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A COMMUTATIVITY THEOREM FOR RINGS

HIROAKI KOMATSU, TSUNEKAZU NISHINAKA AND HisA0 TOMINAGA

We prove the following theorem: Let R be a ring, ! a positive integer, and n a
non-negative integer. If for each z, y € R, either zy = yz or zy = =™ f(y)z' for
some f(X)€ X*Z[X), then R is commutative.

Throughout, R will represent a ring with centre C = C(R), and D = D(R) the
commutator ideal of R. Let I, m be positive integers, and n a non-negative integer.
We consider the following conditions:

(*)(tmq) Foreach z,y € R, either [z,y] =2y —yz =0 or 2™y = z" f(y)z' for
some f(X) € X?Z[X].
(**)(1,m,n)y For each z,y € R, either [z,y] = 0 or 2™y — z" f(y)z! € C for some
f(X) e X?Z[X].
()t;m,ny For each z,y € R, there exists f(X) € X2Z[X] such that [z, z™y —
z"f(y)z'] = 0.
(S§) For each z,y € R, there exists f(X,Y) € Z(X, Y)[X, Y])Z(X, Y) each
of whose monomial terms is of length > 3 such that [z, y] = f(z, y).

As is easily seen, (*)(,’m’n) implies (**)(,’m_n), and (**)(,’m,n) implies (t)(,'m_n).
Recently, Bell [1] announced that every ring R satisfying (x), ) is commutative.
The next result has been proved in [3, Theorem 1].

PROPOSITION 1. Let R be a ring with 1. If R satisfies (1) ,n,n) then R is
commutative.

Our present objective is to prove the following theorem, by making use of Propo-
sition 1.

THEOREM 1. If aring R satisfies (), ,, then R is commutative.
We start our preparation for proving Theorem 1 with the following proposition.

PROPOSITION 2. Let R be a ring generated by two elements such that D is
the heart of R and RD = DR = 0. Then R is nilpotent.

ProoF: QObviously, D is Z-isomorphic to Z/pZ for some prime p. Noting that
R/D is a homomorphic image of the subring (X, Y) of Z[X, Y] and every ideal of
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(X, Y) is an ideal of Z[X, Y], we see that R/D is Noetherian. Accordingly, R is right
Noetherian.

Now, let z be an arbitrary element of R, and k a positive integer such that
r(z*) = r(z**!), where r(*) denotes the right annihilator of * in R. Since Rz* C
(z*R+ D)R C z*R, z*R is an ideal of R. Further, if z*a € z*RN D then z**1a =
::(:z:”a.) =0, and so z¥a = 0. Hence z*RN D = 0, whence z*R = 0 follows. We have
thus seen that R is nil. Now, it is easy to see that R is nilpotent. 0

Combining Proposition 2 with {2, Theorem S}, we see that if R is not commutative
then there exists a factorsubring of R which is of type (a)1, (a),, (b), (c), (d) or (e):
F
(a)e (G 0(p) G'Fo(p)) , P a prime.

o (3 570) s uoren

(b) M, (K) = {(: a(i))

non-trivial automorphism ¢.

a, B € K}, where K is a finite field with a

(¢} A non-commutative division ring.
(d) A simple radical ring with no non-zero divisors of zero.
(e) A finite nilpotent ring S such that D(S) is the heart of § and SD(S) =
D(S)S =0.
In particular, if R is non-commutative and satisfies () then there exists a factor-
subring of R which is of type (a):, (a)r (b), (c) or (d) (see [2, Corollary S.1}).
This result gives the following Meta-Theorem.

META-THEOREM. Let P be a ring property which is inherited by factorsubrings.
If no rings of type (a)i, (a)r, (b), (c), (d) or (e} satisfy P, then every ring satisfying
P is commutative. (If no rings of type (a)i, (a)., (b), (c) or (d) satisfy P, then every
ring satisfying (S) and P is commutative.)

We are now ready to complete the proof of Theorem 1.

PROOF OF THEOREM 1: In view of the Meta-Theorem, it suffices to show that R
cannot be of type (a)i, (a)r, (b), (c), (d) or ().

Noting that ez = e11e12 # el f(e12)el; = 0 and e12 = ejze22 # e, f(ezz)el, =0
for any f(X) € X2Z[X], we see that R cannot be of type (a); or (a),. Further, by
Proposition 1, no rings of type (b) or (c) satisfy (*)t,1,n) -

Now, suppose that R is of type (d), and choose z, y € R with [z, y] # 0. Then
there exists p(X) € XZ[X] such that zy = z"p(y)yz'. I [z, ¥’} # 0 and [}, y] # 0,
there exist f(X), g(X) € X?*Z[X] such that zy' = z"f(y')z' and yz' = y”g(z')y'.
Putting f(y') = fo(y)y and g(z') = go(z)z with some fo(X), go(X) € XZ[X], we
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obtain zy' = z™ fo(y)y" g0 (z')zy'. Since R is a radical ring, this forces a contradiction
zy' = 0. Next, if [2', y] = 0 then zy = z"p(y)z''zy, which implies a contradiction
zy = 0. Similarly, [z, y'] = 0 forces a contradiction. We have thus seen that R cannot
be of type (d).

Finally, suppose that R is of type (e). Then R? C C. Given z,y € R with
[z, y] # 0, we can take p(X) € XZ[X] such that zy = z"yp(y)z' = zyp(y)z'*"?,
whence zy = 0 follows; similarly yz = 0. But this is impossible.

CorOLLARY 1. If R satisfies (S) and (**) , ,y, then R is commutative.

PROOF: In view of Proposition 1 and the Meta-Theorem, it suffices to show that
R cannot be of type (a)i, (a)-, or (d). It is easy to see that R is not of type (a); or
(a)-. If R isof type (d), then C = 0 and R satisfies (*)(,'l'n). Thus R is commutative

by Theorem 1. But this is impossible. 0

Finally, we remark that a ring with (*)( 1,m,n) for m > 1 need not be commutative.

Actually, there exists a non-commutative ring R with R® = 0.
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