
JFP 16 (1): 75–81, 2006. c© 2005 Cambridge University Press

doi:10.1017/S0956796805005708 Printed in the United Kingdom

75

Calculating PSSM probabilities with lazy
dynamic programming

KETIL MALDE

Department of Informatics, University of Bergen, Bergen, Norway

(e-mail: ketil@ii.uib.no)

ROBERT GIEGERICH

Faculty of Technology, University of Bielefeld, Bielefeld, Germany

(e-mail: robert@techfak.uni-bielefeld.de)

Abstract

Position-specific scoring matrices are one way to represent approximate string patterns,

which are commonly encountered in the field of bioinformatics. An important problem that

arises with their application is calculating the statistical significance of matches. We review

the currently most efficient algorithm for this task, and show how it can be implemented

in Haskell, taking advantage of the built-in non-strictness of the language. The resulting

program turns out to be an instance of dynamic programming, using lists rather the typical

dynamic programming matrix.

1 Introduction

Searching strings for matches against a pattern is one of the most fundamental

tasks in computer science, and consequently encompasses a wide collection of

techniques. One way approximate patterns can be expressed is as position specific

scoring matrices, or PSSMs. PSSMs describe fixed length patterns over a finite

alphabet. Each row in the matrix corresponds to a position in the pattern, while

each column corresponds to one character in the underlying alphabet. Each position

in the matrix contains the score (usually an integer or floating-point value) for

the character corresponding to its column in the position corresponding to its row.

Thus, if M is a PSSM with m rows, and w = w1 . . . wm a string over A, we have

scoreM(w) =
∑m

i=1 M(i, wi), where a high score value suggests a good match to the

pattern described by M.

PSSMs are commonly encountered in bioinformatics, where they represent short

conserved regions (often called motifs) in proteins or DNA (Durbin et al., 1998).

Although their descriptive power is moderate compared to hidden Markov models

or stochastic context free grammars, which also are frequently used in biosequence

analysis, PSSMs are the preferred method for searching for transcription factor

binding sites on a genomic scale. Their major virtue is simplicity and speed of

search, which can easily be done in O(mn) time, where n is the size of the genome or

database. In fact, given that the string to be searched has been preprocessed into an

https://doi.org/10.1017/S0956796805005708 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005708

76 K. Malde and R. Giegerich

A C G T

3 2 1 4

6 2 1 1

1 1 7 1

0 0 10 0

0 0 0 10

6 2 1 1

7 1 1 1

2 1 5 2

1 2 1 6

Fig. 1. A sample PSSM; each row contain scores corresponding to the characters

A, C, G, and T respectively (representing nucleotides). The matrix is taken from

http://genome.imim.es/courses/BioinformaticaUPF/T13/MakeProfile.html, and represents

an exon-intron boundary (a donor site) in a gene.

index structure, search algorithms have been described that achieve sublinear time

(Beckstette et al., 2004).

Searching a large text or genome data base with a set of PSSMs requires strict

score thresholds to avoid a large number of meaningless hits. This leads us to the

problem addressed here: How to evaluate the significance of a match, and how to

choose the right score threshold before searching?

The scores themselves are inadequate for this purpose – scores from different

PSSMs are unrelated, and longer PSSMs tend to yield higher scores. Instead

of using scores directly, it is preferable to examine their p-values (the likelihood

of exceeding the score on a random string) or E-values (the expected number of

matches exceeding the score in a data set). Ideally, the user of the search routine

specifies a p-value threshold P , and we need to translate this, for each PSSM M

used in the search, into a score cut-off SM such that prob(score(w) � SM) � P . To

this end, we need to compute the distribution of scores for M for random strings

(drawn from a background distribution π of characters, which is derived from the

database).

The probability of obtaining a string of length m scoring exactly s is
∑

w∈Am

{probπ(w)|score(w) = s}

where the probability of a string is probπ(w) =
∏m

i=1 π(wi). While the complete

probability distribution can be calculated naively, this is infeasible as the number of

strings to examine grows as O(|A|m). Methods to compute the complete distribution

efficiently will be discussed next, on the way to our ultimate goal, which is to use

laziness to only compute the relevant parts of the distribution.

2 Calculating the score distribution by dynamic programming

There are well known methods to address the problem of probability-to-score

threshold conversion. The most common method is to estimate probablilites from

https://doi.org/10.1017/S0956796805005708 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005708

Lazy probability distribution 77

the scores of a random sample of strings. Another, non-heuristic solution employs

dynamic programming, which makes it possible to calculate the complete distribution

in O(m2|R||A|) (Staden, 1989; Wu et al., 2000; Rahmann, 2003; Rahmann et al.,

2003), where R is the maximum range of score values in a single row in the matrix.

To obtain an integer range of scores, original scores in M are scaled, rounded, and

divided by their greatest common divisor.

The dynamic programming technique is based on maintaining the m × mR table

T indexed by PSSM row and score, so that entry T (i, j) contains the accumulated

probability of achieving a score of j in the first i rows of the matrix. Row i in the

DP table can be calculated by combining the accumulated values in row (i − 1) in

with contributions from row i in the PSSM. This is expressed in the recurrences

T (1, j) =
∑

{π(a)|a ∈ A,M(1, a) = j}, j ∈ mR (1)

T (i + 1, j) =
∑

{π(a)T (i, r)|a ∈ A,M(i + 1, a) + r = j}, j ∈ mR (2)

Note that an entry T (i, j) is zero when score j cannot be achieved at all with a

pattern prefix of length i. The threshold conversion is then achieved by

threshold(P) = max{j|j ∈ mR,

max(mR)∑

k=j

T (m, j) � P } (3)

Dynamic programming algorithms can be expressed quite elegantly in a functional

language when the algebraic style proposed in Giegerich et al. (2004) is applicable.

However, that method works for dynamic programming algorithms where the

problem decomposition implicit in the recurrences is given by subwords of the

input. Our case here is different: One dimension of the recursion is over the input,

considering pattern prefixes of length i = 1, 2, 3 But the other dimension is over

the resulting score values. In this case, for implementing the above recurrences in

Haskell, we see no better way than literally rewriting them, using the Haskell Array

data type for T . This bears no insight and is not shown here.

The most recent contribution to the threshold conversion problem is based on the

observation that we need the distribution only to translate threshold p-values into

threshold scores. Given that the threshold p-values are typically very small (to avoid

hits that arise by chance), we really need only the upper end of the distribution.

This has been implemented in Beckstette et al. (2004). The authors re-order rows

and columns of M to compute first the probability of the maximum score (which

requires the probabilities of partial scores that contribute to it), then the same for

the second best possible score, and so on. Computation stops when the accumulated

probabilities exceed the specified p-value. The score value where this happens is the

desired score cutoff. Tabulation is still essential to ensure that no partial scores are

computed twice.

This leads to a very fast program for sufficiently small p-values, which degenerates

to the standard DP implementation (plus some overhead) when we reach the low

end of the distribution. The authors report speed-up factors of 10 and 16 for p-value

thresholds 10−10 and 10−40, respectively. The program, implemented in C, is much

more sophisticated than the standard DP approach – and the care taken to compute

https://doi.org/10.1017/S0956796805005708 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005708

78 K. Malde and R. Giegerich

type PVector = [Prob]

type PSSM = [[Score]]

-- combine scores from each matrix row with respective probabilities

prep :: PVector -> PSSM -> [[(Score,Prob)]]

prep pv = map (\r -> reverse $ sort $ zip r pv)

-- compute path probabilities in order of descending score

paths :: PVector -> PSSM -> [(Score,Prob)]

paths pv = foldr1 add_paths . prep pv

where add_paths ps rs = foldr1 merge [[combine x y | y <- rs] | x <- ps]

combine (s1,p1) (s2,p2) = (s1+s2,p1*p2)

merge = merge’

merge’ :: [(Score,Prob)] -> [(Score,Prob)] -> [(Score,Prob)]

merge’ [] ys = ys

merge’ xs [] = xs

merge’ (x:xs) (y:ys) = if fst x > fst y then x : merge’ xs (y:ys)

else y : merge’ (x:xs) ys

-- compute score cutoff from probability cutoff (Eqn. 3)

prob2score :: Prob -> [(Score,Prob)] -> Score

prob2score p ((s,r):ps) = if null ps || p <= r then s

else prob2score (p-r) ps

Fig. 2. Calculating paths through the PSSM by score in descending order. Each path is

represented as a pair of a score and its associated probability. A PVector gives the background

distribution as a probability for each character in the alphabet.

only those intermediate values in the DP table that contribute to the high end of

the distribution brings about a flavour of laziness.

Here we study how the above idea can be implemented in a functional language

where laziness comes for free. It should not come as a surprise that the implementa-

tion is much simpler. The interesting aspect of our derivation of the program is that

it does not start from the DP recurrences. Instead, it starts from the (impractical)

naive approach, and the equivalent of dynamic programming sneaks in almost

unnoticed.

3 Algorithm and implementation

We start from the naive idea of considering all words in Am, computing their

probabilities and scores. This gives the complete distribution, and the threshold

conversion can be achieved via Equation 3. Since we are interested only in the high

end of the distribution, let us consider the words in order of decreasing score.

Figure 2 shows how the scores and probabilities corresponding to possible paths

through the PSSM can be generated. The prep function pairs scores from the PSSM

with corresponding character probabilities, while the character giving rise to a pair

needs not be recorded. The paths function iterates over the rows of the PSSM,

https://doi.org/10.1017/S0956796805005708 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005708

Lazy probability distribution 79

merge xs = join . merge’ xs

join ((s,p):(s’,p’):xs) = if s /= s’ then (s,p) : join ((s’,p’):xs)

else join ((s,p+p’):xs)

join xs = xs

Fig. 3. Improving efficiency by combining list elements that have the same score when

merging the lists.

combining the scores and probabilities from each new row with the paths calculated

from the previous rows. A lazy merge sort on the path scores ensures that the paths

relevant to the high end of the score distribution are calculated first. Finally, the

function prob2score implements Equation 3.

We note that any entries in a matrix row having the same score will contribute to

the calculation simultaneously, and they can thus be combined into one entry. For

example, in Figure 1 the entries for letters G and T in row 2 both contribute a score

of 1, hence they may be seen as a joined character G+ T that contributes a score of

1 with probability π(G) + π(T). This consideration also extends to any intermediate

result, whenever two initial paths happen to achieve the same score. We can thus

eliminate some calculations by combining entries having the same score. As the

scores are produced in descending order, it is only necessary to consider adjacent

values. We define a function join to perform this, and update the merge function

accordingly. The resulting code is shown in Figure 3.

It is interesting to note that this is exactly what happens in the dynamic

programming approach. The DP matrix serves to merge any match prefixes that

score the same, and only their combined probability is retained.

4 Results

PRINTS (Attwood et al., 1999) is a collection of PSSMs for finding certain patterns

(motifs) in proteins. We measured the efficiency of our implementation1 running it

on 1000 matrices from PRINTs, and comparing it to the implementation of the

straightforward dynamic programming algorithm, using a Haskell unboxed array

for the DP matrix. The results are shown in Table 1.

We see that for these p-values, there is a significant advantage to using the lazy

method, clearly outweighing the advantage unboxed arrays normally provide over

lists. Naturally, the advantage disappears as a larger portion of the distribution is

calculated for cut-off values above 10−10.

Another advantage of the lazy algorithm is that it is less dependent on the range

of the scores. If the scores are, for instance, arbitrary floating point values, the

DP matrix will be large. While our lazy algorithm will derive less benefit from the

redundancy elimination, it will still be able to take full advantage of laziness. (In

practice, scores will usually be rounded to reduce the range of different values).

1 The programs were compiled with ghc version 6.2 using -O2, and run on a 1130MHz Pentium III.

https://doi.org/10.1017/S0956796805005708 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005708

80 K. Malde and R. Giegerich

Table 1. Average time per matrix for calculating the thresholds for PRINTS

matrices, given different p-values. Total times and average time per matrix are given

DP s/M prob2score s/M speedup

10−30 1313s 1.31 7.6s 0.01 172x

10−20 1388s 1.39 56s 0.06 25x

10−10 1317s 1.32 306s 0.31 4.3x

5 Concluding remarks

In contrast to Beckstette et al. (2004), we started out with lazy generation of paths

through the matrix, and added dynamic programming later. Perhaps unsurprisingly,

we ended up with a very similar algorithm, and reasonably comparable run times

when taking into account the different run-time systems.

While a well-written C program is generally accepted to perform better than the

corresponding Haskell program, it is interesting to note that Beckstette et al. (2004)

reports an average of 0.45 seconds per matrix for the full dynamic programming

algorithm on the complete PRINTS set for their PoSSuM implementation, and

0.04–0.06 seconds for lazy calculations with the same thresholds as used in Table

1, using a 900 MHz CPU. While there is a difference in the performance of the

hardware platforms, it appears that GHC’s unboxed arrays perform well enough in

practice to be competitive with C implementations.

We also note that our lazy implementation seems to scale poorly as the number

of traversed paths increase, from being a factor of four times slower at 10−10 to

outperforming PoSSuM at 10−30. However, the bound of 10−30 is too aggressive

for many of the matrices, and the highest-scoring path alone is often sufficient

to exceed the threshold (and thus only a single path will be calculated). We

remark anecdotically that, challenged by the competitive performance of the Haskell

program, the authors of PoSSuM decided to hand-code their memory allocation,

and thereby achieved a marginal speedup for 10−10, but a 34-fold speedup over the

published performance for 10−30. Hence, the same scaling behaviour is observed for

the hand-coded laziness in C.

The interesting aspect is that the built-in non-strictness of Haskell allows us to

express this algorithm in a natural manner, and in fact the complete implementation

for calculating the probability distribution fits comfortably on a page, and is

comparable in size to the array-based implementation of the dynamic programming

algorithm.

Acknowledgments

We wish to thank Michael Beckstette and Dirk Strothman for helpful advice and

comments, and Richard Bird for identifying a memory inefficiency issue in an earlier

version.

https://doi.org/10.1017/S0956796805005708 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005708

Lazy probability distribution 81

References

Attwood, T. K., Flower, D. R., Lewis, A. P., Mabey, J. E., Morgan, S. R., Scordis, P., Selley,

J. N. and Wright, W. (1999) PRINTS prepares for the new millennium. Nucleic Acids Res.

27(1), 220–225.

Beckstette, M., Strothman, D., Homann, R., Giegerich, R. and Kurtz, S. (2004) PoSSuMsearch:

Fast and sensitive matching of position specific scoring matrices using enhanced suffix

arrays. Proceedings of the German Conference on Bioinformatics 2004, pp. 53–64.

Durbin, R., Eddy, S., Krogh, A. and Mitchison, G. (1998) Biological Sequence Analysis.

Cambridge University Press.

Giegerich, R., Meyer, C. and Steffen, P. (2004) A discipline of dynamic programming over

sequence data. Sci. Comput. Program. 51(3), 215–263.

Rahmann, S. (2003) Dynamic programming algorithms for two statistical problems in

computational biology. Proceedings of the 3rd Workshop of Algorithms in Bioinformatics

(WABI), pp. 151–164.

Rahmann, S., Müller, T. and Vingron, M. (2003) On the power of profiles for transcription

factor binding site detection. Stat. Applications in Genetics & Molecular Biol. 2(1).

Staden, R. (1989) Methods for calculating the probabilities of finding patterns in sequences.

Comput. Applic. in the Biosci. 5, 89–96.

Wu, T. D., Nevill-Manning, C. G. and Brutlag, D. L. (2000) Fast probabilistic analysis of

sequence function using scoring matrices. Bioinformatics, 16(3), 233–244.

https://doi.org/10.1017/S0956796805005708 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005708

