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Abstract

We continue with the systematic study of the speed of extinction of continuous-state
branching processes in Lévy environments under more general branching mechanisms.
Here, we deal with the weakly subcritical regime under the assumption that the branch-
ing mechanism is regularly varying. We extend recent results of Li and Xu (2018)
and Palau et al. (2016), where it is assumed that the branching mechanism is stable,
and complement the recent articles of Bansaye et al. (2021) and Cardona-Tobón and
Pardo (2021), where the critical and the strongly and intermediate subcritical cases were
treated, respectively. Our methodology combines a path analysis of the branching pro-
cess together with its Lévy environment, fluctuation theory for Lévy processes, and the
asymptotic behaviour of exponential functionals of Lévy processes. Our approach is
inspired by the last two previously cited papers, and by Afanasyev et al. (2012), where
the analogue was obtained.
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1. Introduction and main results

We are interested in continuous-state branching processes in random environments, in par-
ticular when the environment is driven by a Lévy process. This family of processes is known
as continuous-state branching processes in a Lévy environment (or CBLEs for short) and they
have been constructed independently in [11, 16] as the unique non-negative strong solution of
a stochastic differential equation whose linear term is driven by a Lévy process.

Classification of the asymptotic behaviour of rare events of CBLEs, such as the survival
probability, depends on the long-term behaviour of the environment. In other words, an aux-
iliary Lévy process, which is associated to the environment, leads to the usual classification
for the long-term behaviour of branching processes. To be more precise, the CBLE is called
supercritical, critical, or subcritical according as the auxiliary Lévy process drifts to ∞, oscil-
lates, or drifts to −∞. Furthermore, in the subcritical regime another phase transition arises
which depends on whether the Lévy process drifts to ∞, oscillates, or drifts to −∞ under a
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suitable exponential change of measure. These regimes are known in the literature as strongly,
intermediate, and weakly subcritical regimes, respectively.

The study of the long-term behaviour of CBLEs has attracted considerable attention in the
last decade; see, for instance, [3, 6, 11, 14–17, 19]. All the aforementioned studies deal with
the case when the branching mechanism is associated to a stable jump structure or a Brownian
component on the branching term. For simplicity of exposition we call such branching mech-
anisms stable. [3] determined the long-term behaviour for stable CBLEs when the random
environment is driven by a Lévy process with bounded variation paths. [15] studied the case
when the random environment is driven by a Brownian motion with drift. Then, [14, 16] inde-
pendently extended this result to the case when the environment is driven by a general Lévy
process. More recently, [19] provided an exact description for the speed of the extinction prob-
ability for CBLEs with a stable branching mechanism and where the Lévy environment is
heavy-tailed. It is important to note that all these manuscripts exploited explicit knowledge of
the survival probability, which is given in terms of exponential functionals of Lévy processes.

Much less is known about the long-term behaviour of CBLEs when the associated branch-
ing mechanism is more general. To our knowledge, the only studies in this direction are [2, 7],
where the speed of extinction for more general branching mechanisms is studied. More pre-
cisely, [2] focused on the critical case (oscillating Lévy environments satisfying the so-called
Spitzer condition at ∞) and relaxed the assumption that the branching mechanism is stable.
Shortly afterwards, [7] studied the speed of extinction of CBLEs in the strongly and intermedi-
ate subcritical regimes. Their methodology combines a path analysis of the branching process
together with its Lévy environment, fluctuation theory for Lévy processes, and the asymptotic
behaviour of exponential functionals of Lévy processes.

Here we continue with such systematic study on the asymptotic behaviour of the survival
probability for CBLEs under more general branching mechanisms, but now in the weakly
subcritical regime. It is important to note that extending such asymptotic behaviour to more
general branching mechanisms is not as easy as we might think since we are required to con-
trol a functional of the associated Lévy process to the environment, which is somehow quite
involved. Moreover, contrary to the discrete case, the state 0 can be polar and the process might
be very close to 0 but never reach this point. To focus on the absorption event, we use Grey’s
condition which guarantees that 0 is accessible.

Our main contribution is to provide its precise asymptotic behaviour under some assump-
tions on the auxiliary Lévy process and the branching mechanism. In particular, we obtain that
the speed of the survival probability decays exponentially with a polynomial factor of order
3/2 (up to a multiplicative constant which is computed explicitly and depends on the limit-
ing behaviour of the survival probability, given favorable environments). In particular, for the
stable case we recover the results of [14] where the limiting constant is given in terms of the
exponential functional of the Lévy process. In order to deduce such asymptotic behaviour, we
combine the approach developed in [1], for the discrete-time setting, with fluctuation theory
of Lévy processes and a similar strategy developed in [2]. A key point in our arguments is to
rewrite the probability of survival under a suitable change of measure which is associated to
an exponential martingale of the Lévy environment. In order to do so, the existence of some
exponential moments for the Lévy environment is required. Under this exponential change of
measure the Lévy environment now oscillates and we can apply a similar strategy developed
in [2] to study the extinction rate for CBLEs in the critical regime. More precisely, under this
new measure, we split the event of survival into two parts, i.e. when the running infimum is
either negative or positive, and then we show that only paths of the Lévy process with a posi-
tive running infimum give a substantial contribution to the speed of survival. In this regime, we
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assume that the branching mechanism is regularly varying and a lower bound for the branching
mechanism, which allows us to control the events of survival under favourable environments
and unfavourable environments, respectively. Our results complement those in [2, 7].

1.1. Main results

Let (�(b),F (b), (F (b)
t )t≥0, P

(b)) be a filtered probability space satisfying the usual hypoth-
esis on which we may construct the demographic (branching) term of the model that we are
interested in. We suppose that (B(b)

t , t ≥ 0) is an (F (b)
t )t≥0-adapted standard Brownian motion,

and N(b)(ds, dz, du) is an (F (b)
t )t≥0-adapted Poisson random measure on R

3+ with intensity
dsμ(dz) du, where μ satisfies ∫

(0,∞)
(z ∧ z2)μ(dz)<∞. (1)

We denote by Ñ(b)(ds, dz, du) the compensated version of N(b)(ds, dz, du). Further, we also
introduce the so-called branching mechanism ψ , a convex function with the Lévy–Khintchine
representation

ψ(λ) =ψ ′(0+)λ+ �2λ2 +
∫

(0,∞)
(e−λx − 1 + λx)μ(dx), λ≥ 0,

where �≥ 0. Observe that the term ψ ′(0+) is well defined (finite) since condition (1) holds.
Moreover, the function ψ describes the stochastic dynamics of the population.

On the other hand, for the environmental term we consider another filtered probability space
(�(e),F (e), (F (e)

t )t≥0, P
(e)) satisfying the usual hypotheses. Let us consider σ ≥ 0 and α real

constants; and π a measure concentrated on R \ {0} such that
∫
R

(1 ∧ z2)π (dz)<∞. Suppose

that (B(e)
t , t ≥ 0) is an (F (e)

t )t≥0-adapted standard Brownian motion, N(e)(ds, dz) is an (F (e)
t )t≥0-

Poisson random measure on R+ ×R with intensity ds π (dz), and Ñ(e)(ds, dz) its compensated
version. We denote by S = (St, t ≥ 0) a Lévy process, i.e. a process with càdlàg paths and
stationary and independent increments, with the Lévy–Itô decomposition

St = αt + σB(e)
t +

∫ t

0

∫
(−1,1)

(ez − 1) Ñ(e)(ds, dz) +
∫ t

0

∫
(−1,1)c

(ez − 1) N(e)(ds, dz).

Note that S is a Lévy process with no jumps smaller than or equal to −1.
In our setting, we consider independent processes for the demographic and environmental

terms. More precisely, we work now on the space (�,F , (Ft)t≥0, P), the direct product of the
two probability spaces defined above, i.e. � := �(e) ×�(b),F := F (e) ⊗F (b),Ft := F (e)

t ⊗
F (b)

t for t ≥ 0, P := P
(e) ⊗ P

(b). Therefore, (Zt, t ≥ 0), the continuous-state branching process
in the Lévy environment (St, t ≥ 0) is defined on (�,F , (Ft)t≥0, P) as the unique non-negative
strong solution of the stochastic differential equation

Zt = Z0 −ψ ′(0+)
∫ t

0
Zs ds +

∫ t

0

√
2�2Zs dB(b)

s

+
∫ t

0

∫
(0,∞)

∫ Zs−

0
z Ñ(b)(ds, dz, du) +

∫ t

0
Zs− dSs. (2)

According to [11, Theorem 3.1] or [16, Theorem 1], the equation has a unique non-negative
strong solution which is not explosive. An important property satisfied by Z is that, given the
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environment, it inherits the branching property of the underlying continuous-state branching
process. We denote by Pz its law starting from z ≥ 0, and by Ez its expectation.

The analysis of the process Z is deeply related to the behaviour and fluctuations of the Lévy
process ξ = (ξt, t ≥ 0), defined as

ξt = αt + σB(e)
t +

∫ t

0

∫
(−1,1)

z Ñ(e)(ds, dz) +
∫ t

0

∫
(−1,1)c

z N(e)(ds, dz),

where

α := α−ψ ′(0+) − σ 2

2
−

∫
(−1,1)

(ez − 1 − z) π (dz).

Note that both processes S and ξ generate the same natural filtration. Indeed, the process ξ is
obtained from S, changing only the drift and jump sizes. In addition, we see that the drift term
α provides the interaction between the demographic and environmental parameters. We denote
by P

(e)
x (respectively E

(e)
x for its expectation) the law of the process ξ starting from x ∈R, and

when x = 0 we use the notation P
(e) for P(e)

0 (respectively E
(e) for its expectation). We also

denote by P(z,x) the law of the process (Z, ξ ) starting at (z,x), and E(z,x) for its expectation.
Further, under condition (1), the process (Zte−ξt , t ≥ 0) is a quenched martingale, implying

that, for any t ≥ 0 and z ≥ 0,
Ez[Zt | S] = zeξt Pz-a.s; (3)

see [2]. In other words, the process ξ plays an analogous role to the random walk associated
to the logarithm of the mean of the offsprings in the discrete-time framework and leads to the
usual classification for the long-term behaviour of branching processes. More precisely, we say
that the process Z is subcritical, critical, or supercritical according as ξ drifts to −∞, oscillates,
or drifts to +∞.

In addition, under condition (1), there is another quenched martingale associated to
(Zte−ξt , t ≥ 0) which allows us to compute its Laplace transform; see, for instance, [16,
Proposition 2] or [11, Theorem 3.4]. In order to compute the Laplace transform of Zte−ξt , we
first introduce the unique positive solution (vt(s, λ, ξ ), s ∈ [0, t]) of the backward differential
equation

∂

∂s
vt(s, λ, ξ ) = eξsψ0(vt(s, λ, ξ )e−ξs ), vt(t, λ, ξ ) = λ, (4)

where ψ0(λ) =ψ(λ) − λψ ′(0+) = �2λ2 + ∫
(0,∞) (e−λx − 1 + λx)μ(dx). Then the process

(exp{−vt(s, λ, ξ )Zse−ξs}, 0 ≤ s ≤ t) is a quenched martingale, implying that, for any λ≥ 0 and
t ≥ s ≥ 0,

E(z,x)[ exp{−λZte
−ξt } | S,F (b)

s ] = exp{−Zse
−ξs vt(s, λe−x, ξ )}. (5)

We may think of vt(·, ·, ξ ) as an inhomogeneous cumulant semigroup determined by the
time-dependent branching mechanism (s, θ ) 
→ eξsψ0(θe−ξs ). The functional vt(·, ·, ξ ) is quite
involved, except for a few cases (stable and Neveu cases), due to the stochasticity coming from
the time-dependent branching mechanism which makes it not so easy to control.

In what follows, we assume that ξ is not a compound Poisson process to avoid the possibility
that the process visits the same maxima or minima at distinct times, which could make our anal-
ysis more involved. Moreover, we also require the following exponential moment condition:

there exists ϑ > 1 such that
∫

{|x|>1}
eλx π (dx)<∞ for all λ ∈ [0, ϑ), (H1)
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which is equivalent to the existence of the Laplace transform on [0, ϑ), i.e. E(e)[eλξ1 ] is finite
for λ ∈ [0, ϑ) (see, for instance, [18, Lemma 26.4]). The latter implies that we can introduce
the Laplace exponent of ξ as ξ (λ) := log E

(e)[eλξ1 ] for λ ∈ [0, ϑ). Again from [18, Lemma
26.4], we also have ξ (λ) ∈ C∞ and ′′

ξ (λ)> 0 for λ ∈ (0, ϑ).
Another object which will be relevant in our analysis is the so-called exponential martingale

associated to the Lévy process ξ , i.e. M(λ)
t = exp{λξt − tξ (λ)}, t ≥ 0, which is well defined

for λ ∈ [0, ϑ) under the assumption (H1). It is well known that (M(λ)
t , t ≥ 0) is an (F (e)

t )t≥0-
martingale and that it induces a change of measure which is known as the Esscher transform:

P
(e,λ)(�) := E

(e)[M(λ)
t 1�] for � ∈F (e)

t . (6)

Under the probability P
(e,λ), the process ξ is still a Lévy process whose characteristic triplet

can be computed explicitly, see, for instance, [13, Theorem 3.9]. We introduce P
(e,λ)
x for the

law of ξ starting at x, under P
(e,λ). Their respective expectations are denoted by E

(e,λ)
x and

E
(e,λ). Similarly, we may introduce P

(λ)
(z,x), the measure induced by the Esscher transform M(λ)

under the measure P(z,x) (with respect to (Ft)t≥0), and its associated expectation E
(λ)
(z,x). It is

important to note that such a transform only affects the environmental terms and none of the
demographic terms.

Another important object in our analysis is the so-called dual process, which is defined as
ξ̂ = −ξ and turns out to also be a Lévy process satisfying that, for any fixed time t> 0, the
processes (ξ(t−s)− − ξt, 0 ≤ s ≤ t) and (̂ξs, 0 ≤ s ≤ t) have the same law, with the convention

that ξ0− = ξ0 (see, for instance, [13, Lemma 3.4]). For every x ∈R, let P̂(e)
x be the law of x + ξ

under P̂(e), i.e. the law of ξ̂ under P(e)
−x. We also introduce the running infimum and supremum

of ξ by ξ
t
= inf0≤s≤t ξs and ξ t = sup0≤s≤t ξs for t ≥ 0. Similarly to the critical case studied in

[2], the asymptotic analysis of the weakly subcritical regime requires the notion of the renewal
functions U(λ) and Û(λ) under P(e,λ), which are associated to the supremum and infimum of ξ ,
respectively. See Section 2.1 for a proper definition (or the references therein).

For our purposes, we also require the notion of conditioned Lévy processes and continuous-
state branching processes in a conditioned Lévy environment. According to [9, Lemma 1],
under the assumption that ξ does not drift towards −∞, we have that the renewal function Û :=
Û(0) is invariant for the process that is killed when it first enters (−∞, 0). In other words, for all
x> 0 and t ≥ 0, E(e)

x
[
Û(ξt)1{ξ

t
>0}

] = Û(x). Hence, from the Markov property, we deduce that

(Û(ξt)1{ξ
t
>0}, t ≥ 0) is a martingale with respect to (F (e)

t )t≥0. We may now use this martingale
to define a change of measure corresponding to the law of ξ conditioned to stay positive as
a Doob-h transform. Under the assumption that ξ does not drift towards −∞, the law of the
process ξ conditioned to stay positive is defined as follows, for � ∈F (e)

t and x> 0:

P
(e),↑
x (�) := 1

Û(x)
E

(e)
x

[
Û(ξt)1{ξ

t
>0}1�

]
.

We denote by E
(e),↑
x its associated expectation.

On the other hand, by duality, under the assumption that ξ does not drift towards ∞, the
law of the process ξ conditioned to stay negative is defined for x< 0 as

P
(e),↓
x (�) := 1

U(−x)
E

(e)
x

[
U(−ξt)1{ξ t<0}1�

]
,

where U := U(0). The associated expectation is denoted by E
(e),↓
x .
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As above, for λ ∈ [0, ϑ) we can also introduce the probability measures P(e,λ),↑
x and P

(e,λ),↓
x

using the renewal functions Û(λ) and U(λ), respectively, and under the probability measure
P

(e,λ)
x . Their respective expectations are defined by E

(e,λ),↑
x and E

(e,λ),↓
x .

Lévy processes conditioned to stay positive (and negative) are well-studied objects. For a
complete overview of this theory the reader is referred to [4, 8, 9] and references therein.

Similarly to the definition of Lévy processes conditioned to stay positive (and negative)
given above, we may introduce a continuous-state branching processes in a Lévy environ-
ment conditioned to stay positive as a Doob-h transform. The aforementioned process was first
investigated in [2] with the aim of studying the survival event in a critical Lévy environment.
In other words, [2] proved the following result.

Lemma 1. ([2].) Let us assume that z, x> 0. Under the law P(z,x), the process
(Û(ξt)1{ξ

t
>0}, t ≥ 0) is a martingale with respect to (Ft)t≥0. Moreover, the following Doob-h

transform holds for � ∈Ft:

P
↑
(z,x)(�) := 1

Û(x)
E(z,x)

[
Û(ξt)1{ξ

t
>0}1�

]
,

and defines a continuous-state branching process in a Lévy environment ξ conditioned to stay
positive.

Furthermore, appealing to duality and Lemma 1, we may deduce that, under P(z,x) with
z> 0 and x< 0, the process (U(−ξt)1{ξ t<0}, t ≥ 0) is a martingale with respect to (Ft)t≥0.
Hence, the law of continuous-state branching processes in a Lévy environment ξ conditioned
to stay negative is defined as follows: for z> 0, x< 0, and � ∈Ft,

P
↓
(z,x)(�) := 1

U(−x)
E(z,x)

[
U(−ξt)1{ξ t<0}1�

]
. (7)

We denote by E
↑
(z,x) and E

↓
(z,x) their respective expectation operators.

Observe that, for λ ∈ [0, ϑ), we may also introduce the probability measures P
(λ),↑
(z,x) and

P
(λ),↓
(z,x) , similarly to Lemma 1 and (7), using the renewal functions Û(λ) and U(λ), respectively,

and under the probability measure P
(λ)
(z,x). Their respective expectation operators are defined by

E
(λ),↑
(z,x) and E

(λ),↓
(z,x) .

Recall that we are interested in the probability of survival under the weakly subcritical
regime. More precisely, we say that Z is weakly subcritical if (H1) is satisfied and the Laplace
exponent of ξ is such that′

ξ (0)< 0<′
ξ (1) and there exists γ ∈ (0, 1) that solves′

ξ (γ ) = 0.
In other words, the Lévy process ξ drifts to −∞ a.s. under P(e), oscillates a.s. under P(e,γ ), and
drifts to +∞ a.s. under P(e,1). In the remainder of this manuscript, we will always assume that
the process Z is in the weakly subcritical regime.

Our first main result requires that the branching mechanism ψ0 is regularly varying at 0, i.e.
there exists β ∈ (0, 1] such that

ψ0(λ) = λ1+β�(λ), (H2)

where � is a slowly varying function at 0. See [5] for a proper definition.
For simplicity of exposition, for λ ∈ [0, ϑ) we introduce the function κ (λ)(0, θ ) as∫ ∞

0
e−θyU(λ)(y) dy = 1

θκ (λ)(0, θ )
, θ > 0.
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Theorem 1. Let x, z> 0. Assume that Z is weakly subcritical and that condition (H2) holds.
Then the random variable Ut := Zte−ξt converges in distribution to some random variable Q
with values in [0,∞) as t → ∞ under P(z,x)

(· | ξ
t
> 0

)
. Moreover,

b(z, x) := lim
t→∞ P(z,x)

(
Zt > 0 | ξ

t
> 0

)
> 0, (8)

where

b(z, x) = 1 − lim
λ→∞ lim

s→∞

∫ ∞

0

∫ 1

0

∫ ∞

0
wu

P
(γ ),↑
(z,x) (Us ∈ du

)
P

(e,γ ),↓
−y

(
Ŵs(λ) ∈ dw

)
μγ (dy),

with Ŵs(λ) := exp{−vs(0, λ, ξ̂ )} and μγ (dy) := γ κ (γ )(0, γ )e−γ yU(γ )(y)1{y>0} dy.

It is important to note that, in general, it seems difficult to explicitly compute the constant
b(z, x) except for the stable case. In the stable case, we observe that the constant b(z, x) is given
in terms of two independent exponential functionals of conditioned Lévy processes. Denote by
Is,t(βξ ) the exponential functional of the Lévy process βξ , i.e.

Is,t(βξ ) :=
∫ t

s
e−βξu du, 0 ≤ s ≤ t. (9)

Hence, when ψ0(λ) = Cλ1+β with C> 0 and β ∈ (0, 1), we have

b(z, x) = γ κ (γ )(0, γ )
∫ ∞

0
e−γ yU(γ )(y)Gz,x(y) dy,

where

Gz,x(y) :=
∫ ∞

0

∫ ∞

0
(1 − exp{−ze−x(βCw + βCu)−1/β})

× P
(γ ),↑
(z,x) (I0,∞(βξ ) ∈ dw)P(e,γ ),↓

−y (I0,∞(βξ̂ ) ∈ du). (10)

We refer to Section 2.4 for further details about the computation of this constant.
Under the assumption that Z is weakly subcritical, the running infimum of the auxiliary

process ξ satisfies the following asymptotic behaviour: for x> 0,

P
(e)
x (ξ

t
> 0) ∼ Aγ

γ κ (γ )(0, γ )
eγ xÛ(γ )(x)t−3/2eξ (γ )t as t → ∞, (11)

where

Aγ := 1√
2π′′

ξ (γ )
exp

{ ∫ ∞

0
(e−t − 1)t−1e−tξ (γ )

P
(e)(ξt = 0) dt

}
; (12)

see, for instance, [12, Lemma A] (see also [14, Proposition 4.1]). Such an asymptotic turns
out to be the leading term in the asymptotic behaviour of the probability of survival as stated
below.

Theorem 2. (Weakly subcritical regime.) Let z> 0. Assume that Z is weakly subcritical and
that the slowly varying function in (H2) satisfies that there exists a constant C> 0 such that
�(λ)>C. Then limt→∞ t3/2e−ξ (γ )t

Pz(Zt > 0) =B(z), with

B(z) := Aγ
γ κ (γ )(0, γ )

lim
x→∞ b(z, x)eγ xÛ(γ )(x) ∈ (0,∞),

where b(z, x) and Aγ are the constants defined in (8) and (12), respectively.
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It is important to note that in the stable case, the constant B(z) coincides with the constant
that appears in [14, Theorem 5.1], i.e.

B(z) = Aγ lim
x→∞ eγ xÛ(γ )(x)

∫ ∞

0
e−γ yU(γ )(y)Gz,x(y) dy,

where Gz,x is defined in (10).

Remark 1. Note that our assumption (H2) clearly implies that∫ ∞
x log2 (x)μ(dx)<∞. (13)

The latter condition was used before in [2, Proposition 3.4] to control the effect of a favourable
environment on the event of survival. Unlike the critical case, in the weakly subcritical
regime the slightly stronger condition (H2) is required to guarantee the convergence in
Theorem 1, which allows us to have good control on the event of survival given favourable
environments. A crucial ingredient in Theorem 1 is an extension of a sort of functional limit
theorem for conditioned Lévy and CBLE processes (see Proposition 1). More precisely, we
would require the asymptotic independence of the processes ((Zu, ξu), 0 ≤ u ≤ r | ξ

t
> 0) and

(ξ(t−u)− , 0 ≤ u ≤ δt | ξ
t
> 0) as t goes to ∞, for every r, t ≥ 0 and δ ∈ (0, 1). We claim that this

result must be true in full generality (in particular Theorem 1 under (13)) since it holds for
random walks (see [1, Theorem 2.7]), but it seems not so easy to deduce. Meanwhile in the
discrete setting the result follows directly from duality, in the Lévy case the convergence will
depend on a much deeper analysis on the asymptotic behaviour for bridges of Lévy processes
and their conditioned version. It seems that a better understanding of conditioned Lévy bridges
is required.

Remark 2. The condition that the slowly varying function � is bounded from below is required
to control the absorption event under unfavourable environments (see Lemma 7) and to a.s.
guarantee absorption. Indeed, under Grey’s condition,∫ ∞ 1

ψ0(λ)
dλ<∞,

and (5), we deduce that, for z, x> 0 and y ≥ 0,

P(z,x)(Zt > 0, ξ
t
≤ −y) =E

(e)[(1 − e−zvt(0,∞,ξ ))1{ξ
t
≤−y−x}

]
, (14)

where vt(0,∞, ξ ) is P
(e)-a.s. finite for all t ≥ 0, (see [11, Theorem 4.1 and Corollary 4.4])

but perhaps equals 0. We note that (13) (and implicitly (H2)) guarantees that vt(0,∞, ξ )> 0,
P

(e)-a.s. for all t> 0 (see, for instance, [16, Proposition 3]). Since the functional vt(0,∞, ξ )
depends strongly on the environment, it seems difficult to estimate the right-hand side of (14).
Actually, it seems not so easy to obtain sharp control of (14). Condition (H2) implies that
Grey’s condition is fulfilled, and the assumption that � is bounded from below allows us to
upper bound (14) in terms of the exponential functional of ξ .

Finally, we point out that in the discrete setting such probability can be estimated directly
in terms of the infimum of the environment since the event of survival is equal to the event that
the current population is larger than or equal to one, something that cannot be performed in
our setting.

The remainder of this paper is devoted to the proofs of the main results.
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2. Proofs

This section is devoted to the proofs of our main results and the computation of the constant
b(z, x) in the stable case. We start with some preliminaries on Lévy processes.

2.1. Lévy processes

Recall that P(e)
x denotes the law of the Lévy process ξ starting from x ∈R, and when x = 0

we use the notation P
(e) for P

(e)
0 . We also recall that ξ̂ = −ξ denotes the dual process and

denote by P̂
(e)
x its law starting at x ∈R.

In what follows, we require the notion of the reflected processes ξ − ξ and ξ − ξ which

are Markov processes with respect to the filtration (F (e)
t )t≥0 and whose semigroups satisfy the

Feller property (see, for instance, [4, Proposition VI.1]). We denote by L = (Lt, t ≥ 0) and L̂ =
(̂Lt, t ≥ 0) the local times of ξ − ξ and ξ − ξ at 0, respectively, in the sense of [4, Chapter IV].

If 0 is regular for (−∞, 0) or regular downwards, i.e. P(e)(τ−
0 = 0) = 1, where τ−

0 = inf{s>
0: ξs ≤ 0}, then 0 is regular for the reflected process ξ − ξ and then, up to a multiplicative
constant, L̂ is the unique additive functional of the reflected process whose set of increasing
points is {t : ξt = ξ

t
}. If 0 is not regular downwards then the set {t : ξt = ξ

t
} is discrete and we

define the local time L̂ as the counting process of this set. The same properties hold for L by
duality.

Let us denote by L−1 and L̂−1 the right-continuous inverse of L and L̂, respectively. The
range of the inverse local times L−1 and L̂−1 correspond to the sets of real times at which
new maxima and new minima occur, respectively. Next, we introduce the so-called increasing
ladder height process by Ht = ξL−1

t
, t ≥ 0. The pair (L−1,H) is a bivariate subordinator, as is

the pair (̂L−1, Ĥ), with Ĥt = −ξ
L̂−1

t
, t ≥ 0. The range of the process H (resp. Ĥ) corresponds to

the set of new maxima (resp. new minima). The pairs are known as descending and ascending
ladder processes, respectively.

We also recall that U(λ) and Û(λ) denote the renewal functions under P(e,λ). Such functions
are defined, for all x> 0, as

U(λ)(x) := E
(e,λ)

[ ∫
[0,∞)

1{ξ t≤x} dLt

]
, Û(λ)(x) := E

(e,λ)
[ ∫

[0,∞)
1{ξ

t
≥−x} d̂Lt

]
.

The renewal functions U(λ) and Û(λ) are finite, subadditive, continuous, and increasing.
Moreover, they are identically 0 on (−∞, 0], strictly positive on (0,∞), and satisfy U(λ)(x) ≤
C1x and Û(λ)(x) ≤ C2x for any x ≥ 0, where C1,C2 are finite constants (see, for instance, [10,
Lemma 6.4 and Section 8.2]). Moreover, U(λ)(0) = 0 and Û(λ)(0) = 0 if 0 is regular upwards;
U(λ)(0) = 1 and Û(λ)(0) = 1 otherwise.

Furthermore, it is important to note that by a simple change of variables, we can rewrite
the renewal functions U(λ) and Û(λ) in terms of the ascending and descending ladder height
processes. Indeed, the measures induced by U(λ) and Û(λ) can be rewritten as

U(λ)(x) =E
(e,λ)

[ ∫ ∞

0
1{Ht≤x} dt

]
, Û(λ)(x) =E

(e,λ)
[ ∫ ∞

0
1{Ĥt≤x} dt

]
.

Roughly speaking, the renewal function U(λ)(x) (resp. Û(λ)(x)) “measures” the amount of time
that the ascending (resp. descending) ladder height process spends on the interval [0, x], and
in particular induces a measure on [0,∞) which is known as the renewal measure. The latter
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implies that ∫
[0,∞)

e−θxU(λ)(x) dx = 1

θκ (λ)(0, θ )
, θ > 0, (15)

where κ (λ)(·, ·) is the bivariate Laplace exponent of the ascending ladder process (L−1,H)
under P(e,λ) (see, for instance, [4, 10, 13]).

2.2. Proof of Theorem 1

Our argument follows a similar strategy to [1], where the discrete setting is considered,
although considering continuous time leads to significant changes, such as that 0 might be
polar. Our first proposition is the continuous analogue of [1, Proposition 2.5] and in some sense
is a generalisation of [12, Theorem 2(a)] (see also [14, Proposition 4.2]). In particular, the result
tells us that, for every r, s ≥ 0 and s ≤ t, the conditional processes ((Zu, ξu), 0 ≤ u ≤ r | ξ

t
> 0)

and (ξ(t−u)− , 0 ≤ u ≤ s | ξ
t
> 0) are asymptotically independent as t → ∞.

Before we state our first result in this subsection, we recall that D([0, t]) denotes the space
of càdlàg real-valued functions on [0, t] equipped with the Skorokhod topology.

Proposition 1. Let f and g be continuous functionals on D([0, t]). We also set Ur :=
g((Zu, ξu), 0 ≤ u ≤ r), and, for s ≤ t, Ŵs := f (−ξu, 0 ≤ u ≤ s) and W̃t−s,t := f (ξ(t−u)−, 0 ≤ u ≤
s). Then, for any bounded continuous function ϕ : R3 →R and x> 0,

lim
t→∞

E
(γ )
(z,x)

[
ϕ(Ur, W̃t−s,t, ξt)e−γ ξt 1{ξ

t
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

]
=

∫ ∞

0

∫ ∞

0

∫ ∞

0
ϕ(u, v, y)P(γ ),↑

(z,x) (Ur ∈ du)P(e,γ ),↓
−y

(
Ŵs ∈ dv

)
μγ (dy),

with μγ (dy) := γ κ (γ )(0, γ )e−γ yU(γ )(y)1{y>0} dy.

Proof. By a monotone class argument, it is enough to show the result for continuous
bounded functions of the form ϕ(u, v, y) = ϕ1(u)ϕ2(v)ϕ3(y), where ϕi : R→R are bounded
and continuous functions for i = 1, 2, 3. That is, we show that, for z, x> 0,

lim
t→∞

E
(γ )
(z,x)

[
ϕ1(Ur)ϕ2(W̃t−s,t)ϕ3(ξt)e−γ ξt 1{ξ

t
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

]
=E

(γ ),↑
(z,x) [ϕ1(Ur)]E(e,γ ),↓

μγ
[ϕ2(Ŵs)ϕ3(−ξ0)],

where E
(e,γ ),↓
μγ [ϕ2(Ŵs)ϕ3(−ξ0)] = ∫ ∞

0 E
(e,γ ),↓
−y [ϕ2(Ŵs)ϕ3(−ξ0)]μγ (dy). For simplicity of

exposition, we assume 0 ≤ ϕi ≤ 1 for i = 1, 2, 3. We first observe from the Markov property
that, for t ≥ r + s,

E
(γ )
(z,x)

[
ϕ1(Ur)ϕ2(W̃t−s,t)ϕ3(ξt)e

−γ ξt 1{ξ
t
>0}

] =E
(γ )
(z,x)

[
ϕ1(Ur)t−r(ξr)1{ξ

r
>0}

]
, (16)

where u(y) := E
(e,γ )
y

[
ϕ2(W̃u−s,u)ϕ3(ξu)e−γ ξu 1{ξ

u
>0}

]
, u ≥ s, y> 0. Using the last definition

and the Markov property again, we deduce the following identity:

t−r(y) =E
(e,γ )
y

[
s(ξt−r−s)1{ξ

t−r−s
>0}

]
, y> 0. (17)
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On the other hand, by [12, Lemma 1], we know that, for δ > 0 and t ≥ v,

lim
t→∞

E
(e,γ )
y

[
e−(δ+γ )ξt−v 1{ξ

t−v
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

] = Û(γ )(y)

Û(γ )(x)

∫ ∞
0 e−(δ+γ )zU(γ )(z) dz∫ ∞

0 e−γ zU(γ )(z) dz
.

Then, by the continuity theorem for the Laplace transform and using identity (15), for h
bounded and continuous, μγ -a.s., it follows that

lim
t→∞

E
(e,γ )
y

[
h(ξt−v)e−γ ξt−v 1{ξ

t−v
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

] = Û(γ )(y)

Û(γ )(x)

∫ ∞

0
h(z)μγ (dz). (18)

If h is positive and continuous but not bounded, we can truncate the function h, i.e. fix n ∈N

and define hn(x) := h(x)1{h(x)≤n}. Then, by (18),

lim inf
t→∞

E
(e,γ )
y

[
h(ξt−v)e−γ ξt−v 1{ξ

t−v
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

] ≥ lim inf
t→∞

E
(e,γ )
y

[
hn(ξt−v)e−γ ξt−v 1{ξ

t−v
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

]
= Û(γ )(y)

Û(γ )(x)

∫ ∞

0
hn(z)μγ (dz).

On the other hand, since hn(x) → h(x) as n → ∞, by Fatou’s lemma,

lim inf
n→∞

∫ ∞

0
hn(z)μγ (dz) ≥

∫ ∞

0
h(z)μγ (dz).

Thus, putting both pieces together, we get

lim inf
t→∞

E
(e,γ )
y

[
h(ξt−v)e−γ ξt−v 1{ξ

t−v
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

] ≥ Û(γ )(y)

Û(γ )(x)

∫ ∞

0
h(z)μγ (dz). (19)

We want to apply the previous inequality to the function h(x) =s(x)eγ x. To do so, we need
to verify that s(·) is a positive and μγ -a.s.-continuous function. First, we observe that since
ϕ2 and ϕ3 are continuous functions, the discontinuities of s(·) correspond to discontinuities
of the map e : y 
→ P

(e,γ )(ξ
t
>−y). Since e(·) is bounded and monotone, it has at most a

countable number of discontinuities. Thus, the same holds for the functions(·), which in turn
implies that s(·) is continuous almost everywhere with respect to the Lebesgue measure and
therefore μγ -a.s. �

Now, from (17) and (19) with v = r + s and h(x) =s(x)eγ x, we have

lim inf
t→∞

t−r(y)

E
(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

] = lim inf
t→∞

E
(e,γ )
y

[
s(ξt−v)eγ ξt−v e−γ ξt−v 1{ξ

t−v
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

]
= lim inf

t→∞
E

(e,γ )
y

[
h(ξt−v)e−γ ξt−v 1{ξ

t−v
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

]
≥ Û(γ )(y)

Û(γ )(x)

∫ ∞

0
s(z)eγ z μγ (dz).
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In view of identity (16) and the above inequality, replacing y by ξr, we get, from Fatou’s lemma,

lim inf
t→∞

E
(γ )
(z,x)

[
ϕ1(Ur)ϕ2(W̃t−s,t)ϕ3(ξt)e−γ ξt 1{ξ

t
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

]
= lim inf

t→∞
E

(γ )
(z,x)

[
ϕ1(Ur)t−r(ξr)1{ξ

r
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

]
≥ E

(γ )
(z,x)

[
ϕ1(Ur)Û(γ )(ξr)1{ξ

r
>0}

]
Û(γ )(x)

∫ ∞

0
s(u)eγ u μγ (du)

=E
(γ ),↑
(z,x) [ϕ1(Ur)]

∫ ∞

0
s(u)eγ u μγ (du). (20)

Now we use the duality relationship, with respect to the Lebesgue measure, between ξ and ξ̂
(see, for instance, [12, Lemma 3]) to get∫ ∞

0
s(z)eγ ze−γ zU(γ )(z) dz =

∫ ∞

0
E

(e,γ )
z

[
ϕ2(W̃0,s)ϕ3(ξs)e

−γ ξs1{ξ
s
>0}

]
U(γ )(z) dz

=
∫ ∞

0
E

(e,γ )
−z

[
ϕ2(Ŵs)U

(γ )(−ξs)1{ξ s<0}
]
ϕ3(z)e−γ z dz

=
∫ ∞

0
E

(e,γ ),↓
−z

[
ϕ2(Ŵs)

]
U(γ )(z)ϕ3(z)e−γ z dz

=
∫ ∞

0
E

(e,γ ),↓
−z

[
ϕ2(Ŵs)ϕ3(−ξ0)

]
e−γ zU(γ )(z) dz.

Using this equality in (20), we obtain

lim inf
t→∞

E
(γ )
(z,x)

[
ϕ1(Ur)ϕ2(W̃t−s,t)ϕ3(ξt)e−γ ξt 1{ξ

t
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

]
≥E

(γ ),↑
(z,x) [ϕ1(Ur)]E(e,γ ),↓

μγ
[ϕ2(Ŵs)ϕ3(−ξ0)]. (21)

On the other hand, by taking y = x, v = 0, and h(z) = ϕ3(z) in (18), we deduce that

lim
t→∞

E
(e,γ )
x

[
ϕ3(ξt)e−γ ξt 1{ξ

t
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

] =
∫ ∞

0
ϕ3(z)μγ (dz) =E

(e,γ ),↓
μγ

[ϕ3(−ξ0)].

Using this last identity and replacing ϕ1(Ur) by 1 − ϕ1(Ur) and ϕ2 ≡ 1 in (21), we get

E
(γ ),↑
(z,x)

[
1 − ϕ1(Ur)

]
E

(e,γ ),↓
μγ

[ϕ3(−ξ0)]

≤ lim inf
t→∞

E
(γ )
(z,x)

[
(1 − ϕ1(Ur))ϕ3(ξt)e−γ ξt 1{ξ

t
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

]
=E

(e,γ ),↓
μγ

[ϕ3(−ξ0)] − lim sup
t→∞

E
(γ )
(z,x)

[
ϕ1(Ur)ϕ3(ξt)e−γ ξt 1{ξ

t
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

] .
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Therefore,

lim sup
t→∞

E
(γ )
(z,x)

[
ϕ1(Ur)ϕ3(ξt)e−γ ξt 1{ξ

t
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

] ≤E
(γ ),↑
(z,x) [ϕ1(Ur)]E(e,γ ),↓

μγ
[ϕ3(−ξ0)].

In other words, by taking ϕ2 ≡ 1 in (21) and the above inequality, we obtain the identity

lim
t→∞

E
(γ )
(z,x)

[
ϕ1(Ur)ϕ3(ξt)e−γ ξt 1{ξ

t
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

] =E
(γ ),↑
(z,x) [ϕ1(Ur)]E(e,γ ),↓

μγ
[ϕ3(−ξ0)].

Finally, we pursue the same strategy as before, i.e. we replace ϕ2(W̃t−s,t) by 1 − ϕ2(W̃t−s,t)
in (21) to obtain

lim inf
t→∞

E
(γ )
(z,x)

[
ϕ1(Ur)(1 − ϕ2(W̃t−s,t))ϕ3(ξt)e−γ ξt 1{ξ

t
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

]
≥E

(γ ),↑
(z,x) [ϕ1(Ur)]E(e,γ ),↓

μγ
[(1 − ϕ2(Ŵs))ϕ3(−ξ0)].

Then, it follows that

lim sup
t→∞

E
(γ )
(z,x)

[
ϕ1(Ur)ϕ2(W̃t−s,t)ϕ3(ξt)e−γ ξt 1{ξ

t
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

]
≤E

(γ ),↑
(z,x) [ϕ1(Ur)]E(e,γ ),↓

μγ
[ϕ2(Ŵs)ϕ3(−ξ0)].

Finally, putting all the pieces together, we conclude that

lim
t→∞

E
(γ )
(z,x)

[
ϕ1(Ur)ϕ2(W̃t−s,t)ϕ3(ξt)e−γ ξt 1{ξ

t
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

]
=E

(γ ),↑
(z,x) [ϕ1(Ur)]E(e,γ ),↓

μγ
[ϕ2(Ŵs)ϕ3(−ξ0)],

as expected. �

The following lemmas are preparatory results for the proof of Theorem 1. We first observe
from the Wiener–Hopf factorisation that there exists a non-decreasing function �0 satisfying
ψ0(λ) = λ�0(λ) for λ≥ 0, where �0 is the Laplace exponent of a subordinator and takes the
form

�0(λ) = �2λ+
∫

(0,∞)
(1 − e−λx)μ(x,∞) dx.

From (H2), it follows that �0(λ) is regularly varying at 0 with index β, and implicitly the term
� equals 0 when β ∈ (0, 1).

Lemma 2. Let x, λ > 0, and assume that (H2) holds; then

lim
s→∞ lim

t→∞ e−tξ (γ )t3/2
∫ t−s

s
E

(e)
x

[
�0(λe−ξu )1{ξ

t
>0}

]
du = 0.
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Proof. Let x> 0 and λ> 0. From the Markov property, we observe that

E
(e)
x

[
�0(λe−ξu )1{ξ

t
>0}

] =E
(e)
x

[
�0(λe−ξu )1{ξ

u
>0}P(e)

ξu

(
ξ

t−u
> 0

)]
.

Next, we take x0 > x and, from the monotonicity of z 
→ P
(e)
z (ξ

t−u
> 0), we obtain

E
(e)
x

[
�0(λe−ξu )1{ξ

t
>0}

] ≤E
(e)
x

[
�0(λe−ξu )1{ξ

u
>0}P(e)

ξu

(
ξ

t−u
> 0

)
1{ξu>x0}

]
+E

(e)
x

[
�0(λe−ξu )1{ξ

u
>0}1{ξu≤x0}

]
P

(e)
x0+x

(
ξ

t−u
> 0

)
.

Now, using the asymptotic behaviour given in (11) and the Esscher transform (6), for t large
enough,

E
(e)
x

[
�0(λe−ξu )1{ξ

t
>0}

]
≤ CγE

(e)
x

[
�0(λe−ξu )1{ξ

u
>0}1{ξu>x0}eγ ξu Û(γ )(ξu)

]
(t − u)−3/2eξ (γ )(t−u)

+ Cγ,x+x0E
(e)
x

[
�0(λe−ξu )1{ξ

u
>0}1{ξu≤x0}

]
(t − u)−3/2eξ (γ )(t−u)

≤ CγE
(e,γ )
x

[
�0(λe−ξu )1{ξ

u
>0}1{ξu>x0}Û(γ )(ξu)

]
(t − u)−3/2eξ (γ )t

+ Cγ,x+x0E
(e)
x

[
�0(λe−ξu )1{ξ

u
>0}1{ξu≤x0}

]
(t − u)−3/2eξ (γ )(t−u), (22)

where Cγ and Cγ,x+x0 are strictly positive constants.
First, we deal with the first expectation on the right-hand side of (22). Recalling that

′′
ξ (γ )<∞, we get from [13, Corollary 5.3] that

y−1Û(γ )(y) → 1

Ê(e,γ )[H1]
as y → ∞.

Furthermore, since Û(γ ) is increasing, the map y 
→ e−(ς/2)yÛ(γ )(y) is bounded for any ς ∈
(0, β), and from (H2) we also deduce that the map y 
→ e−(ς/2)y�(λe−y) is also bounded. With
these observations in mind, it follows that, for u large enough,

E
(e,γ )
x

[
�0(λe−ξu )1{ξ

u
>0}1{ξu>x0}Û(γ )(ξu)

] ≤ CλE
(e,γ )
x

[
e−(β−(ς/2))ξu 1{ξ

u
>0}

]
,

where Cλ is a strictly positive constant. According to [12, Lemma 1], there exists Cλ,β,x > 0
such that, for u sufficiently large,

E
(e,γ )
x

[
�0(λe−ξu )1{ξ

u
>0}1{ξu>x0}Û(γ )(ξu)

] ≤ Cλ,β,xu−3/2.

For the second expectation in (22) we use the monotonicity of �0 to get

E
(e)
x

[
�0(λe−ξu )1{ξ

u
>0}1{ξu≤x0}

] ≤�0(λ)P(e)
x

(
ξ

u
> 0

) ≤ Ĉγ,x,λu−3/2eξ (γ )u,

where Ĉγ,x,λ is a positive constant. The last inequality follows from (11). Putting all the pieces
together in (22), we deduce that, for t large enough,

E
(e)
x

[
�0(λe−ξu )1{ξ

t
>0}

] ≤ Cλ,β,x,γ u−3/2(t − u)−3/2eξ (γ )t,
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where Cλ,β,x,γ > 0. Finally, observe that, for t large enough,

e−tξ (γ )t3/2
∫ t−s

s
E

(e)
x

[
�0(λe−ξu )1{ξ

t
>0}

]
du ≤ Cλ,β,x,γ t3/2

∫ t−s

s
(t − u)−3/2u−3/2 du

≤ 2Cλ,β,x,γ t3/2
(

t

2

)−3/2 ∫ ∞

s
u−3/2 du

≤ 2Cλ,β,x,γ s−1/2.

The result now follows by taking t → ∞ and then s → ∞. �

Lemma 3. Let z, x> 0 and assume that (H2) holds. Then

lim
s→∞ lim

t→∞ t3/2e−tξ (γ )
E(z,x)

[| exp{−Zse
−ξs vt(s, λ, ξ )}

− exp{−Zse
−ξs vt(t − s, λ, ξ )}|1{ξ

t
>0}

] = 0.

Proof. Fix z, x> 0 and take t ≥ 2s. We begin by observing that since f (y) = e−y, y ≥ 0, it is
Lipschitz and hence there exists a positive constant C1 such that

E(z,x)
[| exp{−Zse

−ξsvt(s, λ, ξ )} − exp{−Zse
−ξsvt(t − s, λ, ξ )}|1{ξ

t
>0}

]
≤ C1E(z,x)

[
Zse

−ξs |vt(s, λ, ξ ) − vt(t − s, λ, ξ )
∣∣1{ξ

t
>0}

]
= C1z−1

E
(e)
x

[|vt(s, λ, ξ ) − vt(t − s, λ, ξ )|1{ξ
t
>0}

]
,

where in the last identity we conditioned on the environment and used (3). Since ψ0 is positive,
from (4) we have that s 
→ vt(s, λ, ξ ) is an increasing function. This, together with the facts that
ψ0 is a non-decreasing function and vt(t, λ, ξ ) = λ, mean that ψ0

(
vt(u, λ, ξ )e−ξu

) ≤ψ0(λe−ξu )
for u ≤ t. Hence, we obtain

vt(s, λ, ξ ) − vt(t − s, λ, ξ ) =
∫ t−s

s
eξuψ0(vt(u, λ, ξ )e−ξu ) du

≤
∫ t−s

s
eξuψ0(λe−ξu ) du =

∫ t−s

s
λ�0(λe−ξu ) du.

In other words, we have deduced that

E
(e)
x

[|vt(s, λ, ξ ) − vt(t − s, λ, ξ )|1{ξ
t
>0}

] ≤ λ
∫ t−s

s
E

(e)
x

[
�0(λe−ξu )1{ξ

t
>0}

]
du.

Appealing to Lemma 2, we conclude that

lim
s→∞ lim

t→∞ t3/2e−tξ (γ )
E(z,x)

[| exp{−Zse
−ξs vt(s, λ, ξ )} − exp{−Zse

−ξs vt(t − s, λ, ξ )}|1{ξ
t
>0}

]
≤ C1z−1λ lim

s→∞ lim
t→∞ t3/2e−tξ (γ )

∫ t−s

s
E

(e)
x

[
�0(λe−ξu )1{ξ

t
>0}

]
du = 0,

as required. �
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The following lemma states that, with respect to the measure P
(γ ),↑
(z,x) with z, x> 0, the

reweighted process (Zte−ξt , t ≥ 0) is a martingale that converges towards a strictly positive
random variable under P(γ ),↑

(z,x) . This is another preparatory lemma for the proof of Theorem 1.

Lemma 4. Let z, x> 0 and assume that (H2) holds. Then the process (Zte−ξt , t ≥ 0) is a mar-
tingale with respect to (Ft)t≥0 under P

(γ ),↑
(z,x) . Moreover, as t → ∞, Zte−ξt → U∞ P

(γ ),↑
(z,x) -a.s.,

where the random variable U∞ is finite and satisfies P(γ ),↑
(z,x) (U∞ > 0)> 0.

In order to prove this result, we require the following lemma.

Lemma 5. ([2, Proposition 3.4].) Let z, x> 0 and assume that the environment ξ is critical
under P(z,x), and that (13) is fulfilled. Then lim

t→∞ P
↑
(z,x)(Zt > 0)> 0.

We recall that (H2) implies the x log2 (x)-moment condition (13).

Proof of Lemma 4. From [2, Proposition 1.1], which we may apply here with respect to the
measure P

(γ )
(z,x), we have that the process (Zte−ξt , t ≥ 0) is a quenched martingale with respect

to the environment. We assume that s ≤ t and take A ∈Fs. In order to deduce the first claim of
this lemma, we first show that

E
(γ )
(z,x)

[
Zte

−ξt 1AÛ(γ )(ξt)1{ξ
t
>0}

] =E
(γ )
(z,x)

[
Zse

−ξs 1AÛ(γ )(ξs)1{ξ
s
>0}

]
.

First, conditioning on the environment, we deduce that

E
(γ )
(z,x)

[
Zte

−ξt 1AÛ(γ )(ξt)1{ξ
t
>0}

] =E
(γ )
(z,x)

[
E

(γ )
(z,x)[Zte

−ξt 1A | ξ ]Û(γ )(ξt)1{ξ
t
>0}

]
=E

(γ )
(z,x)

[
E

(γ )
(z,x)[Zse

−ξs1A | ξ ]Û(γ )(ξt)1{ξ
t
>0}

]
.

We can see that the random variable E
(γ )
(z,x)[Zse−ξs 1A | ξ ] is Fs-measurable. Thus, conditioning

on Fs, we have

E
(γ )
(z,x)

[
Zte

−ξt 1AÛ(γ )(ξt)1{ξ
t
>0}

] =E
(γ )
(z,x)

[
E

(γ )
(z,x)[Zse

−ξs1A | ξ ]E(γ )
(z,x)[Û

(γ )(ξt)1{ξ
t
>0} |Fs]

]
.

Further, by [2, Lemma 3.1], which we can apply here under the measure P
(γ )
(z,x), the process

(Û(γ )(ξt)1{ξ
t
>0}, t ≥ 0) is a martingale with respect to (Ft)t≥0 under P(γ )

(z,x). Hence,

E
(γ )
(z,x)

[
Zte

−ξt 1AÛ(γ )(ξt)1{ξ
t
>0}

] =E
(γ )
(z,x)

[
E

(γ )
(z,x)[Zse

−ξs 1A | ξ ]Û(γ )(ξs)1{ξ
s
>0}

]
=E

(γ )
(z,x)

[
Zse

−ξs 1AÛ(γ )(ξs)1{ξ
s
>0}

]
.

Therefore, by the definition of the measure P
(γ ),↑
(z,x) , we see that

E
(γ ),↑
(z,x)

[
Zte

−ξt 1A
] = 1

Û(x)
E

(γ )
(z,x)

[
Zte

−ξt 1AÛ(γ )(ξt)1{ξ
t
>0}

]
= 1

Û(x)
E

(γ )
(z,x)

[
Zse

−ξs1AÛ(γ )(ξs)1{ξ
s
>0}

] =E
(γ ),↑
(z,x)

[
Zse

−ξs 1A
]
,

which allows us to conclude that the process (Zte−ξt , t ≥ 0) is a martingale with respect to
(Ft)t≥0 under P(γ ),↑

(z,x) . Moreover, by Doob’s convergence theorem, there is a non-negative finite
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random variable U∞ such that, as t → ∞, Zte−ξt → U∞ P
(γ ),↑
(z,x) -a.s. Next, by the dominated

convergence theorem, we have

P
(γ ),↑
(z,x) (U∞ > 0) = lim

t→∞ P
(γ ),↑
(z,x) (Zte

−ξt > 0).

The proof is thus completed as soon as we can show that

lim
t→∞ P

(γ ),↑
(z,x) (Zte

−ξt > 0)> 0. (23)

In order to do so, we first observe that the following identity holds:

P
(γ ),↑
(z,x) (Zte

−ξt = 0) = P
(γ ),↑
(z,x) (Zt = 0);

then, by noting that under P(γ )
(z,x) the Lévy process ξ oscillates (since ′

ξ (γ ) = 0), we can apply
Lemma 5 to deduce (23). �

With Proposition 1 and Lemmas 3 and 4 in hand, we may now proceed to prove
Theorem 1 following ideas similar to those used in [1, Lemma 3.4], although we might con-
sider that the continuous setting leads to significant changes since an extension of Proposition 1
seems difficult to deduce, unlike in the discrete case (see [1, Theorem 2.7]). Indeed, it seems
that such an extension will depend on a much deeper analysis of the asymptotic behaviour for
bridges of Lévy processes and their conditioned version.

Proof of Theorem 1. Fix x, z> 0 and recall that the process (Us, s ≥ 0) is defined as Us :=
Zse−ξs . For any λ≥ 0, we shall prove the convergence of the following Laplace transform as
t → ∞: E(z,x)

[
exp{−λZte−ξt } | ξ

t
> 0

]
.

First, we rewrite the latter expression in a form which allows us to use Proposition 1 and
Lemma 3. We begin by recalling from (5) that, for any λ≥ 0 and t ≥ s ≥ 0,

E(z,x)[ exp{−λZte
−ξt } | ξ,F (b)

s ] = exp{−Zse
−ξsvt(s, λ, ξ )}.

Thus,

E(z,x)
[

exp{−λZte
−ξt }1{ξ

t
>0}

] =E(z,x)[E(z,x)[ exp{−λZte
−ξt } | ξ,F (b)

s ]1{ξ
t
>0}]

=E(z,x)
[

exp{−Zse
−ξsvt(s, λ, ξ )}1{ξ

t
>0}

]
=E(z,x)

[
exp{−Zse

−ξsvt(t − s, λ, ξ )}1{ξ
t
>0}

]
+E(z,x)

[
(exp{−Zse

−ξs vt(s, λ, ξ )}
− exp{−Zse

−ξsvt(t − s, λ, ξ )})1{ξ
t
>0}

]
.

Now, using the same notation as in Proposition 1, we note that, for any s ≤ t,

exp{−Zse
−ξs vt(t − s, λ, ξ )} = ϕ(Us, W̃t−s,t, ξt),

where (Ŵs(λ), s ≥ 0) and (W̃t−s,t, s ≤ t) are defined by

Ŵs(λ) := exp{−vs(0, λ, ξ̂ )}, W̃t−s,t := exp{−vt(t − s, λ, ξ )},
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and ϕ is the bounded and continuous function ϕ(u,w, y) := wu, 0 ≤ w ≤ 1, u ≥ 0, y ∈R.
Hence, appealing to Proposition 1, Lemma 3 and (11), for z, x> 0, we see that

lim
t→∞ E(z,x)

[
exp{−λZte

−ξt} | ξ
t
> 0

]
= lim

s→∞ lim
t→∞ E(z,x)

[
ϕ(Us, W̃t−s,t, ξt) | ξ

t
> 0

]
+ lim

s→∞ lim
t→∞ E(z,x)

[| exp{−Zse
−ξsvt(s, λ, ξ )} − exp{−Zse

−ξsvt(t − s, λ, ξ )}| | ξ
t
> 0

]
= lim

s→∞ lim
t→∞

E
(γ )
(z,x)

[
ϕ(Us, W̃t−s,t, ξt)e−γ ξt 1{ξ

t
>0}

]
E

(e,γ )
x

[
e−γ ξt 1{ξ

t
>0}

] = lim
s→∞ϒz,x(λ, s),

where

ϒz,x(λ, s) :=
∫ ∞

0

∫ 1

0

∫ ∞

0
ϕ(u,w, y)P(γ ),↑

(z,x) (Us ∈ du)P(e,γ ),↓
−y (Ŵs(λ) ∈ dw)μγ (dy).

On the other hand, from Lemma 4, we recall that, under P(γ ),↑
(z,x) , the process (Us, s ≥ 0) is a

non-negative martingale with respect to (Ft)t≥0 that converges towards the non-negative and
finite random variable U∞. Next, we observe from [11, Proposition 2.3] that the mapping
s 
→ vs(0, λ, ξ̂ ) is decreasing, implying that s 
→ Ŵs(λ) is increasing P

(e,γ ),↓
−y -a.s. for y> 0.

Further, since vs(0, λ, ξ̂ ) ≤ λ, the process (Ŵs(λ), s ≥ 0) is bounded below, i.e., for any λ≥ 0,
0< e−λ ≤ Ŵs(λ) ≤ 1. Therefore, it follows that, for any λ≥ 0 and y> 0, Ŵs(λ) −−−→

s→∞ Ŵ∞(λ)

P
(e,γ ),↓
−y -a.s., where Ŵ∞(λ) is a strictly positive random variable. These observations, together

with the dominated convergence theorem, imply that

lim
s→∞ϒz,x(λ, s) =

∫ ∞

0

∫ 1

0

∫ ∞

0
ϕ(u,w, y)P(γ ),↑

(z,x) (U∞ ∈ du)P(e,γ ),↓
−y (Ŵ∞(λ) ∈ dw)μγ (dy)

:= ϒz,x(λ).

In other words, Ut = Zte−ξt converges weakly, under P(z,x)
(· | ξ

t
> 0

)
, towards some positive

and finite random variable whose Laplace transform is given by ϒz,x(λ). For simplicity of
exposition we denote by Q such a limiting random variable, and we denote its law by P.

Next, we observe that P(Q> 0) is strictly positive. The latter is equivalent to showing that
ϒz,x(λ)< 1 for all λ> 0. In other words, from the definition of ϕ(u,w, y), it is enough to show

that P(γ ),↑
(z,x) (U∞ > 0)> 0 and P

(e,γ ),↓
−y (Ŵ∞(λ)< 1) = 1 for all λ> 0. The first claim has been

proved in Lemma 4. For the second claim, we observe that, for any λ> 0,

P
(e,γ ),↓
−y (Ŵ∞(λ)< 1) = P

(e,γ ),↓
−y (v∞(0, λ, ξ̂ )> 0).

By the proof of [2, Proposition 3.4], we have

v∞(0, λ, ξ ) ≥ λ exp

{
−

∫ ∞

0
�0(λe−ξu ) du

}
.

Moreover, from the same reference and under assumption (H2), it follows that

E
(e,γ ),↑
y

[ ∫ ∞

0
�0(λe−ξu ) du

]
<∞,

which implies that P(e,γ ),↓
−y (v∞(0, λ, ξ̂ )> 0) = 1 for all λ≥ 0. In other words, P(Q> 0)> 0,

which implies that lim
t→∞ P(z,x)

(
Zte−ξt > 0 | ξ

t
> 0

)
> 0. This completes the proof. �
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2.3. Proof of Theorem 2

The proof of this theorem follows a similar strategy to the proof of [2, Theorem 1.2] for the
critical regime where the assumption that �(λ)>C for C> 0 and the asymptotic behaviour of
exponential functionals of Lévy processes are crucial. We also recall that Z is in the weakly
subcritical regime.

For simplicity of exposition, we split the proof of Theorem 2 into two lemmas. The first
lemma is a direct consequence of Theorem 1.

Lemma 6. Suppose that (H2) holds. Then, for any z, x> 0 we have, as t → ∞,

P(z,x)
(
Zt > 0, ξ

t
> 0

) ∼ b(z, x)P(e)
x

(
ξ

t
> 0

)
∼ b(z, x)

Aγ
γ κ (γ )(0, γ )

eγ xÛ(γ )(x)t−3/2eξ (γ )t,

where the constant Aγ is defined in (12).

Proof. We begin by recalling from Theorem 1 that

lim
t→∞ P(z,x)

(
Zt > 0 | ξ

t
> 0

) = b(z, x)> 0.

Thus, appealing to (11) we obtain

P(z,x)
(
Zt > 0, ξ

t
> 0

) = P(z,x)
(
Zt > 0 | ξ

t
> 0

)
P

(e)
x

(
ξ

t
> 0

)
∼ b(z, x)

Aγ
γ κ (γ )(0, γ )

eγ xÛ(γ )(x)t−3/2eξ (γ )t

as t → ∞, which yields the desired result. �

The following lemma tells us that, under the condition that �(λ)>C for C> 0, only a
Lévy random environment with a high infimum contributes substantially to the non-extinction
probability, and moreover that the mapping x 
→ b(z, x)eγ xÛ(γ )(x) on (0,∞) is increasing,
strictly positive, and bounded.

Lemma 7. Suppose that �(λ)>C for C> 0. Then, for δ ∈ (0, 1) and z, x> 0,

lim
y→∞ lim sup

t→∞
t3/2e−tξ (γ )

P(z,x)
(
Zt > 0, ξ

t−δ ≤ −y
) = 0.

Furthermore, for each z> 0 the mapping x 
→ b(z, x)eγ xÛ(γ )(x) on (0,∞) is increasing,
strictly positive, and bounded.

Proof. The proof of this lemma follows similar arguments to those used in the proofs of [2,
Lemma 6] and [14, Lemma 4.4]. More precisely, from (5) we deduce the following identity,
which holds for all t> 0:

P(z,x)
(
Zt > 0 | ξ) = 1 − exp{−zvt(0,∞, ξ − ξ0)}.

Similarly to [2, Lemma 6], since �(λ)>C we can bound the functional vt(0,∞, ξ − ξ0) in
terms of the exponential functional of the Lévy process ξ , i.e.

vt(0,∞, ξ − ξ0) ≤ (βCI0,t(β(ξ − ξ0)))−1/β,
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where we recall that Is,t(β(ξ − ξ0)) := ∫ t
s e−β(ξu−ξ0) du for t ≥ s ≥ 0. In other words, for 0<

δ < t, we deduce that

P(z,x)
(
Zt > 0, ξ

t−δ ≤ −y
) ≤ C(z)E(e)

x

[
F(I0,t(β(ξ − ξ0))); ξ

t−δ ≤ −y
]

= C(z)E(e)[F(I0,t(βξ )); τ−
−ỹ ≤ t − δ], (24)

where ỹ = y + x, τ−
−ỹ = inf{t ≥ 0: ξt ≤ −ỹ}, C(z) = z(βC)−1/β ∨ 1, and F(w) =

1 − exp{−z(βCw)−1/β}.
To upper bound the right-hand side of (24), we recall from [14, Lemma 4.4] that there exists

a positive constant C̃ such that

lim sup
t→∞

t3/2e−tξ (γ )
E

(e)[F(I0,t(βξ )); τ−
−ỹ ≤ t − δ] ≤ C̃e−ỹ + C̃e−(1−γ )ỹÛ(γ )(ỹ),

which clearly goes to 0 as y increases, since γ ∈ (0, 1) and Û(γ )(y) =O(y) as y goes to ∞.
Putting all pieces together allows us to deduce the first claim.

For the second claim, we begin by recalling from Section 2.1 that the renewal function is
finite and strictly positive on (0,∞). With this in hand, together with Theorem 1, we obtain
that the mapping x 
→ b(z, x)eγ xÛ(γ )(x) is strictly positive. Now, by Lemma 6, we have

lim
t→∞ t3/2e−ξ (γ )t

P(z,0)(Zt > 0, τ−−x > t) = lim
t→∞ t3/2e−ξ (γ )t

P(z,x)
(
Zt > 0, ξ

t
> 0

)
= b(z, x)

Aγ
γ κ (γ )(0, γ )

eγ xÛ(γ )(x),

which implies that the mapping x 
→ b(z, x)eγ xÛ(γ )(x) is increasing since the left-hand side of
the previous equality is increasing in x> 0. It remains to prove that the function is bounded. In
order to do so we first observe, from inequality (24) but with δ = 0, that

P(z,x)
(
Zt > 0, ξ

t
> 0

) ≤ C(z)E(e)[F(I0,t(βξ )); τ−−x > t] ≤ C(z)E(e)[F(I0,t(βξ ))].

Since F(w) ≤ C0w−α0/β for some C0 > 0 and α0 > 0, we use [14, Lemma 4.6] to deduce that
there exits a constant C1 > 0 such that

lim sup
t→∞

t3/2e−tξ (γ )
E

(e)[F(I0,t(βξ ))] ≤ C1,

which allows us to conclude that the mapping x 
→ b(z, x)eγ xÛ(γ )(x) is a bounded function.
This completes the proof. �

We are now ready to deduce our second main result. The proof of Theorem 2 follows the
same arguments as used in the proof of [2, Theorem 1.2]; we provide the proof for the sake of
completeness.

Proof of Theorem 2. Let z, x, ε > 0. We begin by noting from (2) that P(z,x)(Zt > 0) does not
depend on the initial value x of the Lévy process ξ . From Lemmas 6 and 7, we deduce that we
may choose y> 0 such that, for t sufficiently large,

P(z,x)
(
Zt > 0, ξ

t−δ ≤ −y
) ≤ εP(z,x)

(
Zt > 0, ξ

t−δ >−y
)
.

Further, since {Zt > 0} ⊂ {Zt−δ > 0} for t large, we deduce that

Pz(Zt > 0) = P(z,x)
(
Zt > 0, ξ

t−δ >−y
) + P(z,x)

(
Zt > 0, ξ

t−δ ≤ −y
)

≤ (1 + ε)P(z,x+y)
(
Zt−δ > 0, ξ

t−δ > 0
)
.
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In other words, for every ε > 0 there exists y′ > 0 such that

(1 − ε)t3/2e−ξ (γ )t
P(z,y′)

(
Zt > 0, ξ

t
> 0

) ≤ t3/2e−ξ (γ )t
Pz(Zt > 0)

≤ (1 + ε)t3/2e−ξ (γ )t
P(z,y′)

(
Zt−δ > 0, ξ t−δ > 0

)
.

Now, appealing to Lemma 6, we have

lim
t→∞ t3/2e−ξ (γ )t

P(z,y′)
(
Zt > 0, ξ

t
> 0

) = b(z, y′)
Aγ

γ κ (γ )(0, γ )
eγ y′Û(γ )(y′).

Hence, we obtain

(1 − ε)
Aγ

γ κ (γ )(0, γ )
b(z, y′)eγ y′Û(γ )(y′) ≤ lim inf

t→∞ t3/2e−tξ (γ )
Pz(Zt > 0)

≤ (1 + ε)
Aγ

γ κ (γ )(0, γ )
b(z, y′)eγ y′Û(γ )(y′)e−ξ (γ )δ,

where y′ may depend on ε and z. Next, we choose y′ in such a way that it goes to infinity as ε
goes to 0. In other words, for any y′ = yε(z) which goes to ∞ as ε goes to 0, we have

0< (1 − ε)
Aγ

γ κ (γ )(0, γ )
b(z, yε(z))eγ yε(z)Û(γ )(yε(z))

≤ lim inf
t→∞ t3/2e−ξ (γ )t

Pz(Zt > 0)

≤ (1 + ε)
Aγ

γ κ (γ )(0, γ )
b(z, yε(z))eγ yε(z)Û(γ )(yε(z))e−ξ (γ )δ <∞, (25)

where the strict positivity and finiteness in the previous inequality follows from Lemma 7.
Now, letting ε→ 0, we get

0< lim sup
ε→0

(1 − ε)
Aγ

γ κ (γ )(0, γ )
b(z, yε(z))eγ yε(z)Û(γ )(yε(z))

≤ lim inf
t→∞ t3/2e−ξ (γ )t

Pz(Zt > 0).

Similarly, by first taking δ to 0 and then ε tending to 0 in (25), we obtain

lim inf
t→∞ t3/2e−ξ (γ )t

Pz(Zt > 0) ≤ lim inf
ε→0

(1 + ε)
Aγ

γ κ (γ )(0, γ )
b(z, yε(z))eγ yε(z)U(γ )(yε(z))<∞,

where in the last inequality we used that x 
→ b(z, x)eγ xU(γ )(x) is bounded, see Lemma 7.
Therefore, putting all pieces together, we see that both the inferior and superior limits coincide.
In other words, the following limit exists:

B(z) := Aγ
γ κ (γ )(0, γ )

lim
ε→0

b(z, yε(z))eγ yε(z)Û(γ )(yε(z)) ∈ (0,∞).

Moreover, using this together with (25), we get lim
t→∞ t3/2e−ξ (γ )t

Pz(Zt > 0) =B(z), which

concludes the proof. �
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2.4. The stable case

Here, we compute the constant B(z) in the stable case and verify that it coincides with the
constant that appears in [14, Theorem 5.1]. To this end, we recall that in the stable case we
have ψ0(λ) = Cλ1+β with β ∈ (0, 1) and C> 0. Moreover, the backward differential equation
(4) can be solved explicitly (see, e.g., [11, Section 5]), i.e., for any λ≥ 0 and s ∈ [0, t],

vt(s, λ, ξ ) = (λ−β + βCIs,t(βξ ))−1/β, (26)

where Is,t(βξ ) denotes the exponential functional of the Lévy process βξ , see (9).
Next, we observe that, for any z, x> 0, the constant b(z, x) defined in Theorem 1 can be

rewritten as

b(z, x) = 1 − lim
λ→∞ lim

s→∞ γ κ (γ )(0, γ )
∫ ∞

0
e−γ yU(γ )(y)Rs,λ(z, x, y) dy,

where

Rs,λ(z, x, y) :=
∫ 1

0

∫ ∞

0
wu

P
(γ ),↑
(z,x) (Us ∈ du)P(e,γ ),↓

−y (Ŵs(λ) ∈ dw).

In order to find an explicit expression for the previous double integral we use [2, Proposition
3.3], which claims that, for any z, x> 0 and θ ≥ 0,

E
(γ ),↑
(z,x) [ exp{−θZse

−ξs}] =E
(e,γ ),↑
x [ exp{−zvs(0, θe−x, ξ − x)}].

It then follows that

Rs,λ(z, x, y) =
∫ 1

0
E

(γ ),↑
(z,x)

[
wUs

]
P

(e,γ ),↓
−y

(
Ŵs(λ) ∈ dw

)
=

∫ 1

0
E

(γ ),↑
(z,x) [ exp{log (w)Zse

−ξs}]P(e,γ ),↓
−y

(
Ŵs(λ) ∈ dw

)
=

∫ 1

0
E

(e,γ ),↑
x [ exp{−zvs(0,− log (w)e−x, ξ − x)}]P(e,γ ),↓

−y

(
Ŵs(λ) ∈ dw

)
=

∫ ∞

0

∫ ∞

0
exp{−ze−x(βCw + βCu)−1/β}P(γ ),↑

(z,x) (I0,∞(βξ ) ∈ dw)

P
(e,γ ),↓
−y (I0,∞(βξ̂ ) ∈ du),

where in the last equality we used (26). Thus, putting all the pieces together and appealing to
the dominated convergence theorem, we deduce that

b(z, x) = 1 − γ κ (γ )(0, γ )
∫ ∞

0
e−γ yU(γ )(y) lim

λ→∞ lim
s→∞ Rs,λ(z, x, y) dy

= γ κ (γ )(0, γ )
∫ ∞

0
e−γ yU(γ )(y)Gz,x(y) dy,

where Gz,x(·) is as in (10). Therefore, we have that the limiting constant in the stable case is
given by

B(z) := Aγ
γ κ (γ )(0, γ )

lim
x→∞ b(z, x)eγ xÛ(γ )(x) = Aγ lim

x→∞ eγ xÛ(γ )(x)
∫ ∞

0
e−γ yU(γ )(y)Gz,x(y) dy,

as expected.
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