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Abstract

In this paper we prove that surfaces of general type with irregularity q > 3 are
rationally cohomologically rigidified, and so are minimal surfaces S with q(S) = 2 unless
K2
S = 8χ(OS). Here a surface S is said to be rationally cohomologically rigidified if

its automorphism group Aut(S) acts faithfully on the cohomology ring H∗(S,Q). As
examples we give a complete classification of surfaces isogenous to a product with
q(S) = 2 that are not rationally cohomologically rigidified.

1. Introduction

A compact complex manifold X is said to be cohomologically rigidified if its automorphism group
Aut(X) acts faithfully on the cohomology ring H∗(X, Z), and rationally cohomologically rigidified
if Aut(X) acts faithfully on H∗(X,Q); it is said to be rigidified if Aut(X) ∩Diff0(X) = {idX},
where Diff0(X) is the connected component of the identity of the group of orientation preserving
diffeomorphisms of X (see [Cat12, Definition 12]).

Note that any element in Aut(X) ∩Diff0(X) acts trivially on the cohomology ring H∗(X, Z).
There are obvious implications: rationally cohomologically rigidified⇒ cohomologically rigidified
⇒ rigidified.

It is well known that curves of genus >2 are rationally cohomologically rigidified. There are
surfaces of general type with pg arbitrarily large which are not cohomologically rigidified [Cai07].
An interesting question posed by Catanese [Cat12, Remark 46] is whether every surface of general
type is rigidified.

The question is closely related to the local moduli problem for X, that is, whether the natural
local map Def(X)→T (M)[X], from the Kuranishi space to the germ of the Teichmüller space
at [X], is a homeomorphism or not. Here M is the underlying oriented differentiable manifold of
X and [X] ∈ T (M) is the point corresponding to the complex structure of X (see [Cat12, § 1.4]).

Apart from the local moduli problem, there is also motivation from the global moduli problem,
namely the existence of a fine moduli space for polarized manifolds having the same Hilbert
polynomial as X together with a so-called level l-structure [Pop77, Lecture 10]. Along this line,
many authors have studied the action of automorphism groups of compact complex manifolds
on their cohomology rings. It is known that K3 surfaces are rationally cohomologically rigidified
(cf. [BHPV04, BR75]). For Enriques surfaces S, either S is cohomologically rigidified, or the
kernel of Aut(S)→Aut(H∗(S, Z)) is a cyclic group of order two, and the latter case has been
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completely classified [MN84, Muk10]. For elliptic surfaces S, if χ(OS)> 0 and pg(S)> 0, then S
is rationally cohomologically rigidified [Pet80]. There are also attempts at the generalization to
hyperkähler manifolds [Bea84, BNS11]; recently Oguiso [Ogu12] proved that generalized Kummer
manifolds are cohomologically rigidified.

For surfaces of general type, the problem seems harder, since there are not so many available
structures on the cohomology groups as for the special surfaces. We remark that in this case the
problem is easily reduced to the case where the surface is minimal. At the moment only partial
results are known.

Let S be a minimal nonsingular complex projective surface of general type, and Aut0(S)
the subgroup of automorphisms of X, acting trivially on the cohomology ring H∗(S,Q).
Peters [Pet79] showed that, if the canonical linear system |KS | of S is base-point-free, then
S is rationally cohomologically rigidified, with the possible exceptional case where S satisfies
either K2

S = 8χ(OS) or K2
S = 9χ(OS). In [Cai06] and [Cai10], the first author proved that, if S

has a fibration of genus 2 and χ(OS) > 5, or S is an irregular surface with K2
S 6 4χ(OS) and

χ(OS)> 12, then either S is rationally cohomologically rigidified, or Aut0(S) is of order two and
S satisfies K2

S = 4χ(OS) and q(S) = 1.
In this paper, we consider surfaces of general type with q(S) > 2. Our main theorem is as

follows.

Theorem 1.1. Let S be a minimal nonsingular complex projective surface of general type with
q(S) > 2. Then either S is rationally cohomologically rigidified, or Aut0(S) is a group of order
two and S satisfies K2

S = 8χ(OS), q(S) = 2, the Albanese map of S is surjective, and S has a
pencil of genus one.

In particular, if q(S) > 3, then S is rationally cohomologically rigidified, hence rigidified.

Combining Theorem 1.1 with [Cat12, Theorem 45], we have the following corollary.

Corollary 1.2. Let S be a minimal surface of general type with q(S) > 3. If KS is ample,
then the natural map Def(S)→T (M)[S] is a local homeomorphism between the Kuranishi
space and the Teichmüller space. Here M is the underlying differential manifold of S.

As examples we classify surfaces isogenous to a product that are not rationally
cohomologically rigidified.

Theorem 1.3. Let S = (C ×D)/G be a surface isogenous to a product with q(S) > 2. Assume
that S is not rationally cohomologically rigid. Then S is as in Example 4.6 below; in particular, S
is of unmixed type, G is isomorphic to one of the following groups: Z2m ⊕ Z2mn, Z2 ⊕ Z2m ⊕ Z2mn

(m, n are arbitrary positive integers), and g(C/G) = g(D/G) = 1.

By a result of Borel–Narasimhan [BN67], surfaces in Example 4.6 are rigidified
(Proposition 4.8). It is not known whether surfaces S in the latter case of Theorem 1.1 are
rigidified. A further step that can be done on these surfaces is to check if the action of Aut(S)
on cohomology with Z-coefficient or on the fundamental group is faithful.

Theorem 1.1 is proved in §§ 2–3. The proof of Theorem 1.1 builds on the generic vanishing
theory [Bea92, BLNP12, GL87, GL91, PP03, PP06] and classification results of surfaces of general
type [Par05, Xia85, Xia94]. A sketch of the proof of Theorem 1.1 is as follows.

First we consider projective manifolds X of arbitrary dimension with maximal Albanese
dimension in § 2. Using the generic vanishing theory, we give a criterion for a morphism of such
varieties to be birational (Theorem 2.4). As an application of this criterion, we show that the

1668

https://doi.org/10.1112/S0010437X13007264 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007264


Automorphisms of surfaces with q > 2

group of automorphisms of such varieties with positive generic vanishing index behaves like that
of curves, which is of independent interest.

Theorem 1.4 (Theorem 2.7 and Corollary 2.9). Let X be a smooth projective variety of
general type and of maximal Albanese dimension. If the canonical sheaf ωX of X has positive
generic vanishing index, then X is rationally cohomologically rigidified. In particular, if q(X)>
dimX and X does not admit a higher irrational pencil, then X is rationally cohomologically
rigidified.

Second we consider surfaces S with q(S) > 2 in § 3. A combination of the topological and
holomorphic Lefschetz formulae for a group action and the Severi inequality helps us pin down
the numerical restrictions on the surfaces with non-trivial Aut0(S) (Theorem 3.1).

Finally, by Theorems 1.4 and 3.1, we reduce the problem to the case of the image of the
Albanese map a : S→Alb S being a curve (of genus q(S)). This case is treated by considering
the action of Aut0(S) on the direct image sheaf a∗ωS (Lemma 3.3 or [Cai12, Lemma 2.1]).

The point behind the proof of Theorems 1.4 and 3.1 is that for any automorphism σ of X,
if σ acts trivially on the cohomology ring H∗(X,Q), then σ must have fixed points, so that σ
induces a trivial action on the Albanese variety of X and the Albanese map of X factors through
the quotient map X →X/σ.

Theorem 1.3 is proved in § 4. We first use Theorem 2.7 to exclude the mixed type case; then
Broughton’s cohomology representation theorem for curves is used to calculate the cohomology
of surfaces isogenous to a product of unmixed type. We manage to give the classification by
finding an appropriate character of the group G through Frobenius’ reciprocity theorem.

Notation
A pencil of genus b of a surface S is a fibration f : S→B, where B is a smooth curve of genus b.

For a smooth projective variety X, we denote by pg(X), q(X), e(X), χ(OX), χ(ωX), and
KX the geometric genus, the irregularity, the topological Euler–Poincaré characteristic, the
Euler characteristic of the structure sheaf, the Euler characteristic of the canonical sheaf, and a
canonical divisor of X, respectively.

We denote by Aut0(X) the kernel of the natural homomorphism of groups Aut(X)→
Aut(H∗(X,Q)).

We use ≡, ≡Q to denote linear equivalence and Q-linear equivalence of divisors, respectively.
We use representation theory terminology as in [Isa76].
For a finite group G and an element g ∈G, we denote by:

– |G|: the order of G;

– |g|: the order of g;

– CG(g): the conjugacy class of g in G;

– Irr(G) := the set of all irreducible characters of G;

– Ker(χ) := {g ∈G | χ(g) = χ(1)}, for χ ∈ Irr(G).

For a representation V of G and a character χ ∈ Irr(G), we let V χ be the sum of irreducible
sub-G-modules W of V with χW = χ, where χW is the character of a G-module W .

Let H be a subgroup of a finite group G, and χ a character of H. We denote by χG the
induced character from χ. Recall that χG is defined by

χG(g) =
1
|H|

∑
t∈G

χ◦(tgt−1)
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where for any g ∈G

χ◦(g) =

{
χ(g) if g ∈ H,

0 if g /∈ H.

The symbol Zn denotes the cyclic group of order n.

2. Projective manifolds with maximal Albanese dimension

In this section, we use the generic vanishing theorems of Green and Lazarsfeld ([Bea92, GL87,
GL91], see also [Hac04]) and the notion of continuous global generation [BLNP12, PP03, PP06]
to show that the groups of automorphisms of projective manifolds of general type with maximal
Albanese dimension and with positive generic vanishing index behave like those of curves of
genus >2 (Theorem 2.7).

We begin by recalling some notation.

2.1 The generic vanishing index
Let X be a smooth projective variety with q(X)> 0, and a :X →AlbX the Albanese map of X.
We say that X is of maximal Albanese dimension if a is a generically finite map onto its image.

For 0 6 i6 dimX, the ith cohomological support locus of X is defined as

V i(ωX) := {α ∈ Pic0(X) | hi(X, ωX ⊗ α)> 0}.

Let

gvi(ωX) = codimPic0(X)V
i(ωX)− i and gv(ωX) = min

i>0
{gvi(ωX)}.

Following [PP09], we call gvi(ωX) and gv(ωX) the ith generic vanishing index and the generic
vanishing index of X, respectively.

2.2 The results of Green and Lazarsfeld
Let X be a smooth projective variety with q(X)> 0. By the generic vanishing theorem due to
Green and Lazarsfeld (cf. [GL87, GL91]), one has:

(2.2.1) gv(ωX) > dim a(X)− dimX. In particular, if X is of maximal Albanese dimension, then
gv(ωX) > 0, which implies that for a general α ∈ Pic0(X), hi(X, ωX ⊗ α) = 0 for all i > 0,
and hence χ(ωX) = χ(ωX ⊗ α) = h0(X, ωX ⊗ α);

(2.2.2) for each positive dimensional component Z of V i(ωX), Z is a translate of a complex
sub-torus of Pic0(X), and there exists an algebraic variety Y of dimension 6 dimX − i
and a dominant map f :X → Y such that Z ⊂ α+ f∗ Pic0(Y ) for some α ∈ Pic0(X).
Moreover, any smooth model of Y is of maximal Albanese dimension.

2.3 A result on varieties with positive generic vanishing indices and its applications
Theorem 2.4. Let f :X → Y be a generically finite morphism of smooth projective varieties of
maximal Albanese dimension. Let a :X →A := AlbX be the Albanese map of X.

(i) Assume that a factors through f . Then χ(ωX) > χ(ωY ).

(ii) Assume moreover that the following conditions hold:

(a) gvi(ωX) > 1 for all 0< i < dimX;
(b) pg(X) = pg(Y ) if q(X) = dimX.

Then χ(ωX) = χ(ωY ) occurs only when f is birational.
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Proof. (i) By the assumption, there is a morphism a′ : Y →A, such that a′ ◦ f = a. By the
universal property of the Albanese map, we have that a′ is just the Albanese map of Y .

Since f is generically finite and Y is smooth, there is an injective morphism of sheaves
f∗ωY ↪→ ωX . Taking f∗ and composing with the natural morphism ωY → f∗f

∗ωY , we obtain an
inclusion of sheaves ωY ↪→ f∗ωX .

Taking a′∗, we get an inclusion of sheaves

ρ : a′∗ωY ↪→ a′∗(f∗ωX) = a∗ωX .

Hence for every α ∈ Pic0 A, we have an inclusion

ρα :H0(A, a′∗ωY ⊗ α) ↪→H0(A, a∗ωX ⊗ α).

By (2.2.1), we have χ(ωX) > χ(ωY ) by choosing α to be general.
(ii) We will show that, if χ(ωX) = χ(ωY ) then deg f = 1.
By (2.2.1), the assumption χ(ωX) = χ(ωY ) implies that, for a general α ∈ Pic0(X),

h0(X, ωX ⊗ α) = h0(Y, ωY ⊗ α). Thus we can find a non-empty Zariski open set U ⊂ Pic0(A)
such that for α ∈ U , ρα is an isomorphism. Consider the following commutative diagram⊕

α∈T H
0(A, a′∗ωY ⊗ α)⊗ α−1 ev′T //

⊕α∈T ρα⊗α−1

��

a′∗ωY

ρ

��⊕
α∈T H

0(A, a∗ωX ⊗ α)⊗ α−1 evT // a∗ωX

(2.4.1)

where T is a subset of Pic0(A) and evT , ev′T are evaluation maps.

Case 1: when q(X)> dimX. We let T = U . Then by the choice of U , ⊕α∈Tρα is an isomorphism.
In this case the assumption (a) is equivalent to gv(ωX) > 1. This implies that evT is surjective
([PP06, Proposition 5.5], [BLNP12, (a) of Corollary 4.11]). By the commutative diagram (2.4.1),
it follows that ρ is surjective.

Case 2: when q(X) = dimX. In this case we let T = U ∪ {0̂}, where 0̂ is the identity element
of Pic0(A). By the assumption (b) and by the choice of U , we have that ⊕α∈Tρα ⊗ α−1 is an
isomorphism. By [BLNP12, (b) of Corollary 4.11], the assumption (a) implies evT is surjective,
and so ρ is surjective.

Since the ranks (at the generic point of A) of a′∗ωY , a∗ωX are deg a′, deg a (= deg a′ · deg f),
respectively, the surjectivity of ρ implies deg f = 1. 2

Remark 2.5. Let f :X → Y be a generically finite morphism of smooth projective varieties of
maximal Albanese dimension, and alb(f) : AlbX →Alb Y the homomorphism induced by f . In
the proof of (i) of Theorem 2.4, the assumption can be weakened to alb(f) : AlbX →Alb Y
being an isogeny.

Remark 2.6. After finishing the paper, we were kindly informed by Sofia Tirabassi that,
under slightly milder hypotheses, Theorem 2.4 was already independently proved in her thesis
[Tir11, Proposition 5.2.4] in the case where q(X)> dimX.

Theorem 2.7. Let X be a smooth projective variety of general type and of maximal Albanese
dimension. If gvi(ωX) > 1 for all 0< i < dimX, then X is rationally cohomologically rigidified.

Proof. Otherwise, there is a non-trivial automorphism σ of X, which acts trivially on H∗(X,Q).
Since X is of general type, σ is of finite order. Replacing σ by a suitable power, we may assume
σ is of prime order, say p.
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Let
π :X → X̄ =X/〈σ〉

be the quotient map. Since σ acts trivially on H i(X, C) for all i> 0, by Hodge theory, we have

H i(X̄,OX̄)'H i(X, πσ∗OX) =H i(X,OX)σ =H i(X,OX).

In particular, we have

hdimX(X̄,OX̄) = hdimX(X,OX) and χ(OX̄) = χ(OX). (2.7.1)

Let ρ : Y → X̄ be a resolution of quotient singularities (if any). Then Riρ∗OY = 0 for i > 0 since
quotient singularities are rational. Thus

hdimX(Y,OY ) = hdimX(X̄,OX̄) and χ(OY ) = χ(OX̄). (2.7.2)

By (2.7.1) and (2.7.2), using Serre duality, we obtain

pg(Y ) = pg(X) and χ(ωY ) = χ(ωX).

We claim that Xσ 6= ∅. Otherwise, the map π is étale. This implies χ(ωX) = pχ(ωX̄).
Combining this with (2.7.1), we have χ(ωX) = 0. On the other hand, since gvi(ωX) > 1 for
all 0< i < dimX by assumption, χ(ωX) = 0 is equivalent to X being not of general type
[BLNP12, Proposition 4.10]. So we get a contradiction.

Let a :X →AlbX be the Albanese map of X (the map a is unique up to translations of
AlbX and we fix it once for all). We have that there is an automorphism σ̄ of AlbX, such that
σ̄ ◦ a= a ◦ σ. Since σ induces trivial action on H1(X,Q), we have that either σ̄ is a translation or
σ̄ = idAlbX . If σ̄ is a translation, then Xσ = ∅; a contradiction by the claim above. So σ̄ = idAlbX ,
and consequently, a factors through π.

Let f :X 99K Y be the rational map induced by the quotient map π, and ρ :X ′→X be a
birational morphism such that f ◦ ρ is a morphism. Since Vi(ωX) are birational invariants, using
X ′ instead of X and a ◦ ρ instead of a, we may assume that f is a morphism. Then deg f is
divisible by p, which is a contradiction by Theorem 2.4. 2

Remark 2.8. (i) Example 4.6 below shows that the assumption on the ith generic vanishing index
(which is slightly weaker than gv(ωX) > 1) is indispensable for Theorem 2.7 even in the surface
case. Let S be as in Example 4.6. Then S has a fibration with multiple fibers over an elliptic
curve. By an explicit description of V 1(ωS) due to Beauville [Bea92, Corollaire 2.3], we have that
V 1(ωS) has at least one 1-dimensional component, and so gv1(ωS) = 0.

(ii) For varieties (of maximal Albanese dimension) possibly with gvi(ωX) = 0 for some
0< i < dimX, we may have a similar assertion, but only under some additional assumptions
(see Proposition 3.4 and Remark 3.5).

We recall [Cat91, 1.20] that a smooth projective variety X admits a higher irrational pencil
if there is a surjective morphism with connected fibers onto a normal projective variety Y , such
that 0< dim Y < dimX, q(Y )> dim Y , and any smooth model of Y is of maximal Albanese
dimension.

Corollary 2.9. Let X be a smooth projective variety of general type with q(X)> dimX
and of maximal Albanese dimension. If X does not admit a higher irrational pencil, then X is
rationally cohomologically rigidified.

Proof. By (2.2.2) the assumption implies that gvi(ωX) > 1 for all 0< i < dimX, and the
corollary follows by Theorem 2.7. 2
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Corollary 2.10. Let S be a smooth projective surface of general type with q(S) > 2. Assume
that S has no pencils of genus >2, and S has no pencils of genus 1 when q(S) = 2. Then S is
rationally cohomologically rigidified.

Proof. Since S has no pencils of genus >2 by assumption, it is of maximal Albanese dimension.
By [Bea92, Corollaire 2.3] or by (2.2.2), we have that the assumption of Corollary 2.10 implies
gv1(ωS) > 1. Now the corollary follows by Theorem 2.7. 2

Remark 2.11. Unlike the surface case, there are higher-dimensional varieties X with Aut0(X)
being non-trivial and with q(X) arbitrarily large. For example, let X = S × C, τ = σ × idC ,
where the pair (S, σ) is as in Example 4.6, and C is a curve of genus >2. Then τ is an involution
of X, which acts trivially on the cohomology ring H∗(X,Q).

It would be an interesting question to classify smooth projective 3-folds of general type and
of maximal Albanese dimension that are not rationally cohomologically rigidified.

3. Numerical classifications

Theorem 3.1. Let S be a minimal nonsingular complex projective surface of general type with
q(S) > 2. Then either Aut0(S) is trivial, or Aut0(S) is a group of order two and S satisfies
K2
S = 8χ(OS).

For the proof of Theorem 3.1, we need the following lemmas.

Lemma 3.2 [Xia94, Lemma 2 and Proposition 1(i)]. Let S be a minimal nonsingular complex
projective surface of general type, and G⊂Aut(S) be a subgroup of automorphisms of S. Assume
that the quotient S/G is of general type. Then K2

S > |G|K2
X , where X is the minimal smooth

model of S/G.

Lemma 3.3. Let S be a minimal nonsingular complex projective surface of general type with
q(S) > 2. If S has a pencil of genus larger than one, then Aut0(S) is trivial.

Proof. Let f : S→B be such a fibration over a curve B of genus b> 2. Suppose that there is a
non-trivial element σ ∈Aut0(S). Let F be a general fiber of f , and g the genus of F . We have
g > 2. Since σ acts trivially on NS(S)⊗Q ↪→H2(S,Q), we have σ∗F is numerically equivalent
to F . So f is preserved under the action of σ. Since σ acts trivially on f∗H1(B,Q)⊆H1(S,Q),
it induces identity action on B, and so f ◦ σ = f . We have b6 1 by [Cai12, Lemma 2.1], which
is a contradiction. 2

We may use the argument of the proof of Lemma 3.3 to show the following result.

Proposition 3.4. Let X be a nonsingular complex projective variety of general type, and
f :X → C a fibration onto a curve C of genus g(C) > 2. Assume that Aut(F ) acts faithfully on
H0(ωF ), where F is a general fiber of f . Then X is rationally cohomologically rigidified.

Remark 3.5. Taking X = S × C, τ = σ × idC , where the pair (S, σ) is as in Example 4.6, we see
that the assumption on Aut(F ) is indispensable for Proposition 3.4.

3.6 Proof of Theorem 3.1
By Lemma 3.3, we may assume that S is of maximal Albanese dimension.
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Assume that G := Aut0(S) is not trivial. We will show that G is a group of order two and S
satisfies K2

S = 8χ(OS).

Let X be a minimal smooth model of the quotient S/G. Then q(X) = q(S), pg(X) = pg(S),
and both the canonical map and the Albanese map of S factorize through the quotient map
S→ S/G. In particular, X is of maximal Albanese dimension and the Kodaira dimension of X
is at least 1.

If the Kodaira dimension of X is 1, then the canonical map φX is composed with a pencil
of genus = q(X)− 1 (cf. [Bea82, p. 345, Lemme]). Since φS factors through the quotient
map S→ S/G, we have that φS is composed with a pencil whose base curve, say C, is of
genus g(C) > q(X)− 1 = q(S)− 1 > 1. On the other hand, one has either that q(S) = g(C) = 1
or that g(C) = 0 and q(S) 6 2 by [Xia85]. This is a contradiction.

Now we may assume that X is of general type. By the Severi inequality [Par05], we have

K2
X > 4χ(OX) = 4χ(OS). (3.6.1)

Combining (3.6.1), Lemma 3.2 and the Bogomolov–Miyaoka–Yau inequality 9χ(OS) >K2
S , we

get |G|= 2 and

K2
S > 8χ(OS). (3.6.2)

Let σ be the generator of G. Let Di (1 6 i6 u, u> 0) be the σ-fixed curves. After suitable
re-indexing, we may assume that D2

i > 0 for i6 k (0 6 k 6 u) and D2
i < 0 for i > k. We may

apply the topological and holomorphic Lefschetz formula to σ (cf. [AS68, p. 566])

e(S) + 8(q(S)− dimCH
0(S, Ω1

S)σ)− 2(h2(S, C)− dimCH
2(S, C)σ)

= e(Sσ) = n+
u∑
i=1

e(Di), (3.6.3)

χ(OS) + 2(q(S)− dimCH
0(S, Ω1

S)σ) =
n−

∑u
i=1 KSDi

4
,

where n is the number of isolated σ-fixed points. Combining (3.6.3) with Noether’s formula, we
obtain

K2
S = 8χ(OS) +

u∑
i=1

D2
i 6 8χ(OS) +

k∑
i=1

D2
i . (3.6.4)

Let ρ : S̃→ S be the blowup of all isolated fixed points of σ, and σ̃ the induced involution
on S̃. Let π̃ : S̃→ X̃ := S̃/σ̃ be the quotient map. Since σ has order two, S̃ has the property that
there are no isolated fixed points for the action of σ̃, and hence X̃ is smooth. Let η : X̃ →X be
the map contracting all −1-curves on X̃. We have

ρ∗KS = (η ◦ π̃)∗KX + π̃∗A+
u∑
i=1

ρ∗Di (3.6.5)

for some effective exceptional divisor A of η.
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We show that k = 0. Otherwise, we have

K2
S = ρ∗K2

S

> ρ∗KS(η ◦ π̃)∗KX +
k∑
i=1

ρ∗KSρ
∗Di (using (3.6.5), since ρ∗KS is nef)

> ((η ◦ π̃)∗KX)2 +
k∑
i=1

ρ∗KSρ
∗Di (using (3.6.5), since (η ◦ π̃)∗KX is nef)

= 2K2
X +

k∑
i=1

KSDi

> 8χ(OS) +
(
KS −

k∑
i=1

Di

) k∑
i=1

Di +
k∑
i=1

D2
i (by (3.6.1))

> 8χ(OS) + 2 +
k∑
i=1

D2
i ,

which contradicts (3.6.4), where the last inequality follows since each σ-fixed curve is contained
in the fixed part of |KS | (cf. [Cai04, 1.14]) and |KS | is 2-connected (cf. [BHPV04, VII,
Proposition 6.2]).

So we have k = 0 and hence u= 0 by combining (3.6.2) with (3.6.4). This finishes the proof
of Theorem 3.1. 2

3.7 Proof of Theorem 1.1
By Theorem 3.1, there remains to prove the following claim: if Aut0(S) is not trivial, then
q(S) = 2, the Albanese map of S is surjective, and S has a pencil of genus one.

By Lemma 3.3, we may assume that S is of maximal Albanese dimension, and S has no
pencils of genus >2. Now the claim follows by Corollary 2.10. 2

4. Surfaces isogenous to a product

Surfaces isogenous to a product play an important role in studying the geometry and the
moduli of surfaces of general type. For example, they provide simple counterexamples to
the DEF = DIFF question of whether deformation type and diffeomorphism type coincide for
algebraic surfaces [Cat03], and they are useful in the construction of Inoue-type manifolds [BC12,
Definition 0.2]. In this section we give an explicit description for surfaces S isogenous to a product
with q(S) > 2 which are not rationally cohomologically rigidified (Example 4.6 and Theorem 4.9).

We begin by recalling some notation of surfaces isogenous to a product; we refer to [Cat00]
for properties of these surfaces.

Definition 4.1 [Cat00, Definition 3.1]. A smooth projective surface S is isogenous to a
(higher) product if it is a quotient S = (C ×D)/G, where C, D are curves of genus at least
two, and G is a finite group acting freely on C ×D.

Let S = (C ×D)/G be a surface isogenous to a product. Let G◦ be the intersection of G and
Aut(C)×Aut(D) in Aut(C ×D). Then G◦ acts on the two factors C, D and acts on C ×D
via the diagonal action. If G◦ acts faithfully on both C and D, we say (C ×D)/G is a minimal
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realization of S. By [Cat00, Proposition 3.13], a minimal realization exists and is unique. In the
following we always assume S = (C ×D)/G is the minimal realization.

We say that S is of unmixed type if G=G◦; otherwise S is of mixed type.

Proposition 4.2. If S = (C × C)/G is a surface isogenous to a product of mixed type with
q(S) > 2, then S is rationally cohomologically rigidified.

Proof. By Lemma 3.3, we may assume S is of maximal Albanese dimension.
Let σ ∈G\G◦. Up to coordinate change in both factors of C × C, we can assume σ(x, y) =

(y, τx) for some τ ∈G◦ (cf. [Cat00, Proposition 3.16]). Then X := (C × C)/σ is smooth, and the
natural maps $ : C × C→X and π : X → S are both étale coverings.

We have that $∗ : Pic0(X)→ Pic0(C × C)σ is a finite epimorphism since its differential map
at zero H1(X,OX)→H1(C × C,OC×C)σ is an isomorphism. Note that

Pic0(C × C)σ ∼= (Pic0(C)× Pic0(C))σ

= {(α, β) ∈ Pic0(C)× Pic0(C) | α= τ∗β, β = α}
= {(α, α) ∈ Pic0(C)× Pic0(C) | τ∗α= α}. (4.2.1)

For any α′ ∈ Pic0(X), we have $∗α′ = (α, α) ∈ Pic0(C × C)σ for some α ∈ Pic0(C) under the
natural identification of (4.2.1). So we have

H1(X, α′) ∼= H1(C × C, (α, α))σ

∼= (H1(C, α)⊗C H
0(C, α)⊕H0(C, α)⊗C H

1(C, α))σ, (4.2.2)

which is zero unless α= 0̂, the identity element of Pic0(C). Using Serre duality, we conclude that
V 1(ωX) is the kernel of $∗ : Pic0(X)→ Pic0(C × C)σ, and hence it consists of finite points since
$∗ is a finite morphism.

Since π : X → S is an étale covering, we have for any γ ∈ Pic0(S),

H1(X, ωX ⊗ π∗γ) =H1(S, ωS ⊗ γ ⊗ π∗OX) (4.2.3)

by the projection formula and the Leray spectral sequence. The left-hand side of (4.2.3) is of zero
dimension unless π∗γ ∈ V 1(ωX), while the right-hand side contains H1(S, ωS ⊗ γ) as a direct
summand. So we have H1(S, ωS ⊗ γ) = 0 unless π∗γ ∈ V 1(ωX). Since π∗ : Pic0(S)→ Pic0(X)
is a finite map onto its image, we conclude that V 1(ωS)⊆ (π∗)−1(V 1(ωX)) is a finite set. In
particular, we have gv1(ωS) > 1. By Theorem 2.7, we have that S is rationally cohomologically
rigidified. 2

Contrary to the case of surfaces isogenous to a product of mixed type, there are surfaces
isogenous to a product of unmixed type which are not rationally cohomologically rigidified.
Before giving such examples, we insert here two facts on curves as well as an expression for the
second cohomology of surfaces isogenous to a product of unmixed type that will be used in
the following.

4.3 Riemann’s existence theorem

Let m1, . . . , mr > 2 be r integers, and G a finite group. Let B be a curve of genus b, and let
p1, . . . , pr ∈B be r different points.
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Assume that there are 2b+ r elements of G (not necessarily different), αj , βj , γi (1 6 j 6 b,
1 6 i6 r), such that these elements generate G, and satisfy

b∏
j=1

[αjβj ]
r∏
i=1

γi = 1 and |γi|=mi. (4.3.1)

If the Riemann–Hurwitz equation

2g − 2 = |G|
(

2b− 2 +
r∑
i=1

(
1− 1

mi

))
is satisfied for some non-negative integer g, then there exists a curve C of genus g with a faithful
G-action, such that the quotient map C→ C/G'B is branched exactly at p1, · · · , pr, and mi

is the ramification index of q over pi.
In what follows we call a 2b+ r-tuple (α1, . . . , αb, β1, . . . , βb, γ1, . . . , γr) of elements of G a

generating vector of type (b;m1, . . . , mr), if these 2b+ r elements generate G and satisfy (4.3.1).

4.4 The cohomology representation of the group of automorphisms of a curve

Let C be a smooth curve of genus g(C) > 2 and G a group of automorphisms of C. Let
b= g(C/G). Let p1, . . . , pr be branch points of the quotient map π : C→ C/G, and σi (1 6 i6 r)
the generator of the stabilizer of a point p̃i ∈ π−1(pi). Note that the conjugacy class of σi does
not depend on the choice of p̃i in π−1(pi).

For σ ∈G and χ ∈ Irr(G), we denote by lσ(χ) the multiplicity of the trivial character in the
restriction of χ to 〈σ〉. Clearly, lσ(χ) 6 χ(1), and the equality holds if and only if σ ∈Ker(χ).

By [Bro87, Proposition 2], for any non-trivial irreducible character χ of G,

h1(C, C)χ = χ(1)(2b− 2 + r)−
r∑
j=1

lσj (χ),

where h1(C, C)χ = dim Hi(C, C)χ.
In particular, if b= 1, then we have

h1(C, C)χ 6= 0 if and only if χ(σj) 6= χ(1) for some j. (4.4.1)

4.5 The second cohomology of surfaces isogenous to a product of unmixed type

Let S = (C ×D)/G be a surface isogenous to a product of unmixed type. Then the second
cohomology of S is

H2(S, C) = H2(C ×D, C)∆G

= W
⊕( ⊕

χ1,χ2∈Irr(∆G)

H1(C, C)χ1 ⊗C H1(D, C)χ2

)∆G

, (4.5.1)

where W = H2(C, C)⊗C H0(D, C)
⊕

H0(C, C)⊗C H2(D, C) and ∆G is the diagonal subgroup of
G×G. As a representation of ∆G, the irreducible constituents of⊕

χ1,χ2∈Irr(G)

H1(C, C)χ1 ⊗C H1(D, C)χ2
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all have the same character χ1χ2. Hence the multiplicity of the trivial representation 1∆G
in such

a irreducible constituent is

〈χ1χ2, 1∆G
〉c = 〈χ1, χ̄2〉c =

{
1 if χ2 = χ̄1,

0 otherwise,

where 〈·〉c is the Hermitian inner product on the vector space of class functions on G. Therefore
(H1(C, C)χ1 ⊗C H1(D, C)χ2)∆G 6= 0 only if χ2 = χ̄1, and (4.5.1) becomes

H2(S, C) =W
⊕( ⊕

χ∈Irr(G)

H1(C, C)χ ⊗C H1(D, C)χ̄
)∆G

. (4.5.2)

Example 4.6. Surfaces S isogenous to a product of unmixed type with Aut0(S)' Z2. Let m, n, k, l
be positive integers. Let G be one of the following groups:

Z2m ⊕ Z2mn, Z2 ⊕ Z2m ⊕ Z2mn.

Let C̄, D̄ be elliptic curves. Let V := (α1, β1,

2k︷ ︸︸ ︷
γ, . . . , γ), V ′ := (α′1, β

′
1,

2l︷ ︸︸ ︷
γ′, . . . , γ′) be generating

vectors of G of type (1; 2, . . . , 2) with γ 6= γ′, and

ρ : C→ C̄, ρ′ :D→ D̄

the G-coverings of smooth curves corresponding to V, V ′, respectively (cf. 4.3).
For example, if G= Z2m ⊕ Z2mn, we may take V = (α, β, αm, . . . , αm), V ′ = (α, β, βmn, . . . ,

βmn), where α := (1, 0), β := (0, 1) ∈G; if G= Z2 ⊕ Z2m ⊕ Z2mn, we may take V =
(µ, ν, λ, . . . , λ), V ′ = (µ, ν, λµm, · · · , λµm), where λ := (1, 0, 0), µ := (0, 1, 0), ν := (0, 0, 1) ∈G.

Let G act diagonally on C ×D. Note that the stabilizer of each point lying over any branch
point of ρ is 〈γ〉, and that of ρ′ is 〈γ′〉 (cf. 4.3). Since 〈γ〉 ∩ 〈γ′〉= 1 by assumption, we have that
G acts freely on C ×D, and hence S := (C ×D)/G is a surface isogenous to a product of curves.

By Hurwitz’s formula, we have g(C) = 2δm2nk + 1 and g(D) = 2δm2nl + 1, where δ = 1 or
4 depending on whether G= Z2m ⊕ Z2mn or not. So the numerical invariants of S are

pg(S) = δm2nkl + 1, q(S) = 2 and K2
S = 8δm2nkl.

Let I = {χ ∈ Irr(G) | χ(γ) 6= 1 and χ̄(γ′) 6= 1}. By (4.4.1) and (4.5.2), we have

H2(S, C) =W
⊕
χ∈I

H1(C, C)χ ⊗C H1(D, C)χ̄, (4.6.1)

with W = H2(C, C)⊗C H0(D, C)
⊕

H0(C, C)⊗C H2(D, C).
Since γ (respectively γ′) is of order two, it induces −id on H1(C, C)χ (respectively H1(D, C)χ̄)

for all χ ∈ I. So (γ, γ′) induces identity on the right-hand side of (4.6.1).
Let σ be the automorphism of S induced by (γ, γ′) ∈Aut(C)×Aut(D)⊆Aut(C ×D). Then

σ is an involution of S and it acts trivially on H2(S,Q) and hence on H∗(S,Q).

Remark 4.7. Surfaces in Example 4.6 are rigidified by Proposition 4.8 below. It is not known
whether they are cohomologically rigidified.

Proposition 4.8. Let S be a smooth projective surface. Assume that the universal cover of S
is a bounded domain in C2. Then S is rigidified.

Proof. Otherwise, there is an automorphism σ ∈Aut(X) ∩Diff0(X), of prime order. The
assumption implies S is of general type; in particular χ(ωS)> 0. So we have Sσ 6= ∅ by the
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proof of Theorem 2.7. Thus σ and idS are homotopic automorphisms which agree at Sσ. Since
the universal cover of S is a bounded domain, it follows that σ = idS by [BN67, Theorem 3.6],
which is a contradiction. 2

Theorem 4.9. Let S = (C ×D)/G be a surface isogenous to a product of unmixed type with
q(S) > 2. If S is not rationally cohomologically rigidified, then S is as in Example 4.6.

Before proving Theorem 4.9, we show the following preparatory results.

Proposition 4.10. Let S = (C ×D)/G be the minimal realization of a surface isogenous to a
product. Denote by ∆G the diagonal of G×G. Then

Aut(S) =N(∆G)/∆G,

where N(∆G) is the normalizer of ∆G in Aut(C ×D).

Proof. For each σ ∈Aut(S), there is an automorphism σ̃ ∈Aut(C ×D) such that

C ×D σ̃ //

π

��

C ×D
π

��
S

σ // S

is commutative, where π is the quotient map. The existence of such a lift σ̃ of σ follows simply
from the uniqueness of minimal realization of S.

On the other hand, given σ̃ ∈Aut(C ×D), σ̃ descends to an automorphism σ ∈Aut(S) if
and only if it is in the normalizer N(∆G) of ∆G in Aut(C ×D). Hence we have a surjective
homomorphism of groups N(∆G)→Aut(S) and its kernel is easily seen to be ∆G. So Aut(S) =
N(∆G)/∆G. 2

Proposition 4.11. Let S = (C ×D)/G be the minimal realization of a surface isogenous to a
product of unmixed type. If g(C/G) > 1 and g(D/G) > 1, then

Aut0(S)⊆ (G×G) ∩N(∆G)/∆G.

Proof. For each σ ∈Aut0(S), let σ̃ ∈Aut(C ×D) be its lift as in the proof of Proposition 4.10. By
the proof of Lemma 3.3, σ preserves the two induced fibrations π1 : S→ C/G and π2 : S→D/G,
and it induces identity on their bases C/G and D/G. Hence σ̃ does not interchange the factors
of C ×D. By [Cat00, Rigidity Lemma 3.8]), there are automorphisms σC and σD, of C and D,
respectively, such that σ̃ = (σC , σD). Since σ̃ induces identity on bases of π1 and π2, we have
σC , σD ∈G.

On the other hand, by Proposition 4.10, we have σ̃ ∈N(∆G). So σ̃ ∈ (G×G) ∩N(∆G), and
σ = σ̃ mod ∆G ∈ (G×G) ∩N(∆G)/∆G. 2

Remark 4.12. Let ZG be the center of G. Then (G×G) ∩N(∆G) is generated by ZG × {1} and
∆G, and the map

ZG→ (G×G) ∩N(∆G)/∆G, σ 7→ (σ, 1) mod ∆G

is an isomorphism of groups. In what follows, we regard ZG as a subgroup of Aut(S) under such
an isomorphism.

So by Proposition 4.11, Aut0(S) is (isomorphic to) a subgroup of ZG; in particular, if G is
centerless, then Aut0(S) is trivial.
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Lemma 4.13. Let S be as in Proposition 4.11. Then for each σ ∈ ZG ⊆Aut(S), we have that,
σ /∈Aut0(S) if and only if there is an irreducible χ ∈ Irr(G) such that σ /∈Ker(χ), H1(C, C)χ 6= 0,
and H1(D, C)χ̄ 6= 0.

Proof. Since for each σ ∈ ZG ⊆Aut(S), (σ, 1) ∈Aut(C ×D) is a lift of σ (cf. Remark 4.12), the
lemma follows from the fact that, for each σ ∈Aut(S), the quotient map C ×D→ S induces an
isomorphism between the action of σ on H2(S, C) and that of its lift σ̃ on the right-hand side
of (4.5.2). 2

Lemma 4.14. Let H be a subgroup of a finite group G, and χ an irreducible character of H.
Let H ′ ⊆H be a subset such that H ′ ∩Ker(χ) = ∅, where Ker(χ) = {g ∈G | χ(g) = χ(1)}. Then:

(i) for any irreducible constituent ϕ of χG, H ′ ∩Ker(ϕ) = ∅;
(ii) if moreover χG(g) = 0 for some g ∈G, then there is an irreducible constituent ϕ′ of χG such

that ({g} ∪H ′) ∩Ker(ϕ′) = ∅.

Proof. For any irreducible constituent ϕ of χG, Frobenius reciprocity theorem gives (ϕ, χG) =
(ϕ|H , χ). Hence the multiplicity of χ in ϕ|H is the same as that of ϕ in χG. In particular χ is a
constituent of ϕ|H and Ker(ϕ) ∩H ⊆Ker(χ). So (i) follows.

If χG(g) = 0 for some g ∈G, then there exists an irreducible constituent ϕ′ of χG such that
g /∈Ker(ϕ′). For such an irreducible constituent ϕ′, by (i), we have H ′ ∩Ker(ϕ′) = ∅. So we
obtain (ii). 2

4.15 Proof of Theorem 4.9
Suppose that Aut0(S) is not trivial. By Proposition 4.2, we may assume that S is of unmixed type.
Consider the induced fibrations S→ C/G and S→D/G. By Lemma 3.3, we have g(C/G) 6 1
and g(D/G) 6 1. Since q(S) = g(C/G) + g(D/G) and q(S) > 2 by assumption, we must have
that g(C/G) = g(D/G) = 1 and q(S) = 2.

Let U := (a, b, σ1, . . . , σr) (respectively U ′ := (c, d, τ1, . . . , τs)) be the generating vector of G
for the branch covering C→ C/G (respectively D→D/G) (cf. 4.3). Denote by mi, nj the order
of σi, τj , respectively.

Let Σ1 =
⋃
g∈G

⋃
16i6r〈gσig−1〉 (respectively Σ2 =

⋃
g∈G

⋃
16j6s〈gτjg−1〉). Since the action of

G on C ×D is free, we have Σ1 ∩ Σ2 = {1}.
By Theorem 1.1, Aut0(S) is of order two. Let σ ∈ ZG such that σ is the generator of Aut0(S)

(cf. Remark 4.12). By Lemma 4.13 and (4.4.1), we have that

for any χ ∈ I, σ ∈Ker(χ), (4.15.1)

where I is the set of irreducible characters χ of G such that σi, τj /∈Ker(χ) for some i, j.

4.15.1 Claim: G is abelian.

4.15.2 Proof of claim. IfG is not abelian, we will get a contradiction by finding an irreducible
character χ ∈ I such that σ /∈Ker(χ). By Lemma 4.14, it is enough to find a subgroup H of G
and an irreducible character χ of H, such that σ, σi, τj ∈H and σ, σi, τj /∈Ker(χ) for some i, j.

For each 1 6 i6 r and 1 6 j 6 s, let Gij be the subgroup of G generated by σi and τj , ϕi the
linear character of the cyclic group 〈σi〉 such that ϕi(σi) = ξ, where ξ is a primitive mith root,
and ϕ

Gij
i the induced character from ϕi. Since Σ1 ∩ Σ2 = ∅, we have

ϕ
Gij
i (τj) = 0
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for all 1 6 i6 r and 1 6 j 6 s. By Lemma 4.14, there is an irreducible character χij of ϕGiji such
that

σi, τj /∈Ker(χij). (4.15.2)
Similarly, starting with a primitive linear character of 〈τj〉, we can construct a character χ′ji

of Gij such that
σi, τj /∈Ker(χ′ji).

Step 1. First we assume σ /∈Gij for some i, j. Since σ is of order two and σ ∈ ZG, we have
〈σ〉 ∩Gij = {1}, and for any g ∈G, gσg−1 = σ /∈Gij . So by the definition of induced character,
we have χ〈Gij ,σ〉ij (σ) = 0. By Lemma 4.14, there is an irreducible character χ̃ij of 〈Gij , σ〉 such
that σ, σi, τj /∈Ker(χ̃ij).

Step 2. Next, suppose σ ∈Gij for any 1 6 i6 r and 1 6 j 6 s.
If σ ∈ 〈σi〉 for some 1 6 i6 r, then ϕi(σ) 6= 1. By Lemma 4.14 and (4.15.2), σ, σi, τj /∈

Ker(χij).
Similarly, if σ ∈ 〈τj〉 for some 1 6 j 6 s, then σ, σi, τj /∈Ker(χ′ji).

Step 3. Now we can assume that, (∗) σ ∈Gij but σ /∈ 〈σi〉 and σ /∈ 〈τj〉 for all 1 6 i6 r and
1 6 j 6 s.

Since σ is in the center of G, we have 〈σ, σi〉 ∼= Z2 ⊕ Zmi
. Let ψi be the linear character of

〈σ, σi〉 such that
ψi(σ) =−1, ψi(σi) = ξ,

where ξ is a primitive mith root. Let jψi be the induced character of ψi on the group 〈σ, σi, τj〉.

Step 3.1. If CG(τj) ∩ 〈σ, σi〉= ∅ for some 1 6 i6 r and 1 6 j 6 s, where CG(τj) is the conjugate
class of τj in G, then by the definition of induced character, jψi(τj) = 0. By Lemma 4.14, there
is a constituent ψ of jψi such that σ, σi, τj /∈Ker(ψ).

Step 3.2. Next, we assume additionally CG(τj) ∩ 〈σ, σi〉 6= ∅ for all 1 6 i6 r and 1 6 j 6 s. Then
for each 1 6 i6 r and 1 6 j 6 s, there is an element gij ∈G such that gijτjg−1

ij ∈ 〈σ, σi〉.
If mi > 3 for some 1 6 i6 r, then it is easy to find a linear character χ of 〈σ, σi〉 such

that σ, σi, gijτjg−1
ij /∈Ker(χ) and hence σ, σi, τj /∈Ker(χ). (Since Hi := 〈σ, σi〉 is isomorphic to

Z2 ⊕ Zmi
, we can find characters φ, φ′ ∈Hi such that

φ(σ) = 1, φ(σi) = ξi, φ′(σ) =−1, φ′(σi) = 1,

where ξi is a root of unity of order mi. Write τ ′j := gijτjg
−1
ij = σaσbi for some a, b> 0. Since τ ′j 6= σ,

we have b 6= 0. Let φk = φkφ′ for k = 1, 2. Then φk(τ ′j) = (−1)aξbki . So among φ1 and φ2, there is
at least one character, say φ1, such that φ1(τ ′j) 6= 1.)

Similarly, if nj > 3 for some 1 6 j 6 s, then we can find a linear character χ of 〈σ, τj〉 such
that σ, σi, τj /∈Ker(χ).

Step 3.3. Finally we may assume further mi = nj = 2 for all 1 6 i6 r and 1 6 j 6 s. This implies
that Gij =D2kij for some kij > 2 since any finite group generated by two elements of order two
is dihedral.

If kij > 2 for some i and j, then it is well known that there is a faithful (2-dimensional)
representation ρ of Gij . Let χ be the corresponding character of ρ. Since ρ is faithful, σ, σi, τj /∈
Ker(χ).

If kij = 2 for all i and j, the assumption (∗) above implies that σ = σiτj for all 1 6 i6 r and
1 6 j 6 s. So σ1 = · · ·= σr, τ1 = · · ·= τs and σ1 6= τ1.
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Step 4. We show that σ1, τ1 are in the center of G.
Note that Gij in the proof above can be replaced by G′ij = 〈σ′i, τ ′j〉 for any σ′i ∈ CG(σi), τ ′j ∈

CG(τj), since the characters of G do not distinguish conjugate elements. So we can assume
much more, namely, 〈σ′i, τ ′j〉 ∼= Z⊕2, σ ∈ 〈σ′i, τ ′j〉, σ /∈ 〈σ′i〉 or 〈τ ′j〉 for any i, j, σ′i ∈ CG(σi) and
τ ′j ∈ CG(τj). Under these assumptions, we have

σ ∈A := 〈σ′1, τ1〉 ∼= Z⊕2
2

for any σ′1 ∈ CG(σ1). This implies that A is generated by σ and τ1, and hence it is generated by
σ1 and τ1 since σ = σ1τ1. So we have σ′1 = σ1 and hence CG(σ1) = 〈σ1〉.

Since σ ∈ ZG and σ = σ1τ1, we have that τ1 is in the center of G.
Now by the definition of a generator vector, G is generated by a, b and σ1, and aba−1b−1σr1 = 1

in G. This implies that the commutator subgroup G′ is contained in 〈σ1〉. Similarly G′ is a
subgroup of 〈τ1〉. Since 〈σi〉 ∩ 〈τj〉= {1}, G′ is trivial and G is abelian, which is a contradiction.
This finishes the proof of the claim. 2

Now we may assume that G is abelian. By the proof of the claim, we have that σ1 = · · ·= σr,
τ1 = · · ·= τs, σ = σ1τ1, and they are all of order two. Thus G can be generated by three elements,
namely a, b and σ1 (or c, d and τ1). By the structure theorem of finitely generated abelian groups,
we may write G= Zd1 ⊕ Zd2 ⊕ Zd3 with d1 | d2 | d3. Since G has at least two elements of order
two, both d2 and d3 are even. If d1 = 1, then G∼= Z2m ⊕ Z2mn for some positive integers m, n.

If d1 > 2, then G needs three generators, one of which is σ1 or τ1. Since σ1 and τ1 have order
two, we see that d1 = 2. Hence in this case G∼= Z2 ⊕ Z2m ⊕ Z2mn for some positive integers m, n.

Since aba−1b−1σr1 = 1 and cdc−1d−1τ s1 = 1 in G, we have that both r and s are even. So S is
as in Example 4.6 with V = U and V ′ = U ′.

This completes the proof of Theorem 4.9. 2
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