≤ h(t) ≤ xp =⇒ −1

β
≤ lim

t→ε−
h(t) ≤ xp.

This contradicts (A.7). We conclude that the only possible situation is that h is well defined
on [0, T]. �
Corollary A.1. Define cs by

cs := min

{
κεJ

2η
,
κ

2η
M−1

J

(
β

α
exp

(
α

β
− 1

))
,
κ2

2σ 2

}
.

Then 0< cs < cl.

Proof. We first check that cs > 0. The function MJ : (−∞, εJ) → (0,∞) is well defined and
strictly increasing. Therefore, M−1

J : (0,∞) → (−∞, εJ) is also a well-defined function, and
it is strictly increasing.

Since β
α

exp
(
α
β

− 1
)
> 1 and MJ(0) = 1, we have M−1

J

(
β
α

exp
(
α
β

− 1
))
> 0, and we can

conclude that cs > 0.
Recall that 0< cl ≤ κ2

2σ 2 , where

cl = sup

{
c ≤ κ2

2σ 2
:�(c)< εJ and MJ (�(c))≤ β

α
exp

(
α

β
− 1

)}
,

with D(c) = √
κ2 − 2σ 2c and �(c) = 2ηc

(
eD(c)T−1

)
D(c)−κ+(D(c)+κ)eD(c)T .
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To prove that cs < cl we check that �(cs)< εJ and MJ (�(cs))≤ β
α

exp
(
α
β

− 1
)

. The

following inequality holds:

�(c) =
2ηc
(

e
√
κ2−2σ 2cT − 1

)
√
κ2 − 2σ 2c − κ +

(√
κ2 − 2σ 2c + κ

)
e
√
κ2−2σ 2cT

<
2ηc

κ
. (A.8)

In fact,

�(c) =
2ηc
(

e
√
κ2−2σ 2cT − 1

)
√
κ2 − 2σ 2c − κ +

(√
κ2 − 2σ 2c + κ

)
e
√
κ2−2σ 2cT

<
2ηc

κ

⇐⇒ κ

(
e
√
κ2−2σ 2cT − 1

)
<
√
κ2 − 2σ 2c − κ +

(√
κ2 − 2σ 2c + κ

)
e
√
κ2−2σ 2cT

⇐⇒ 0<
√
κ2 − 2σ 2c

(
1 + e

√
κ2−2σ 2cT

)
.

Now, by the definition of cs we have �(cs)<
2ηcs
κ

≤ εJ, and

MJ (�(cs)) <MJ

(
2ηcs

κ

)
≤ MJ

(
M−1

J

(
β

α
exp

(
α

β
− 1

)))
= β

α
exp

(
α

β
− 1

)
.

We conclude that cs < cl. Note that the inequality in cs < cl is strict because the inequality
in (A.8) is strict. �
Example A.1 (i) If J1 ∼ Exponential(λ), then

cs = min

{
κλ

2η

(
1 − α

β
exp

(
1 − α

β

))
,
κ2

2σ 2

}
.

(ii) If J1 ∼ Gamma(μ, λ) with μ, λ> 0 as the shape and the rate, respectively, then

cs = min

⎧⎪⎨⎪⎩κλ2η

⎛⎜⎝1 − 1(
β
α

exp
(
α
β

− 1
))1/μ

⎞⎟⎠ , κ2

2σ 2

⎫⎪⎬⎪⎭ .

(iii) If J1 = j> 0, then

cs = min

{
κ

2ηj

(
ln

(
β

α

)
+ α

β
− 1

)
,
κ2

2σ 2

}
.

Proof. (i) The moment generating function is given by MJ(t) = λ
λ−t , t<λ. Hence, with the

notation of Assumption 3.1, εJ = λ, and the inverse of MJ is given by M−1
J (t) = λ

(
1 − 1

t

)
,

t> 0. Then, applying Corollary A.1, we have the following expression for cs:

cs = min

⎧⎨⎩κλ2η
,
κλ

2η

⎛⎝1 − 1
β
α

exp
(
α
β

− 1
)
⎞⎠ , κ2

2σ 2

⎫⎬⎭ .
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Note that since β
α

exp
(
α
β

− 1
)
> 1, we have

0< 1 − 1
β
α

exp
(
α
β

− 1
) < 1.

We conclude that

cs = min

⎧⎨⎩κλ2η
,
κλ

2η

⎛⎝1 − 1
β
α

exp
(
α
β

− 1
)
⎞⎠ , κ2

2σ 2

⎫⎬⎭
= min

{
κλ

2η

(
1 − α

β
exp

(
1 − α

β

))
,
κ2

2σ 2

}
.

(ii) The moment generating function is given by MJ(t) = (1 − t
λ

)−μ, t<λ. Thus, εJ = λ, and

the inverse of MJ is given by M−1
J (t) = λ

(
1 − t−1/μ

)
, t> 0. Then, applying Corollary A.1, we

have the following expression for cs:

cs = min

{
κλ

2η
,
κλ

2η

(
1 −

(
β

α
exp

(
α

β
− 1

))−1/μ
)
,
κ2

2σ 2

}
.

Note that since β
α

exp
(
α
β

− 1
)
> 1, we have

0< 1 − 1(
β
α

exp
(
α
β

− 1
))1/μ

< 1.

We conclude that

cs = min

{
κλ

2η

(
1 −

(
β

α
exp

(
α

β
− 1

))−1/μ
)
,
κ2

2σ 2

}
.

(iv) The moment generating function is given by MJ(t) = etj, t ∈R. Thus, εJ = ∞, and the
inverse of MJ is given by M−1

J (t) = ln (t)/j, t> 0. Then, applying Corollary A.1, we
conclude that

cs = min

{
κ

2ηj

(
ln

(
β

α

)
+ α

β
− 1

)
,
κ2

2σ 2

}
.

�
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