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We present an Euler–Lagrange approach for simulating magneto-Archimedes separation of
almost neutrally buoyant spherical particles in the flow of a paramagnetic liquid, which is
of direct relevance for separating different types of plastic by magnetic density separation.
A four-way coupled point-particle method is employed where all relevant interactions
between an external magnetic field, a magnetic fluid and discrete immersed particles are
taken into account. Particle–particle interaction is modelled by a hard-sphere collision
model which takes the interstitial fluid effects into account. First, the motion of rigid
spherical particles in a paramagnetic liquid is studied in single- and two-particle systems.
We find good agreements between our numerical results and experiments performed in
a paramagnetic liquid exposed to a non-homogeneous magnetic field, also in the case
of two colliding particles. Next, we investigate the magneto-Archimedes separation of
particles with different mass densities in many-particle systems interacting with the fluid.
Our results reveal that history effects and interparticle interactions significantly influence
the levitation dynamics of particles and have a detrimental impact on the separation
performance. We also investigate the effect of particle size and initial distribution on
the separation performance. Results show that a reduction in the particle size from 4
to 2 mm leads to a 40 % increase in the separation time. Moreover, preseparation of
particles into two groups of light and heavy particles decreases the separation time
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by 33 %. The presented method is shown to be a robust and efficient computational
framework for the investigation of particle-laden flows of magnetically responsive fluids.

Key words: magnetic fluids, particle/fluid flow, computational methods

1. Introduction

With the recent proliferation of single-life cycle plastic products, efficient plastic recycling
technologies play a crucial role in environmental and economic sustainability plans
(Geyer, Jambeck & Law 2017). Most of the commonly used recycling methods include
shredding mixtures of different types of plastics followed by a melting and pelletizing
process that transforms the plastic waste into new lower-value plastic products. To steer
away from plastic downcycling, high-resolution plastic sorting systems are required which
are capable of segregation of plastic waste into fractions, which are homogeneous with
respect to type and colour. Mass density-based mechanical separation methods such as the
sink–float technique have been shown to be efficient for the separation of polyolefins from
a plastic waste stream (Shent, Pugh & Forssberg 1999). However, continuous one-step
separation of multiple types of polymers cannot be achieved by the conventional sink–float
techniques. In contrast, magnetic density separation (MDS) is a promising high-resolution
mass density-based separation technique which incorporates a magnetically responsive
liquid and magnets to separate particles by means of magneto-Archimedes levitation
(Bakker, Rem & Fraunholcz 2009; Rem et al. 2013; Luciani et al. 2015; Zhao et al.
2018). Besides end-of-life plastics, MDS has also successfully been applied to separate
ores, non-magnetic metals (Khalafalla & Reimers 1973; Shimoiizaka et al. 1980; Smolkin
et al. 1992) and toxic wastes (Odenbach 1998). The present work aims at modelling
particle-laden flows in magnetic density separators to separate plastic particles of different
mass densities.

Since the invention of ferrofluids in the 1960s (Papell 1965), the feasibility of the
application of magnetically responsive liquids in technology and medicine has raised the
interest in magnetic liquids. A ferrofluid is a stable colloidal suspension of ferrimagnetic
or ferromagnetic nanoparticles in a carrier liquid. Due to their magnetic properties, these
liquids react to an external magnetic field. An external magnetic field gradient generates
an additional body force that alters the pressure inside the liquid. Saturated molecular
solutions of rare-earth salts such as manganese(II) chloride have magnetic properties
similar to ferrofluids. The Langevin paramagnetic susceptibility of such paramagnetic
solutions is approximately five orders of magnitude lower than that of synthetic colloidal
ferrofluids (Blums, Cebers & Maiorov 2010). Therefore, to generate forces of the same
order of magnitude, stronger magnetic fields are required. However, the advantageous
property of such solutions compared with a ferrofluid is their transparency, which
allows optical measurement techniques such as particle tracking velocimetry (PTV).
Liquid oxygen also exhibits paramagnetic behaviour similar to rare-earth salt solutions.
However, its application is limited as sustaining oxygen in liquid phase requires cryogenic
temperatures (Catherall et al. 2003).

Neuringer & Rosensweig were the firsts to establish the theory for the motion of
magnetically polarizable fluids, ferrohydrodynamics (Neuringer & Rosensweig 1964). The
theory was initially based on the assumption of a single-phase magnetizable medium
with the magnetization in equilibrium (quasi-equilibrium ferrohydrodynamics). Later,
the effects of the non-equilibrium process of magnetic relaxation and the moment of
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Figure 1. A schematic of a magnetic density separator. Different markers (colours) represent different
mass densities.

ponderomotive forces were also included (Shliomis 1974, 2002; Rosensweig 2013). In his
book, Rosensweig addressed magnetic levitation of non-magnetic particles in a ferrofluid,
a phenomenon he referred to as magnetic levitation of the first kind. Under the assumption
of quasi-equilibrium fluid magnetization, he derived an expression for the magnetic
buoyancy force acting on a small non-magnetic spherical particle immersed in a magnetic
liquid (Rosensweig 1966).

Rosensweig’s observation of magnetic levitation of a solid object inside a
ferrofluid triggered the idea of mass density-based separation of materials through
magneto-Archimedes levitation. Since then, papers have been published on magneto-
Archimedes levitation of particles in paramagnetic and superparamagnetic liquids (Kaiser,
Mir & Curtis 1976; Dunne, Hilton & Coey 2007; Mirica et al. 2009, 2010; Zhu, Marrero
& Mao 2010; Akiyama & Morishima 2011; Duplat & Mailfert 2013; Liu, Leaper & Miles
2014; Gao et al. 2019). When a non-magnetic body immersed in a magnetic fluid is exposed
to a non-uniform magnetic field, due to the nonlinear pressure distribution inside the
liquid, the buoyancy force acting on the body is dependent on the position of the particle.
An immersed body tends to travel to the point where the vertical component of the total
buoyancy force cancels the particle weight, making the vertical position of this equilibrium
point dependent on the mass density of the body only. Magnetic density separation exploits
this principle to characterize subpopulations with different mass densities and separate
them from mixtures.

Magnetic density separation of end-of-life plastic is carried out by immersing a mixture
of shredded plastic waste in a magnetically responsive liquid exposed to a magnetic field
generated by properly designed magnets (Bakker et al. 2009; Hu 2014; Luciani et al. 2015;
Serranti et al. 2015). A continuous separation process is achieved by generating a flow
of magnetic liquid through the magnetic field. Magnets used in MDS are designed such
that the magnitude of the induced magnetic field has a gradient perpendicular to the flow
direction and parallel to the gravitational force. This will cause the immersed particles to
be sorted in different mass density fractions which are levitated at different heights. Once
a mixture of particles is injected into the flow at the upstream end of the channel, sorted
fractions can be recovered by employing separator plates mounted at different heights
at the downstream end. Incorporating two magnets located at the top and bottom of the
system enables separation of particles both lighter and heavier than the carrier liquid.
A schematic of a typical MDS system for separation of waste plastic is shown in figure 1.

Odenbach (1998) addressed the possibilities and challenges in the commercial use of
MDS. In the design of an MDS system, one has to consider not only the properties of the
magnetic field and the magnetic liquid, but also the interaction of the dispersed particles
with the magnetofluidic system, and the interparticle interactions. The particle separation
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time, defined as the time required for all particles to reach their corresponding equilibrium
positions is an important MDS design parameter. The shorter the particle separation time,
the shorter will be the time required for the particles to be exposed to the magnetic
field. Decreasing the particle separation time can lead to an increase in the throughput
of particles and therefore, an increase in the efficiency of an MDS system. The particle
separation time is in turn dependent on several parameters such as the particle size and
shape, the magnetic fluid viscosity and its magnetization, and the external magnetic field.
At appreciable volume fractions, the particle separation time can be increased due to the
interparticle collisions.

The turbulence level in the separation channel is another crucial parameter in MDS (Hu
2014). Maintaining a low level of turbulence in the separation channel is highly favourable,
as turbulence level and mixing are intimately connected. A high turbulence level leads to
an enhanced mixing, which can hamper the separation process. In new generations of
MDS systems, measures have been taken to reduce the turbulence level in the separation
chamber. These measures include the use of flow laminators such as honeycombs and
screens at the upstream end of the separation channel and incorporation of moving walls
(Serranti et al. 2015). The former decreases the upstream flow velocity fluctuations and
vortices, and the latter aims to prevent the formation of boundary layers.

Design optimization of magnetic density separators requires a fundamental
understanding of the collective motion of particles in a magnetic liquid. This requires the
solution of many-particle problems that are coupled to a flow problem which is influenced
by an external magnetic field. In this work, we present and employ a carefully chosen
Euler–Lagrange approach to simulate the motion of particles in paramagnetic liquids.

Euler–Lagrange simulations are usually categorized into two families: particle-resolved
simulations and point-particle simulations. Due to the prohibitively large computational
resources required for particle-resolved simulations, we use a point-particle method,
by incorporating appropriate models for forces and torques acting on the particles
(Kuerten 2016). The feedback forces and torques from particle to fluid are treated
by introducing local source terms to the time-dependent incompressible Navier–Stokes
equation of the fluid, which is solved with a pseudo-spectral method. We combine
the point-particle approach with experimental observations to investigate the particle
dynamics in paramagnetic liquids. The dynamics of a single particle as it moves towards
its equilibrium position in a magnetic liquid is the basis for the behaviour of many-particle
systems. A fundamental understanding of the motion of a single particle in a magnetic
liquid is therefore crucial to understanding the collective motion of particles in larger
magnetofluidic systems. Furthermore, the existence and stability of an equilibrium at
which a particle is eventually levitated provides a useful framework for the investigation
of particle motion in liquids within the Stokes regime (near the equilibrium point) and
beyond it (farther from the equilibrium) where advective inertial forces are important.
The motion of spherical and non-spherical particles in non-magnetic fluids has been the
subject of several numerical and experimental investigations, see for instance Jenny, Dušek
& Bouchet (2004), Horowitz & Williamson (2010), Elghobashi & Truesdell (1993) and
Ern et al. (2012), but only a limited number of studies have addressed the dynamics of
particles (drops) in magnetic liquids (Ueno, Higashitani & Kamiyama 1995; Korlie et al.
2008; Ghosh et al. 2020). When a particle is allowed to move freely under the combined
effect of the magnetic buoyancy force and gravity, new features can occur in the particle
motion. Singh, Das & Das (2018) used a one-fluid numerical model to explore the centre
of mass and interface dynamics of an almost neutrally buoyant droplet (mass density ratio
of 1.15) levitating in a ferrofluid. By approximating the vertical motion of the droplet
by a simple dynamical model, the authors showed that depending on the parameters of

910 A52-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
01

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1001


DNS of magneto-Archimedes separation

the considered magnetofluidic set-up, the behaviour of vertical droplet motion can be
monotonic or oscillating.

In the present work, we combine experimental observations with numerical simulations
to investigate the motion of rigid non-magnetic spherical particles within the
particle-to-fluid mass density ratio range [0.7, 1.3] in a paramagnetic liquid. Our numerical
model employs a four-way coupled point-particle approach to represent both the fluid
flow and the motion of the inertial particles. The aim of this paper is three-fold. First,
the one-dimensional dynamics of a single spherical particle moving in a paramagnetic
liquid exposed to a magnetic field gradient is addressed. Through a priori mathematical
analysis, the nature of the motion of a single spherical particle in a paramagnetic liquid
is parameterized. Solutions of the governing equation of the translational motion of a
spherical particle in a paramagnetic liquid are compared with experimental observations.
Second, the effect of collisions in two-particle systems is investigated. We validate our
numerical model by comparison with results of PTV experiments in one- and two-particle
systems. Finally, many-particle systems are numerically studied. Parametric studies are
performed to investigate the effect of the incorporation of the Basset history force, two-way
coupling and collisions in a practical MDS case. Next, the effect of particle size and initial
particle distribution on the separation efficiency is investigated.

The rest of the paper is organized as follows. We introduce the mathematical model for
the problem in § 2. With an introduction to the hydrodynamics of magnetically responsive
liquids in § 3, we address the concept of apparent mass density and buoyancy force in
magnetic liquids. Different elements of the model, including the magnetic field, magnetic
liquid and the immersed particles are discussed. The numerical solution approach and
the experimental set-up are described in §§ 3 and 4, respectively. In § 5 first, the vertical
motion of an individual spherical particle in a magnetic liquid is parameterized. Next,
the numerical results are validated against experimental observations in single- and
two-particle systems. Finally, the separation performance of many-particle systems is
investigated numerically. Concluding remarks and future directions are addressed in § 6.

2. Mathematical description

In this section, we present the mathematical model for the incompressible isothermal
flow of a magnetically responsive fluid laden with spherical particles. The considered
system consists of three elements: a magnetic liquid considered as a continuous phase
which is described by an Eulerian approach, discrete particles which are described in
a Lagrangian way, and a steady external magnetic field. The immersed non-magnetic
particles in the magnetized liquid are assumed to be rigid spheres which interact with
each other through collisions. The discrete particles and the continuous phase are coupled
by means of two-way momentum transfer. The particles are modelled as point particles,
and the interaction between fluid and particles is modelled by using correlations for all
relevant forces and torques. For the equation of motion of the magnetic liquid, we follow
the quasi-equilibrium theory of Rosensweig (2013), where fluid magnetization is assumed
to be in local equilibrium with the magnetic field, and M × H = 0, where H is the
magnetic field vector and M is the fluid magnetization vector. This assumption is valid
for paramagnetic salt solutions. In such liquids, due to the small size of magnetized fluid
elements (ionized molecules), the coupling between the magnetic and mechanical degrees
of freedom of the molecules is very small, and the magnetization relaxation to the direction
of H is almost instantaneous (Shliomis 2002).

We first introduce the governing equations of motion of a paramagnetic liquid exposed
to a magnetic field gradient in § 2.1. In § 2.2, the magnetic fields considered in this
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study are presented. Spherical non-magnetic particles moving in a paramagnetic liquid
experience various static and dynamic forces. In § 2.3 we discuss the buoyancy force in
a magnetized liquid as the driving force for the particle levitation motion, and introduce
the concept of apparent mass density. The equations describing the motion of particles in
a paramagnetic liquid are presented in § 2.4, where all relevant fluid–particle interaction
mechanisms are addressed.

2.1. Continuous phase
The motion of a magnetically responsive fluid in a magnetic field is influenced by a
Kelvin body force which arises from the interaction between the local magnetic field
and the molecular magnetic moments characterized by the fluid magnetization. This force
is in addition to the gravitational body force acting on the fluid. Under the assumption
of equilibrium magnetization, the governing equations of the incompressible flow of a
Newtonian magnetically responsive fluid can be written as (Rosensweig 2013)

ρf

(
∂u
∂t

+ (u · ∇)u
)

= −∇p∗ + μ∇2u + F inter, (2.1)

∇ · u = 0, (2.2)

where u denotes the fluid velocity,μ is the dynamic viscosity of the fluid and ρf is the mass
density of the fluid. Here p∗ represents a reduced pressure which accounts for the effects
of the gravitational and the magnetic body forces. With gravity acting in the direction of
−ey, this reduced pressure is defined as

p∗ = p − pstatic = p + ρf gy − μ0

∫ H

0
M dH, (2.3)

where M = |M | is the magnitude of the fluid magnetization, H = |H | is the magnetic
field strength and μ0 denotes the permeability of vacuum. The term F inter in (2.1) is the
fluid–particle coupling term which takes care of the momentum transfer from the discrete
particles to the fluid. The flow field is obtained by solving (2.1) and (2.2) in a cubic domain
with dimensions Lx × Ly × Lz, where x, y and z denote the streamwise, wall-normal and
spanwise directions, respectively.

The magnetic liquid considered in this study is an aqueous paramagnetic fluid (MnCl2
salt solution) with a linear magnetization behaviour (Rosensweig 2013). If we let χ denote
the magnetic susceptibility of the liquid, the magnetization vector field is defined as

M = χH . (2.4)

Both magnetic susceptibility and dynamic viscosity of paramagnetic salt solutions are
dependent on the concentration of the solution (Andres 1976).

2.2. Magnetic field
In this work, we consider one-dimensional magnetic fields which are uniform in planes
parallel to the surface of the magnet (∂H/∂x = ∂H/∂z = 0), and decay exponentially with
the vertical distance from the magnet surface. Such magnetic fields can be generated
by incorporating a specially designed array of alternately rotating magnetic poles
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(Shute et al. 2000; Fernow 2016; Polinder & Rem 2017). In the regions sufficiently far from
the magnet edges, the generated magnetic field by such configurations closely follows

H = H( y)ey. (2.5)

For a magnet located at the bottom of the computational domain such that its upper surface
is located at y = −L, the magnetic field strength reads

H( y) = H0e−π(L+y)/p, y ∈ [−L,∞], (2.6)

where H0 is the magnetic field strength at the surface of the magnet and p denotes the
pole size. Expression (2.6) is the solution of the Maxwell equation on the strong side of
an infinitely long Halbach array with continuously varying magnetization (Halbach 1981).
The reader is referred to Mallinson (1973) for the derivation. If the magnet is located at the
top of the computational domain with its lower (strong) surface at y = +L, the magnetic
field strength follows

H( y) = H0e−π(L−y)/p, y ∈ [−∞, L]. (2.7)

In the case where two identical magnets are located at the top and bottom of the
computational domain with their strong sides facing each other, the magnitude of the
magnetic field is assumed to be a linear superposition of the magnetic fields corresponding
to each magnet, as follows:

H( y) = H0

(
e−π(L+y)/p + e−π(L−y)/p

)
, y ∈ [−L, L]. (2.8)

For the sake of simplicity, in § 3 we consider a one-magnet configuration with a magnet
located at the bottom of the domain and its magnetic field strength following (2.6). For
simulations of many-particle systems discussed in § 4, a two-magnet configuration with a
magnetic field strength given by (2.8) is considered.

2.3. Buoyancy in magnetic liquids
Let us now consider a situation when a non-magnetic body with volume Vi is immersed
in a magnetic liquid exposed to an arbitrary magnetic field, as shown in figure 2.The
buoyancy force acting on the body can be calculated by applying the Gauss divergence
theorem to the surface integral of the static pressure at the interface s, as follows:

F B = −
∫

s
pstaticn ds = −

∫
Vi

∇pstatic dV

=
∫

Vi

(ρf gey − μ0M∇H) dV. (2.9)

Under the assumption of a constant magnetic force within the volume of the immersed
body (small body), the term M∇H can be assumed to be constant within the volume Vi,
and the buoyancy force can be approximated by

F B,i ≈ ρf Vigey − μ0ViM∇H. (2.10)

The first term in (2.10) is the conventional gravitational buoyancy force (also known as
the Archimedes force) which is constant throughout the liquid. The second term is the
magnetic contribution to the buoyancy force we refer to as the ‘magnetic buoyancy force’.
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|H| = constant

y
n

Vi

ds

Figure 2. A particle immersed in a magnetic liquid exposed to a magnetic field gradient.

If the magnets are designed such that the magnetic field gradient is parallel to the
gravitational force, the combined magnetic and gravitational buoyancy force reads

F B,i ≈
(
ρf g − μ0M

dH
dy

)
V iey = ρf ,aVigey, (2.11)

where

ρf ,a ≈ ρf −
(
μ0

g

)
M

dH
dy

(2.12)

is denoted as the ‘apparent fluid mass density’. If it exists, the equilibrium position of an
immersed body is the position where the magnitude of the total buoyancy force is equal to
the magnitude of the opposing gravitational body force acting on the body. At this position,
the local apparent mass density of the fluid is equal to the mass density of the body. For
a fixed magnetofluidic system, the equilibrium position of a body is only dependent on its
mass density. Therefore, by a careful adjustment of the magnetic field and the magnetic
fluid properties, a gradient of apparent mass density can be generated wherein particles in
a specific mass density range can be separated.

The apparent mass density profile of a paramagnetic liquid exposed to a magnetic field
of a bottom-magnet system given by (2.6) reads

ρf ,a = ρf + πμ0χH2
0

pg
exp
(−2π(L + y)

p

)
. (2.13)

For a top-magnet configuration where the magnetic field follows (2.7) apparent fluid mass
density is

ρf ,a = ρf − πμ0χH2
0

pg
exp
(−2π(L − y)

p

)
(2.14)

and for a two-magnet configuration with a magnetic field given by (2.8), the apparent mass
density of the liquid reads

ρf ,a = ρf − 2πμ0χH2
0

pg
exp
(

−2πL
p

)
sinh

(
2πy

p

)
. (2.15)

It follows directly from (2.13) and (2.14) that the maximum change in the apparent mass
density of the fluid for a one-magnet system is

|�ρf ,a|max = |ρf ,a − ρf |max = πμ0χH2
0

pg
, (2.16)
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and from (2.15), for a two-magnet configuration,

|�ρf ,a|max = |ρf ,a − ρf |max = πμ0χH2
0

pg

∣∣∣∣1 − exp
(−4πL

p

)∣∣∣∣ . (2.17)

The local gradient of the apparent mass density in the magnetic liquid is an indication of
the separation resolution in an MDS system, as it determines the local separation distance
of two consecutive mass density groups. The maximum gradient of apparent mass density
for a one-magnet system is

max
(

dρf ,a

dy

)
= 2π2μ0χH2

0
p2g

. (2.18)

For a two-magnet configuration, the maximum gradient of apparent mass density is

max
(

dρf ,a

dy

)
= 4π2μ0χH2

0
p2g

(
1 + exp

(−4πL
p

))
. (2.19)

2.4. Particle phase

2.4.1. Equation of motion
The motion of rigid spherical particles immersed in a magnetically responsive liquid
is described by solving the translational and rotational equations of motion for each
particle where contributions from various fluid–solid interaction mechanisms are taken
into account. The translational motion of particles is based on an extension of the equation
of motion derived by Maxey & Riley (1983). It is well known that for almost neutrally
buoyant particles the contributions of the Basset history force, the added mass force and
the force due to the undisturbed velocity field to the motion of the particle cannot be
neglected (Kuerten 2016). The included forces in the Maxey–Riley equation are the force
due to the undisturbed velocity field, F U,i, steady viscous drag force, F D,i, added mass
force, F AM,i, history force, F H,i, gravitational body force, F G,i, and the buoyancy force,
F B,i.

For the drag coefficient, we consider the widely used correlation of Schiller & Naumann
(1933) for a non-creeping flow. The history force correction to the drag is based on the
classic Basset kernel; although correlations for history force for non-creeping flows are
derived (Kim, Elghobashi & Sirignano 1998). In this work, we neglect the finite Reynolds
number effects on the history kernel. The Faxén corrections for non-uniform flows and the
lift force are not considered here as the background flow is assumed to be uniform.

The trajectory of each particle is obtained by solving the following set of differential
equations:

dxi

dt
= vi, (2.20)

dvi

dt
= 1

mi

(∑
F i + F (c)i

)
, (2.21)
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with

∑
F i = ρf Vi

Dui

Dt︸ ︷︷ ︸
F U,i

+ ρp,iVi
(ui − vi)

τt,i

(
1 + 0.15Re0.687

t,i

)
︸ ︷︷ ︸

F D,i

+ 3
2

(
πρfμ

)1/2 d2
p

⎡
⎢⎣∫ t

−∞

d
dτ
(ui − vi)

(t − τ)1/2
dτ

⎤
⎥⎦

︸ ︷︷ ︸
F H,i

+ 1
2
ρf Vi

(
Dui

Dt
− dvi

dt

)
︸ ︷︷ ︸

F AM,i

− ρp,iVigey︸ ︷︷ ︸
F G,i

+ ρf ,aVigey︸ ︷︷ ︸
F B,i

, (2.22)

where Ret,i = dp|ui − vi|/ν denotes the particle translational Reynolds number, vi is the
particle translational velocity and ui is the undisturbed fluid velocity at the position of
the particle. Here τt,i = ρpd2

p/18μ is the particle translational relaxation time and F (c)i
represents the force on a particle due to a collision with another particle or a wall.

Special care must be taken in evaluating the Basset history term when the relative
particle–fluid velocity undergoes a step change. The derivation of the Basset history force
is based on the assumption that the particle is present in the fluid at all times. The case
where the initial particle velocity is not equal to the initial fluid velocity at the position of
the particle is equivalent to the case where the particle is in a stagnant fluid for t ∈ (−∞, 0)
and the fluid velocity undergoes a step change at t = 0 (Kim et al. 1998). Under such
circumstance, the Basset integral can be written as

∫ t

−∞

d
dτ
(ui − vi)

(t − τ)1/2
dτ =

∫ t

t+s

d
dτ
(ui − vi)

(t − τ)1/2
dτ + ui(t+s )− vi(t+s )− ui(t−s )+ vi(t−s )

(t − ts)1/2
,

(2.23)

where ts = max{0, tc} is the time at which the step change occurs. A step change can occur
in simulations with non-zero velocity difference between the particle and the fluid at t = 0,
or during a particle–particle or particle–wall collision at t = tc. The second term on the
right-hand side of (2.23) is associated with such step changes in the particle–fluid relative
velocity. At a collision instance, tc, the post-collision history integral can be written as

∫ t

−∞

d
dτ
(ui − vi)

(t − τ)1/2
dτ =

∫ t

t+c

d
dτ
(ui − vi)

(t − τ)1/2
dτ + ui(t+c )− vi(t+c )− ui(t−c )+ vi(t−c )

(t − tc)1/2
.

(2.24)

Under the assumption of an infinitesimally small collision duration, the fluid velocity
remains constant; ui(t−c ) = ui(t+c ). After each collision, the Basset integral (the
precollision history) can be set to zero and the post-collision Basset history can be
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calculated as

Fh = 3
2

(
πρfμ

)1/2 d2
i

⎡
⎢⎣∫ t

tc

d
dτ
(ui − vi)

(t − τ)1/2
dτ + vi(t−c )− vi(t+c )

(t − tc)1/2

⎤
⎥⎦ . (2.25)

Inclusion of the Basset history force in (2.22) presents a numerical difficulty which mainly
arises from the need to store the relative particle acceleration over the entire history of
particle motion. Section 3 addresses the employed numerical approximation to overcome
this difficulty.

The rotational motion of the dispersed phase is based on the theoretical equation of
Dennis, Singh & Ingham (1980) for the steady viscous torque against particle rotation.
The angular velocity of the particles is obtained by solving

dΩ i

dt
= 1

Ii

(
T i + T (c)i

)
, (2.26)

where

T i = −CT
1
2
ρp

(
dp

2

)5 ∣∣∣∣12ωi − Ω i

∣∣∣∣
(

1
2
ωi − Ω i

)
, (2.27)

with

CT =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

64π

Rer,i
, if Rer,i ≤ 32,

12.9√
Rer,i

+ 128.4
Rer,i

if 32 < Rer,i < 1000,
(2.28)

where Rer,i = d2
p|(ωi − Ω i)/2|/ν is the rotational Reynolds number, Ω i represents the

particle angular velocity, ωi is the undisturbed fluid vorticity at the position of the particle,
and Ii = 2(mi(dp/2)2)/5 is the moment of inertia. Here T (c)i is the torque on a particle due
to a collision with a particle or a wall. It should be noted that considering the low particle
volume fraction (maximum 0.02) in the cases addressed in this study, the torque coupling
between the particles and the liquid is assumed to be one-way, i.e. the feedback torque on
the liquid is neglected.

2.4.2. Collisions
The interparticle and particle–wall interactions are treated by a hard-sphere collision
model which closely follows the method of Hoomans et al. (1996). The collision time
is assumed to be infinitesimally small, and the precollision and post-collision translational
and angular velocities are explicitly related through normal and tangential restitution
coefficients and a dynamic friction factor. Consider two colliding particles with centre
position vectors xa and xb and contact point c. The normal unit vector at the contact point c
is n = (xa − xb)/|xa − xb|. If we let the superscripts + and − represent the post-collision
and precollision properties, respectively, the tangential unit vector at the contact point is
t = (v−

ab − n(v−
ab · n))/|v−

ab − n(v−
ab · n)|, where vab = va,c − vb,c is the particle relative

velocity at the contact point. The post-collision translational and rotational velocities can
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be derived according to the following equations:

ma
(
v+

a − v−
a
) = −mb

(
v−

b − v+
b
) = J ,

Ia

Ra

(
ω+

a − ω−
a
) = Ib

Rb

(
ω+

b − ω−
b
) = −n × J ,

⎫⎪⎬
⎪⎭ (2.29)

where R = dp/2 is the particle radius, m is the particle mass and J is the impulse vector.
The normal component of the impulse vector is given by

Jn = −(1 + en,eff )mabv
−
ab · n, (2.30)

where en,eff = −v−
ab · n/v+

ab · n denotes the effective coefficient of normal restitution, and
mab is the reduced mass defined as mab = mamb/(ma + mb). For the tangential component
of the impulse vector a distinction can be made based on the type of collision being either
‘sticking’ or ‘sliding’, as follows:

Jt =
⎧⎨
⎩−2

7

(
1 + et,eff

)
mabvab,0 · t if μf Jn ≥ 2

7

(
1 + et,eff

)
mabvab,0 · t (stick),

−μf Jn otherwise (slide),
(2.31)

where et,eff = −v−
ab · t/v+

ab · t is the effective coefficient of tangential restitution and μf
is the coefficient of dynamic friction.

From the modelling viewpoint, appropriate values for the coefficients of restitution and
friction coefficient are of great importance in the prediction of the post-collision dynamics.
When interparticle or particle–wall collisions occur in the absence of a viscous fluid
(dry collisions), the kinetic energy of the particles is dissipated purely due to the contact
mechanism. In a viscous fluid, however, the collision process is influenced by the viscous
and inertial interactions of the particle with the fluid. To account for the hydrodynamic
effects of the surrounding fluid on the normal component of motion during a collision,
an effective coefficient of normal restitution is introduced (Davis, Serayssol & Hinch
1986; Gondret, Lance & Petit 2002). The normal component of post-collision velocity of
particles during a non-head-on collision follows the behaviour of a head-on collision (Yang
& Hunt 2006). Regardless of the type of collision (oblique or head-on), the effective (wet)
normal coefficient of restitution increases with the binary normal Stokes number defined
as

Stn = 2
9

ρ∗
p

ρf
Rerel, (2.32)

where ρ∗
p = (1/ρp,1 + 1/ρp,2)

−1 is a reduced particle mass density, and Rerel =
dpup,n,rel/ν denotes the relative Reynolds number based on the normal component of
the particle relative velocity up,n,rel. Izard, Bonometti & Lacaze (2014) proposed a model
which can capture the experimentally observed effective coefficient of normal restitution
for the range of Stokes number 0 < Stn < 106. This correlation relates the effective normal
coefficient of restitution to the corresponding dry coefficient, the Stokes number, and the
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effective particle roughness height. For a particle–particle collision this correlation reads

en,eff

en,dry
=
(

1 + 1
Stn

ln
(

2ηe

dp

))
exp

⎛
⎜⎜⎜⎜⎝− π/2√

Stn + ln
(

2ηe

dp

)
⎞
⎟⎟⎟⎟⎠ , (2.33)

where ηe is an effective average particle surface roughness height. The qualitative
behaviour of immersed oblique collisions is similar to that of dry collisions. The effective
values for coefficients of dynamic friction and tangential restitution depend on the
considered fluid–particle system and the relative velocity of the particles (Joseph & Hunt
2004). According to Walton’s hard-sphere model (Walton 1993), the dynamic friction
coefficient and the tangential coefficient of restitution can be obtained by plotting the
tangent of rebound angle as a function of tangent of incidence angle. These two tangents
are given by

Ψin =
(
v+

ab · t
)(

v−
ab · n

) ,
Ψout =

(
v−

ab · t
)(

v−
ab · n

) ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.34)

for the sticking collisions, Ψout = −et,effΨin, and for sliding collisions, Ψout = Ψin −
(7/2)μeff (1 + en,eff ). In a similar manner, in § 5.2.2 we will determine the effective
(lubricated) dynamic friction coefficient, μeff , and effective coefficient of tangential
restitution, et,eff , by performing several particle–particle collision experiments at different
incidence angles.

3. Numerical approach

3.1. Fluid phase
The flow field is obtained by reducing (2.1) and (2.2) to a fourth-order equation
for wall-normal velocity component and a second-order equation for the wall-normal
component of vorticity. The equations are discretized in space by using a pseudo-spectral
method. Our method incorporates a Fourier–Galerkin approach in the periodic directions,
x and z, and a Chebyshev-tau method in the wall-normal direction, y. The temporal
discretization of the linear terms is carried out by a three-stage Runge–Kutta scheme, and
the nonlinear terms are advanced in time by the Crank-Nicolson method. For details of the
numerical approach, the reader is referred to Kuerten, Van der Geld & Geurts (2011).

3.2. Particle phase

3.2.1. Time integration
The equations of translational and rotational motion of spherical particles (2.20), (2.21)
and (2.26) are discretized in time using a forward Euler method. Our explicit scheme takes
the partial time step of each stage of the Runge–Kutta scheme used for the fluid solver as
a time step.

In the numerical solution of system (2.22), integration of the Basset history term is the
most time-consuming. To decrease the numerical costs of the evaluation of the Basset
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history contribution, we use the method of Van Hinsberg, ten Thije Boonkkamp & Clercx
(2011) where a ‘window’ is applied to the Basset kernel. The history kernel is split into a
window kernel and a tail kernel. The window kernel (recent history) is approximated by an
ordinary trapezoidal rule over the interval [t − twin, t] that consists of the Nw previous time
steps. The tail kernel (old history) over the time interval (−∞, t − twin) is approximated
by a sum of exponential functions, leading to a considerable reduction in computational
time as well as in memory requirements.

3.3. Two-way coupling: fluid–particle momentum transfer
The presence of particles in the fluid is represented by a local feedback force from the
particles on the fluid defined as

F inter(x) ≡ −
Np∑

n=1

P
(

x − x(n)p

)
F (n)2w , (3.1)

where Np is the total number of particles and F (n)2w is the feedback force from the nth
particle modelled as

F (n)2w = F U + F D + F H + F AM. (3.2)

In point-particle Euler–Lagrange simulations the term P(x − x(n)p ) is usually a numerical
projection of the Dirac delta function from the particle centre x(n)p to the Eulerian grid
point x. A common approach to numerical projection P is to distribute the feedback force
over the eight grid points surrounding the particle centre using the same weights as for the
interpolation of fluid properties to the position of the particle (point-force approach). In
the limit of particles which are much smaller than the size of the Eulerian grid spacing,
this approach is theoretically valid. However, as the particle size approaches the size of the
grid spacing, the feedback force to the fluid momentum equation is spread over a volume.
Since in our simulations the grid size can be smaller than the particle diameter dp, we
choose to distribute the particle feedback force over a volume approximately equal to the
volume of the particle. A top-hat filter is implemented to distribute the feedback force from
the Lagrangian particle position to the Eulerian grid points, as follows:

P(x − xp) =

⎧⎪⎨
⎪⎩

1
σ1σ2σ3

, if
∣∣xk − xp,k

∣∣ < σk/2 (k = 1, 2, 3),

0, otherwise.
(3.3)

The width of the filter σk, k = 1, 2, 3 is closest to the width of the particle encompassing
cube in each direction. This means that the particle feedback force is distributed over a
rectangular block with a volume closest to the volume of the smallest bounding box around
the particle. This allows us to keep the feedback force distribution volume constant under
mesh refinement. Furthermore, considering the fact that the grid spacing is not uniform in
the wall-normal direction, the distribution volume is independent of the local grid spacing.
Figure 3 shows a schematic of the applied filter for several particle positions.

4. Experimental set-up

We validate the results of our numerical approach with experimentally obtained particle
tracks in single- and two-particle systems. For this purpose, an experimental set-up is
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σ2

σ1

y

x

Figure 3. A two-dimensional schematic of the top-hat filter used to distribute the feedback force from the
Eulerian particle position to the Eulerian grid points. Here σ1 and σ2 are widths of the filter in the x- and
y-directions, respectively.

designed which enables the investigation of levitation motion of single spherical particles,
as well as binary collision dynamics in a paramagnetic liquid subject to a magnetic field
gradient. The paramagnetic liquid is synthesized by dissolving solid MnCl2 salt in distilled
water up to the saturation point. The solution is afterwards filtered twice with filters of
pore sizes 3 μm and 1 μm, and is stabilized by hydrochloric acid. The molality of the final
aqueous solution is 4.62 mol kg−1.

Measurements are performed in a 15 cm × 15 cm × 15 cm cubic tank. The particles
can be inserted either at the top or through a hole at the bottom of the tank. A magnet is
located underneath the tank to generate the desired magnetic field in the form of (2.6).
The magnet is designed such that the induced magnetic field has a vertical gradient
at the centre of the tank, where the measurements are performed. Two cameras are
used to record the particle trajectories through two perpendicular sidewalls of the tank
by means of three-dimensional PTV. A schematic of the experimental set-up is shown
in figure 4(a). The particles considered for the experiments are spherical unplasticized
polytetrafluorethylene (PVC-U) and polyoxymethylene (POM) beads with mass densities
ρp,1 = 1434 kg m−3 and ρp,2 = 1406 kg m−3, respectively. Some of the experimental
parameters are summarized in table 1. Figure 4(b) depicts the magnetic field strength on
the vertical line passing through the centre of the tank, which is measured using a Gauss
meter. An exponential function of the form of (2.6) is fitted to the measured magnetic field
strength profile to find the values of p and H0, which are given in table 1.

5. Results and discussion

In this section, we first present and discuss our results for single- and two-particle systems.
In these systems, the particle-induced flow is neglected, and the equations of motion of
the fluid are not solved, which is valid at the very low particle volume fraction of these
simulations. In § 5.3, we address many-particle systems in which we do solve the fluid
equations and also consider two-way momentum coupling between the fluid and particles.

5.1. The motion of a single particle immersed in a quiescent paramagnetic liquid
The buoyancy-driven motion of spherical particles in Newtonian fluids has been
extensively studied. It is shown experimentally (Horowitz & Williamson 2010) and
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Release mechanism

(a) (b)

Camera 2

Bottom magnet

Camera 1
400

300

Exponential fit

Measured

200

H
(k

A
 m

–
1
)

100

0
–1.0 –0.5 0

y/L
0.5 1.0

1.267

1.200

1.133 ρ
f.a

/ρ
f

1.067

1.000

Figure 4. (a) A sketch of the experimental set-up. A tank filled with manganese(II) chloride solution is placed
on top of a magnet. The particles are released by a rotating release mechanism. Two cameras record the motion
of released particles. (b) Magnetic field strength and apparent mass density on the vertical line at the centre of
the tank (black symbols). The measured magnetic field strength is fitted to an exponential function of the
form H = H0 exp(−π(L + y)/p) with H0 = 422 kA m−1 and p = 0.118 m. The apparent mass density of
the magnetic fluid with χ = 7 × 10−4 is indicated by the blue dashed line. The corresponding vertical axes
are indicated by the arrows. The magnetic susceptibility is calculated by measuring the magnetization of the
liquid using a vibrating sample magnetometer (EZ-9 from Microsense) and computing the slope of the H-M
curve. During the measurement, the magnetic liquid showed no hysteresis, which indicates the paramagnetic
behaviour of the liquid.

ρp,1 (kg m−3) 1.434 × 103

ρp,2 (kg m−3) 1.406 × 103

ρf (kg m−3) 1.403 × 103

μf (kg m−1 s−1) 5.54 × 10−3

χf 7 × 10−4

L (m) 0.075
p (m) 0.1181

H0(kA m−1) 422

Table 1. Properties of the experimental set-up. The particles used for the experiments are spherical PVC-U
(p1) and POM (p2) beads. The paramagnetic liquid is a saturated aqueous solution of MnCl2 salt. The molal
concentration of the synthesized solution is 4.62 mol kg−1. The susceptibility of the paramagnetic liquid is
calculated by measuring the magnetization of the solution, and the dynamic viscosity of the liquid is measured
using a rheometer.

numerically (Jenny et al. 2004) that the motion of a freely falling or ascending sphere
under the action of gravity in a Newtonian fluid is fully characterized by two dimensionless
numbers, namely the particle relative mass density ρp/ρf and the Galileo number Ga =√

|1 − ρp/ρf |gd3
p/ν. For a particle settling in a magnetic liquid an ‘apparent Galileo

number’ can be defined as Gaa =
√

|1 − ρp/ρf ,a|gd3
p/ν. Unlike the settling of a particle

in a non-magnetic liquid, for a particle travelling inside a magnetically responsive liquid
in a direction parallel to the magnetic field gradient, the apparent Galileo number is not
constant. This number is dependent on the local apparent mass density of the liquid and
therefore on the position of the particle. The farther away the position of the particle
from its equilibrium point, the larger will be the apparent Galileo number. As the particle
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approaches its equilibrium position, the apparent Galileo number goes to zero. For the
magnetofluidic systems considered in this section, the range of the apparent Galileo
number is 0 ≤ Gaa < 150. Within this range, it is known that, regardless of the particle
mass density ratio, the particle trajectory is vertical and quasi-steady (Jenny et al. 2004).
Therefore, we can assume that the motion of a single particle in a quiescent magnetic fluid
exposed to a magnetic field with negligible horizontal gradients is in the y-direction. Based
on this assumption, the governing equation of motion of the particle can be reduced to a
two-dimensional scalar nonlinear system. In the following section we will investigate the
solution behaviour of such nonlinear systems.

5.1.1. Equilibrium position and nature of particle motion
In our analysis, we make the following simplifying assumptions. Considering the fact
that the fluid is at rest (U0 = 0), we neglect the effect of fluid motion on the particle.
Based on our earlier discussion, considering the range of apparent Galileo number and the
one-dimensional magnetic field, we can further assume that the particle does not undergo
any rotational or lateral movement. Under these assumptions, (2.20) and (2.21) can be
simplified to the following system of scalar equations:

dy
dt

= v,

dv
dt

= ρp

ρp + 0.5ρf

⎡
⎣−
(

1 + 0.15Re0.687
p

)
τt,i

v − 3
2

(
πρfμ

)1/2 d2
i

∫ t

0

1
(t − τ)1/2

dv
dτ

dτ

+
(
ρf ,a

ρp
− 1
)

g
]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.1)

System (5.1) is a non-autonomous system of two first-order nonlinear differential
equations. The time-dependency stems from the Basset history contribution. The
equilibrium point of this system, Y e = ( ye, 0)T , can be found by setting (dy/dt, dv/dt)T =
(0, 0)T and t → ∞, where ye denotes the equilibrium position of the particle.

Given the initial position and velocity of the particle, a discretized form of system (5.1)
can be solved to find the vertical position and velocity of the particle as functions of time.
It is, however, useful to obtain a qualitative understanding of the behaviour of a particle
near its equilibrium point, before solving the system. By neglecting the history force, we
can approximate system (5.1) with the autonomous system

dy
dt

= v,

dv
dt

= ρp

ρp + 0.5ρf

⎡
⎣−
(

1 + 0.15Re0.687
p

)
τt,i

v +
(
ρf ,a

ρp
− 1
)

g

⎤
⎦ .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.2)

A dynamical analysis of the linearization of system (5.2) reveals that depending on the
problem parameters, the nature of motion of particle in the vicinity of its equilibrium
position is monotonic or oscillatory (for details of the dynamical analysis, the reader is
referred to appendix A). Singh et al. (2018) followed a similar approach to investigate the
motion of a water droplet in a saturated ferrofluid.
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Configuration ye dp,crit

Top-magnet
p

2π
ln

(
(ρf − ρp)pg

2πμ0χH2
0

) [
81μ2p

π(ρp − ρf )(2ρp + ρf )g

]0.25

Bottom-magnet − p
2π

ln

(
(ρp − ρf )pg

2πμ0χH2
0

) [
81μ2p

π(ρf − ρp)(2ρp + ρf )g

]0.25

Two-magnet − p
2π

sinh−1

(
(ρp − ρf )pg

4πμ0χH2
0

) ⎡
⎢⎢⎢⎢⎣

162gμ2p2 exp
(

2πL
p

)

π

√
16π2μ2

0M2
0H2

0 + g4p2(ρf − ρp)2 exp
(

4πL
p

)
(ρf + 2ρp)

⎤
⎥⎥⎥⎥⎦

0.25

Table 2. Particle equilibrium position and critical particle diameter for top-, bottom- and two-magnet
configurations with magnetic fields following (2.7), (2.6) and (2.8), respectively.

For a given magnetofluidic system, a critical particle diameter exists above which the
particle behaviour changes from monotonic to oscillatory. The equilibrium point and the
critical particle diameter for the onset of oscillatory behaviour near the equilibrium point
are summarized in table 2 for the three possible magnet configurations.

To illustrate the dependency of particle dynamics on its diameter, we consider the
bottom-magnet configuration presented in § 4 with parameters given in table 1. In this
configuration, the equilibrium position of a particle with a mass density ρp = 1.434 ×
103 kg m−3 is ye = −0.35L. The corresponding critical diameter is dp,crit = 3.2 mm.
System (5.2) is solved by an explicit Euler method to obtain the vertical particle position
as a function of time.

Figure 5 compares the time evolution of the vertical position of four particles with
diameters of 1, 2, 4 and 6 mm obtained by solving system (5.2) with initial condition
Y0 = (−0.9L, 0)T . The transition from monotonic to oscillatory motion can be observed
by comparing the results of the 2 and 4 mm particles.The effect of particle size on the
nature of particle motion can be further illustrated by the phase portraits and direction
fields of system (5.2). Figure 6 compares the direction fields and phase portraits of
solutions of this system obtained with combinations of three different initial positions,
and three different initial velocities for (a) d = 2 mm and (b) d = 6 mm. Regardless of the
initial condition, a 2 mm particle moves monotonically towards its equilibrium position,
whereas a 6 mm particle exhibits a spiralling behaviour. Physically this difference can be
easily understood: due to the larger magnetic buoyancy force, a 6 mm particle gains a
larger velocity and overshoots the equilibrium point.

5.1.2. History effects
In the previous analysis, effects stemming from the Basset history force are neglected.
However, it is known that the history force can be large at high particle acceleration rates.
Therefore, in this section we investigate the effect of Basset history force on particle
motion. Figure 7 compares the temporal evolution of position and velocity of a particle
with dp = 2 mm and ρp = 1.434 × 103 kg m−3 with initial condition Y 0 = (−0.9L, 0)T
over time interval [0, tmax = 13.11] s with and without Basset history force. A window
size of tw = 0.1tmax is considered for the computation of the history kernel. For the
2 mm particle, the history force leads to a slight decrease in the initial acceleration followed
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Figure 5. Effect of particle size on levitation dynamics. Time plots of vertical particle position for 1, 2, 4 and
6 mm particles.
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Figure 6. Direction field and phase portraits for the solutions of system (5.2) with nine different initial
conditions (black circles). The critical point of the system is Y e = (0,−0.35L)T (red circle). The critical
diameter for the considered parameters is dp,crit = 3.2 mm. (a) Here dp = 2 mm, the critical point is a node;
(b) dp = 6 mm, the critical point is a spiral point.

by a decrease in the deceleration of the particle as it approaches its equilibrium position.
Initially the history force slows down the particle as it introduces extra damping to the
system. As the particle gets closer to the equilibrium point the moving fluid drags the
particle and reduces deceleration.

The effect of Basset history force on the motion of a larger particle is shown in figure 8
where the particle diameter is increased to 6 mm. Although the history effects do not alter
the oscillatory nature of the particle motion, it can be observed that the history force leads
to an amplified overshoot near the equilibrium point. Physically, this can be interpreted
as follows. As the particle approaches its equilibrium position, due to history effects, the
moving fluid pushes the particle farther beyond the equilibrium point leading to a larger
overshoot. However, the damping introduced by the history force decreases the particle
oscillations.
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Figure 7. Comparison of the solutions of autonomous system (5.2) and non-autonomous system (5.1) with
initial condition Y 0 = (−0.9L, 0)T . The particle diameter is dp = 2 mm. (a) Vertical position. (b) Vertical
velocity.
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Figure 8. Comparison of the solutions of the autonomous system (5.2) and the non-autonomous system (5.1)
with initial condition Y 0 = (−0.9L, 0)T . The particle diameter is dp = 6 mm. (a) Vertical position. (b) Vertical
velocity.

The contribution of the Basset history force to the motion of a particle is further
illustrated in figure 9, where different hydrodynamic forces acting on the particle are
compared for dp = 2 and 6 mm. Note that the forces are normalized by the gravitational
force. We observe that for both particle sizes, the added mass force has the smallest relative
contribution to the particle motion. For the larger particle, the maximum absolute values
for normalized steady drag and Basset history forces are smaller and are attained later.
This explains the higher acceleration of the 6 mm particle. Thanks to particle’s higher
inertia, for the 6 mm particle the relative contribution of the Basset history force is larger
compared with the steady drag force. Moreover, for a larger particle, the history force has
an appreciable contribution over a larger fraction of the levitation time.

5.2. Experimental validation of the mathematical model
In this section, we compare the solutions of systems (5.1) and (5.2) with experimental
observations. First, we test our mathematical model against single-particle levitation
experiments. Next, we consider two-particle systems where the effect of collisions is
investigated.

910 A52-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
01

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1001


DNS of magneto-Archimedes separation

0.20(a) (b)

0.15

0 0.1 0.2 0 0.1 0.2

F = FAM
F = FD
F = FH
F = FB + FG

–0.05

0

0.10

0.05

F/
F G

 (
–
)

0

–0.05

0 1 2

t (s) t (s)

3 4 5 0 1 2 3 4 5
–0.10

0.20

0.15

0

–0.050.10

0.05

0

–0.05

–0.10

Figure 9. Temporal evolution of the added mass, static drag, Basset history and buoyancy force normalized
by the gravitational force during the motion of a spherical particle with (a) dp = 2 mm and (b) dp = 6 mm.

5.2.1. Single-particle systems
For the single-particle measurements, we consider two spherical PVC-U particles with
diameters dp = 3 and dp = 5 mm, and mass density ρp,1. The other problem parameters
are identical to those given in table 1. It was shown numerically in § 5.1.2 that neglecting
the history effects introduces an error which increases at larger particle sizes. In order to
validate this, we compare the experimental recordings of vertical particle position with the
results of the numerical simulations obtained with the same initial conditions.

For each particle, two sets of experiments are performed, a sinking and a rising
experiment. The equilibrium height of the considered PVC-U particles is ye = −0.35L.
For the sinking case, the particle is released at the top, and for the rising case, the particle
is released at the bottom of the tank. Figure 10 compares the numerical solution of system
(5.1) which includes the Basset history force, to that of the reduced system (5.2), and the
experimental vertical position of the particles. Each experiment is repeated six times, and
the results are averaged. The error bars correspond to the standard deviation of these six
measurements. The considered history window size for the simulations is twin = 0.2 s. The
larger error bars in the experimental results of the 3 mm particle are due to the fact that
the slower motion of smaller particles is relatively more sensitive to small disturbances in
the flow. A very good agreement is observed between the numerical results with Basset
history force and the experimental recordings. The larger contribution of history force to
particle motion at larger diameters can be observed by comparing the plots of the 3 and 5
mm particles. It can clearly be seen from figure 10(c) that exclusion of Basset history force
leads to a 35 % underestimation of the settling time for the falling 5 mm particle (6.22 s
versus 4.00 s). For the rising 5 mm particle (figure 10d) an underestimation as high as 47 %
is observed (4.98 s versus 2.65 s). These observations prove that system (5.1) describes the
vertical motion of a single spherical particle very well, and that the contribution of Basset
history force is crucial for accurate prediction of the motion of single particles of larger
diameters in a paramagnetic liquid. The numerical results presented in the rest of the paper
are obtained by the numerical model which includes the Basset history force, unless stated
otherwise.

5.2.2. Effect of collisions: two-particle systems
In a many-particle MDS system, a particle can undergo multiple collisions as it moves
towards its equilibrium position. Collisions are expected to hamper the motion of the

910 A52-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
01

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1001


S. Tajfirooz and others

0.4
(a) (b)

(c) (d)

0.2

0

–0.2y/L

y/L

–0.4

–0.6

0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6

t (s) t (s)

8 10 0 2 4 6 8 10

–1.0

0.4

0.2

With history

Without history
Experiment

0

–0.2

–0.4

–0.6

–0.8–0.8

–1.0

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

Figure 10. Vertical position of 3 and 5 mm PVC-U particles. The dashed curves corresponds to numerical
solutions of system (5.1). The dotted lines indicates the particle position obtained from solving reduced system
(5.2) and the solid curve corresponds to the experiments. (a) Falling 3 mm particle. (b) Rising 3 mm particle.
(c) Falling 5 mm particle. (d) Rising 5 mm particle.

particle and therefore delay the separation. In this section, we first present the experimental
procedure for obtaining the effective coefficients of friction and tangential restitution.
Next, we test our hard-sphere model by comparing the results of numerical simulations
with experimental observations on two colliding particles.

Experimentally, collisions are obtained by releasing two properly selected particles
simultaneously from the top and bottom of the tank. The considered particles for the
experiments are a 5 mm PVC-U particle with mass density ρp,1 (the sinking particle),
and a 5 mm POM particle with mass density ρp,2 (the rising particle). Depending on the
offset between the centre of the particles, the lateral centre distance (LCD), collisions can
range from ‘head-on’ to ‘grazing’. We define an impact factor as I = LCD/dp, where for
I = 0 a collision is head-on and I = 1 corresponds to a grazing collision.

Yang & Hunt (2006) found that lubricated contact during collisions with low
binary Stokes numbers reduces the dependence of rebound motion on the tangential
particle–particle interactions. The dominating hydrodynamic effects of the interstitial
fluid on the tangential component of motion during a collision can be captured by
incorporating an effective (lubricated) friction coefficient. The two remaining effective
collision parameters are obtained by investigating the tangents of incident and rebound at
various particle–particle collisions. The binary normal Stokes number for the considered
collisions are in the range 0 < Stn ≤ 14. Considering the zero precollision angular velocity
and the small particle rotational relaxation time, the angular velocities remain almost zero
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Figure 11. The tangent of rebound angle as a function of the tangent of incident angle for a 5 mm PVC-U
particle colliding with a 5 mm POM particle. Each point represents one collision experiment.

after the collision. The tangent of rebound is therefore purely based on the translational
particle velocity. In figure 11 the tangent of rebound angle for 40 different collisions is
plotted against the tangent of incident angle. The positivity of ψout indicates the absence
of the sticking regime. This reduces the number of required collision parameters to two, as
the tangential restitution coefficient is only needed for capturing sticking collisions. The
lubricated friction coefficient, μeff , is found by fitting the line ψout = ψin − (7/2)(1 +
en,eff )μeff to the data, where en,eff is calculated by (2.33) with en,dry = 0.86 and ηe =
1.5 μm. Depending on the value of en,eff , the lubricated friction coefficient ranges from
μeff = 0.004 to μeff = 0.008. We use an average value of μeff = 0.005 in our collision
model.

Figure 12 compares the vertical position of the particles versus time, obtained from
numerical simulations and experimental recordings for three collisions, with impact
factors I = 0.02, I = 0.41 and I = 0.78. The numerical results are performed with
a one-way coupled model using the same initial positions and velocities as in the
experiments. To facilitate the comparison, the numerical results are slightly shifted in
time to match the numerically and experimentally obtained collision times. A remarkably
good agreement is observed between the numerically and experimentally obtained vertical
positions of the particles as functions of time. The maximum increase in the levitation time
is caused by the collision with I = 0.02. This collision leads to approximately 15 % and
45 % increases in the levitation time of the sinking and rising particle, respectively (based
on experiments).

The horizontal motion of the particles can be seen in supplementary movies 1, 2
and 3. In contrast to the vertical direction, some discrepancies are observed between
the numerically and experimentally obtained results. These discrepancies are due to
the magnetic field non-uniformities in off-centre regions of the experimental set-up.
The gradient of the magnetic field strength is vertical only in the central region of
the tank. Hence, the assumption of vertical magnetic buoyancy force is only valid in
this central region. Once particles undergo a collision, they enter regions where the
magnetic buoyancy force is not vertical. In these regions, the horizontal gradient in
the magnetic field strength pushes the particles back to the centre of the tank. This
results in deviations from the numerically obtained post-collision horizontal motion of the
particles.
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Figure 12. Temporal evolutions of vertical positions of particles during binary collisions between a rising
PVC-U particle and a falling POM particle with three different impact factors: (a) I = 0.02; (b) I = 0.41;
(c) I = 0.78. The size of the particles are indicated by the vertical bars. Movies of the binary collision
experiments and simulations are found as supplementary movies 1, 2 and 3 available at https://doi.org/10.
1017/jfm.2020.1001.

5.3. Many-particle systems
In § 5.2, we validated our numerical model by comparison with experimental
measurements of single- and two-particle systems. In this section, we present the results
of the application of this numerical model to many-particle systems. We assume a uniform
initial flow field with no disturbances. Particle-induced flow disturbances are taken into
account by considering two-way momentum transfer between the fluid and the discrete
spherical particles as described in § 3.3. A two-magnet configuration is considered where
levitation of particles both lighter and heavier than the carrier liquid is possible. The
magnetic field is described by (2.8). The computational domain has dimensions Lx =
4πL/3, Ly = 2L and Lz = 4πL/3, as depicted in figure 13. The particle volume fraction
is kept constant at φ = 0.02 which is a relevant value in practical MDS applications
(Bakker et al. 2009). Moreover, one should note that the applicability of the numerical
model presented in this work is limited to low particle volume fractions, i.e. φ < 0.05.
The physical properties of the many-particle configurations are summarized in table 3.

As mentioned in § 1, in most recent MDS systems conveyor belts are installed at the top
and bottom of the channel. These conveyor belts move with the same speed as the mean
streamwise velocity U0. This circumvents the formation of boundary layers and transition
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Figure 13. A schematic of the computational domain for the many-particle simulations. In a frame moving
with the same velocity as the conveyor belts, U0i, the mean streamwise velocity of the fully developed flow is
zero. In this frame, the walls at y = ±L are at rest.

ρf (kg m−3) 1.4 × 103

μf (kg m−1 s−1) 5.54 × 10−3

χf 7 × 10−4

L (m) 0.075
p (m) 0.2

H0 (kA m−1) 637

Table 3. Parameters used for the many-particle simulations.

to turbulence near the walls. For such flow configurations, it is convenient to solve the
governing equations in a frame moving in the x-direction with the mean streamwise flow
velocity U0. In this frame, the mean velocity of the fully developed flow is zero, and the
top and bottom walls are at rest. Therefore we impose no-slip and no-penetration velocity
boundary conditions at y/L = ±1, where the surfaces of the two magnets are located. In
the x- and z-directions periodic boundary conditions are imposed.

Figure 14(a) shows the magnitude of the magnetic field, and the corresponding effective
mass density of the magnetic fluid as functions of y. According to (2.17) and (2.19), this
configuration is capable of sorting a mixture ρp/ρf ∈ [0.6, 1.4] (|�ρf ,a|max = 0.4ρf ), with
max(dρf ,a/dy) = 0.97ρf /L at the surface of the magnets. Particles with mass densities in
the range of ρp,k/ρf ∈ [0.7, 1.3] are uniformly distributed over 10 mass density groups.
These mass densities and their corresponding equilibrium heights are indicated by dashed
lines in figure 14(a). Particles are initially randomly distributed in two injection zones at
the bottom, (−1 < y/L < −0.75) and top (0.75 < y/L < 1) of the channel. The injected
particles are preseparated into two groups of light and heavy particles. Particles heavier
than the carrier liquid (ρp,h/ρf ∈ (1, 1.3]) are injected at the bottom, and particles lighter
than the liquid (ρp,l/ρf ∈ [0.7, 1]) are injected at the top of the domain. For a more realistic
initial condition, a particle impurity is considered in each injection zone. The particle
impurity is defined as Imp = Np,h/Np,top = Np,l/Np,bottom, where Np,top and Np,bottom are
the total numbers of particles injected in the top and bottom injection zones. Here Np,l
and Np,h are the number of light and heavy particles, respectively. In case of a perfect
preseparation, Imp = 0, whereas Imp = 0.5 indicates no preseparation (fully random
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Figure 14. (a) Magnetic field strength profile and the corresponding profile of the effective mass density of
the magnetic fluid. The dotted lines indicate mass densities of the particles. The dashed lines correspond to
the considered cut mass densities. The corresponding vertical axes are indicated by the horizontal arrows.
(b) Critical particle diameter as a function of mass density.

particle distribution). For particles that are not preseparated, during a short time interval,
the apparent Galileo number can be in the range Ga ∈ [150, 218]. We ignore deviations
from the steady vertical motion, caused by the transition in the wake of these particles.

The critical particle diameter as a function of particle mass density derived in § 5.1.1, is
plotted in figure 14(b). The maximum critical particle diameter corresponding to neutrally
buoyant particles (ρp/ρf = 1) is approximately 5.3 mm. It is noteworthy that although
the magnetic configuration is fully symmetric, the critical particle diameter profile is
asymmetric: particles lighter than the magnetic liquid have a larger critical diameter than
heavier particles with the same mass density difference.

The time step size is 0.0009 s. The numbers of Fourier modes in streamwise and
spanwise directions are 256, and the wall-normal direction consists of 129 grid points.
A window size of 0.01tmax, with tmax = 35 s, is considered for the calculation of the Basset
history force. The initial particle–fluid relative velocity is assumed to be zero. Interparticle
and wall–particle collisions are treated by the hard-sphere model addressed in § 2.4.2.
Based on the results of § 5.2.2, we consider an average value of 0.85 for the dry coefficient
of normal restitution. The average lubricated friction coefficient is assumed to be 0.005.

In order to investigate the effect of different parameters on the separation performance,
we study six different test cases. Case 1A is considered as the base case. We study the
effects of neglecting history force, two-way coupling and particle–particle interactions on
the collective motion of particles in cases 1B, 1C and 1D, respectively. In case 2, the
effect of the particle size is studied by decreasing the particle size from 4 to 2 mm. Finally,
case 3 addresses the effect of particle preseparation. The parameters of the test cases are
summarized in table 4.

We quantify the separation performance by the root mean square of the distances of
the particles from their theoretical equilibrium point given in table 2. We define the
non-dimensional separation error as

em(t) = 1
L

√√√√ 1
Np

Np∑
i=1

( yp,i(t)− ye,i)2, (5.3)

where Np is the number of particles, yp,i(t) is the position of a particle at time t and ye,i
denotes its equilibrium height. The mean separation error defined by (5.3) can be evaluated
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Case Φ dp (m) No. of particles Imp History force Two-way coupl. Collisions

1A 0.02 0.004 8835 0.1 yes yes yes
1B 0.02 0.004 8835 0.1 no yes yes
1C 0.02 0.004 8835 0.1 yes no yes
1D 0.02 0.004 8835 0.1 yes yes no
2 0.02 0.002 70 685 0.1 yes yes yes
3 0.02 0.004 8835 0.5 yes yes yes

Table 4. Summary of test cases.

for all particles to assess the overall temporal performance of the system, but also for each
individual mass density group. In the former, Np is the total number of particles, whereas
for the latter Np is the number of particles in the mass density group.

5.3.1. Case 1: effects of history force, collisions and two-way coupling
Figure 15 shows a cross-section of the velocity field and front view of the particle
distribution in the moving frame at t = 0.01 s, t = 0.5 s, t = 1.0 s, t = 1.5, t = 2 s
and t = 2.5 s for case 1A where history effects, two-way coupling and collisions are
taken into account. The horizontal colour bar shows the wall-normal component of the
particle-induced fluid velocity, and the vertical colour bar corresponds to the particle mass
density ratio ρp/ρf . It can be seen that after 2.5 s, all particles have almost reached their
equilibrium positions. A higher level of particle dispersion is observed in the central region
of the channel than in the vicinity of the walls. First, particles with equilibrium positions
in the central region interact more with other particles as they move to their equilibrium
height. Second, the lower magnetic field gradient in the central region leads to a slower
vertical motion of these particles and therefore a longer separation time.

The effects of history force, two-way coupling and collisions on the system overall
separation performance are illustrated in figure 16(a) where the mean separation errors
for cases 1A–1D are plotted as functions of time. When history, two-way coupling and
collision effects are taken into account the time required to obtain a mean separation error
of 0.02 is approximately 3 s. This effectively means that achieving this separation accuracy
at a mean streamwise velocity U0 requires the length of the separation channel to be at least
3U0.

The decay behaviour of the mean separation error is almost identical for cases 1A–1D
until t = 1 s. After this time, the decay rates for the cases without history force and
collisions begin to deviate. Two-way coupling appears to have a negligible effect on the
overall separation performance. Collisions increase the time required to achieve an average
separation error of 0.02 by approximately 0.5 s. The effect of the history force is more
drastic. Neglecting the history force leads to an underestimation of approximately 1.5 s
in achieving em = 0.02. When history effects are neglected, the average separation error
decreases monotonically, whereas, with history force included, the mean separation error
reaches a plateau at t ≈ 1.5 s. History effects introduce additional resistance to particle
levitation. Moreover, when a particle reaches its equilibrium point, the history force drags
the particle away from it. Both effects lead to a decrease in the decay rate of the average
separation error of the system.

Temporal evolutions of average separation errors per mass density group for case 1A
are compared in figure 16(b). Until t ≈ 1 s, all mass density groups show a similar decay
behaviour. At a given time t > 1.3 s, the larger the absolute fluid–particle mass density
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Figure 15. Cross-sections of the velocity field in the moving frame at the plane where z = Lz/2, and
projections of the particles in the section of the domain where |z − Lz/2| < 3dp (case 1A). The particles
are coloured based on their relative mass density ρp/ρf (vertical colour bar). The horizontal colour bar
corresponds to the streamwise component of the particle-induced fluid velocity. A movie corresponding to this
figure (supplementary movie 4), and a three-dimensional animation of the particle separation (supplementary
movie 5) are found in the supplementary material.
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Figure 16. (a) Average separation error versus time for cases 1A, 1B, 1C and 1D. (b) Average separation
error per mass density as a function of time for case 1A.
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Figure 17. Evolution of probability density function of particle position for cases 1A, 1C and 1D. The
corresponding animation, supplementary movie 6 is available in the supplementary material. The movie on
the right corresponds to the case 1A (the base case).

difference of a group, the smaller is the average separation error of that group. The
distinguishing behaviour of mass density groups with |1 − ρp/ρf | = 0.03 is interesting.
On average, particles in these mass density groups travel the longest distance to reach their
equilibrium positions. Owing to history effects, these particles overshoot their equilibrium
positions. Moreover, compared with other particles, the ‘restoring’ magnetic buoyancy
force acting on particles in these groups is smaller in the central region of the channel
where the gradient of the magnetic field is low. These two effects lead to a period of
increase in the separation error between t ≈ 1.3 s and t ≈ 1.7 s. A similar behaviour is
observed for groups with |1 − ρp/ρf | = 0.3 and |1 − ρp/ρf | = 0.23 during the interval
t ∈ [1.25, 2] when the particles which were in the ‘wrong’ injection zone reach their
equilibrium positions.

To illustrate the effect of collisions and history force on the temporal evolution of
the local distribution of particles, in figure 17 the probability density function of the
vertical position of particles for cases 1A, 1B and 1C are compared. After only 0.96 s,
a clear difference is observed in the distributions of the particles when history effects
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Figure 18. The effect of particle size and preseparation on the mean separation error.

are neglected. The history force enhances particle dispersion and causes a larger variance
in particle positions. The effect of history force becomes more prominent at t = 2 s.
Without history effects, the distribution of particle positions in the central region deviates
both in variance and average value. Collisions, on the other hand, only influence the
variance of the particle position. The effect of collisions is stronger for particles with
equilibrium positions in the central region, since these particles travel over a larger vertical
distance and collide more often.The results presented in the following subsections include
the history force, collisions and two-way coupling.

5.3.2. Cases 2 and 3: effects of particle size and preseparation
We investigate the effect of particle size on the separation performance by changing the
particle size from 4 mm to 2 mm while the total volume fraction of particles is kept
constant. Figure 18 compares the temporal evolution of average separation errors for
the two considered particle sizes. The average separation error for 2 mm particles after
5 seconds is 0.3 while this value for 4 mm particles is as low as 0.01. The superior
separation performance of case 1A is in line with the findings of § 5.1.1. The difference
between the decay behaviour stems from the higher magnetic force on the larger particles.
Moreover, with a constant volume fraction, smaller particles collide more frequently
with other particles which leads to a lower separation performance. As can be seen in
figure 14, dp = 2 mm is smaller than the smallest critical particle diameter. Therefore, a
2 mm particle exhibits a non-oscillatory motion towards its equilibrium point, leading to a
monotonic decay of the average separation error.

The dash-dotted line in figure 18 shows the temporal evolution of the mean separation
error for an initial impurity of 0.5. This corresponds to a case where particles are
not initially separated into two mass density groups of heavy and light particles but
are randomly distributed over both injection regions. This has a negative effect on the
separation performance since particles have to travel farther to reach their equilibrium
position, which also results in a larger number of collisions. Preseparation decreases the
time required to obtain an average separation error of 0.02 by approximately 33 % (3 s
versus 4 s).
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6. Conclusions and outlook

In this work, we presented a point-particle Euler–Lagrange approach which can accurately
capture the collective motion of almost neutrally buoyant particles in the flow of
magnetically responsive liquids. Numerical simulations are performed on single and
multiparticle systems over the range of apparent Galileo number 0 ≤ Gaa < 220. This
has relevant applications in MDS systems, which are used for the separation of different
types of plastic. The numerical results of single- and two-particle simulations are in good
agreement with detailed experimental results on particle position.

It is shown that when history force is neglected, a maximum of five parameters
can characterize the buoyancy-driven vertical motion of a spherical particle towards its
equilibrium point. We compared the contributions of different hydrodynamic forces to the
motion of a single particle and showed that the Basset history force is important for large
particles. It is found that neglecting history force at large particle diameters can lead to a
significant underestimation of the levitation time.

We presented a hard-sphere collision modelling strategy which can accurately
capture interparticle interactions in a magnetized paramagnetic liquid. Numerical and
experimental investigations of binary collisions considered in this study show that
depending on the impact factor a single particle–particle collision can lead to up to
approximately 45 % increase in the particle levitation time. The separation performance of
large MDS systems where up to approximately 18 000 particles are levitated is quantified
by evaluating the mean separation error. Particularly, the effects of particle size and
particle preseparation have been studied. The investigations revealed that the effects of
history force and collisions are important even at particle volume fractions as low as 2 %.
Neglecting history force and collisions lead to an erroneously reduced particle dispersion,
especially for particles with mass density ratio close to one. Our numerical results showed
that an increase in the particle size from 4 to 2 mm increases the time required to achieve
an average separation error of 0.02 by around 40 %, indicating the importance of particle
size distribution in MDS applications. The method described in this paper is a firm basis
for the development of useful design rules for optimization of future magnetic separation
technologies.

As a natural starting point for most studies on particle-laden flows, this work was based
on the assumption of spherical particle shape. However, it is well known that particle
non-sphericity has a significant influence on fluid–particle interactions, and therefore on
the dynamics of particles. Furthermore, this work did not consider the effect of background
flow disturbances on the motion of particles. Background turbulence can remarkably delay
the levitation time as particles in MDS typically have mass density ratios close to one.
Such particles have small relaxation times, and their motion is therefore sensitive to a
background flow. These two aspects are open to future research.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.1001.
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Appendix A. Dynamical analysis of single-particle motion

In this Appendix we present a dynamical analysis through which the solution behaviour
of system (5.1) is characterized. For brevity we present our analysis for a bottom-magnet
configuration where the fluid apparent mass density follows (2.6).

System (5.1) can be written in matrix notation as

Ẏ = dY
dt

= F (Y , t), (A1)

where

Y =
(

y
v

)
(A2)

and

F (Y , t) =
⎛
⎝ v

αξv + ηξ + βξeθy + αεξv|v|0.687 + ζ ξ

∫ t

0

1
(t − τ)1/2

dv
dτ

dτ

⎞
⎠ (A3)

with

α = − 1
τt
, η =

(
ρf

ρp
− 1
)

g, β = 2πμ0χH2
0

pgρp
e−2πL/p, θ = −2π

p
,

ε = −0.15
(

dp

ν

)0.687

, ζ = −1.5
(
πρfμ

)1/2 d2
p, ξ = ρp

ρp + 0.5ρf
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A4)

By setting Ẏ = (0, 0)T and t → ∞, the history integral term tends to zero as t → ∞ and
the equilibrium point of the system reads

Y e =
(

ye

0

)
=
⎛
⎝1
θ

ln
(−η
β

)
0

⎞
⎠ , (A5)

where ye corresponds to the equilibrium position of the particle in the magnetic liquid.
Considering the fact that β > 0, an equilibrium point exists only if η < 0, i.e. ρf /ρp ≤ 1.
This implies that a bottom-magnet configuration is only capable of levitating particles
which are heavier than the magnetic liquid. Particles which are lighter will eventually float
on top of the liquid.

If we now assume that the history force is negligible compared with the other forces
acting on the particle, system (A1) can be converted to an autonomous system of the form

Ẏ = dY
dt

= G(Y ), (A6)
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where

G(Y ) =
(

v

αξv + ηξ + βξeθy + αεξv|v|0.687

)
. (A7)

Without loss of generality we can shift the equilibrium point of the system to the
origin by making the substitution Ỹ = Y − Y e. Near the equilibrium point, Ỹ → (0, 0)T .
Therefore, system (A7) can be approximated by the linear system

˙̃Y = JỸ , (A8)

where the Jacobian matrix J is

J =
(

0 1

βθξeθye αξ

)
=
(

0 1
−ηθξ αξ

)
. (A9)

The stability and type of the critical point of the system (A8) are determined by eigenvalues
of the matrix J, λ1,2 = αξ/2 ± (α2ξ2/4 − ηθξ)0.5. It can be shown that except for the
special case where α2/4 = ηθ , the stability and type of the critical point are not affected
by the nonlinear terms in the system (A6). Therefore the behaviour of the solution of
nonlinear system (A6) can be determined by studying the much simpler linear system
(A8). In the case of an existing equilibrium point, considering the fact that αξ < 0 and
ηθξ > 0, the eigenvalues are either negative real numbers or complex numbers with a
negative real part. Therefore the solution of the system is always asymptotically stable. The
behaviour of the solutions is dependent on the sign of (α2ξ2/4 − ηθξ). If αξ/2 >

√
ηθξ ,

the eigenvalues are real and the equilibrium point is an asymptotically stable node. The
particle, in this case, monotonically moves towards its equilibrium point. On the other
hand, for αξ/2 <

√
ηθξ the eigenvalues are complex numbers. The equilibrium point,

in this case, is a spiral point; the particle exhibits an oscillatory motion around the
equilibrium point while it approaches it. For a fixed magnetofluidic configuration a critical
particle diameter can be found above which oscillatory behaviour occurs. This critical
diameter for a single-magnet configuration, regardless of the magnet position is

dp,crit =
[

81μ2p
π
(
ρp − ρf

) (
2ρp + ρf

)
g

]0.25

. (A10)

A similar analysis can be performed for top-magnet and two-magnet configurations with
magnetic fields described by (2.7) and (2.8), respectively. The results are summarized in
table 2. It is notable that for one-magnet configurations the particle behaviour is dependent
on four parameters only, namely α, η, θ and ξ . For two-magnet systems the nature of
particle motion is also dependent on the parameter β.
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