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ASYMPTOTICALLY STABLE ATTRACTING SETS
IN THE NAVIER-STOKES EQUATIONS

P.E. KLOEDEN

The planar Navier-Stokes equations with periodic boundary

conditions are shown to have a nearby asymptotically stable

attracting set whenever a Galerkin approximation involving

the eigenfunctions of the Stokes operator has such an

attracting set, provided the approximation has sufficiently

many terms and its attracting set is sufficiently strongly

stable. Lyapunov functions are used to characterize the

stability of these attracting sets, which are compact sets

of arbitrary geometric shape. This generalizes earlier

results of Constantin, Foias and Temam and of the author

for asymptotically stable steady solutions in the Navier-

Stokes equations and such Galerkin approximations.

1. Introduction

In many numerical and theoretical studies in fluid dynamics,

particularly in meteorology and oceanography, simpler truncated systems,

called Galerkin approximations or spectral systems, are studied instead

of the full system of partial differential equations. These are finite

dimensional systems of ordinary differential equations, usually only with

linear and quadratic terms, which are obtained by truncating infinite
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38 P.E. KLoeden

dimensional systems involving the time-dependent coefficients of Fourier-

like series expansions of the solutions of the partial differential

equations. An implicit assumption here is that the qualitative behaviour

of the solutions of the truncated system closely resembles that of the

solutions of the full system of partial differential equations. This is

known not to be true, in the Lorenz equations for example, when the

truncation is too severe or the type of behaviour under consideration is

too complicated.

Recently Constantin, Foias and Temam [J] have shown for the Navier-

Stokes equations that the presence of an asymptotically stable steady

solution in a Galerkin approximation, defined in terms of the

eigenfunctions of the Stokes operator, of sufficiently high order implies

the existence of a nearby asymptotically stable solution in the Navier-

Stokes equations. Their proof makes considerable use of the spectral

properties of the linear operators in the Galerkin approximations and

the Navier-Stokes equations linearized about steady solutions. Such a

simple spectral theory is not available for more complicated attracting

sets such as periodic or almost periodic solutions, let alone for strange

attractors. There is however an extensive theory, presented in, for

example, Yoshizawa [6] , in which the stability of an attracting set is

characterized in terms of Lyapunov functions. This was used by

Kloeden [3] to obtain a result similar to that of Constantin, Foias

and Teman [7] for steady solutions of the Navier-Stokes equations and

their Galerkin approximations. More recently Wells and Dutton [5] have

used Lyapunov functions for quite generally shaped attractors that

bifurcate from a steady solution. In this paper we consider compact

attracting sets of arbitrary geometric shape and origin. We show that

if a Galerkin approximation to the planar Navier-Stokes equations with

periodic boundary conditions has an asymptotically stable attracting set,

then the Navier-Stokes equations has a nearby asymptotically stable

attracting set provided the Galerkin approximation has sufficiently many

terms and its attracting set is sufficiently stable.

In section 2 we present necessary background material on the Navier-

Stokes equations and their Galerkin approximations and in section 3 we

outline the Lyapunov theory for compact attracting sets. In particular

we state a theorem from Yoshizawa [6] guaranteeing the existence of a

Lyapunove function characterizing the stability of an asymptotically
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stable set in an autonomous system of ordinary differential equations.

Our main result is stated and proved in section 4. Our proof makes full

use of the properties of a Lyapunov function characterizing the assumed

asymptotic stability of a Galerkin approximation. Finally in the

appendix we establish a bound on certain terms of appearing in the proof

of our main result.

2. Preliminaries

We consider the Navier-Stokes equations on the unit square spatial

domain Q = [0,1] 2 i n TR2

J~_ - vAw + u . Vu + Vp = f ,
3t

(2.1) div u = 0 ,

u(x,O) = UQ(X) J

with periodic boundary conditions

(2.2)

for all x = (X\,x-i) e Q and t £ 0 . Further, we restrict attention to

flows with zero spatial average.

I"u = 0

which requires [ f = 0 .

Following the terminology of Temam [4] , we write

= {g e H(Q) ; g spa t i a l ly periodic on Q] ,

= {g e lT(Q) ; [ g = 0} ,
r P

and H™(§) = rf"(Q)2 . Here lP(Q) is the usual Sobolev space of

real-valued functions on Q with mth-order generalized derivatives in

Li (Q) and norm |w| • Writing X, for B ° , we also write

https://doi.org/10.1017/S0004972700004482 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004482


P.E. Kloeden

H = {u e IL (Q) ; div u = 0} ,

V = {u e m1 (§) ; div u = 0}

and use the following inner products and norms

(UjV) = f u. V j |u | = (u,V)s on H

" h
and

((u,v)) = f Vu : VU , | |u | | = Uu,V))* on V .f Vu : VU , | |u |

'a

We write P for the orthogonal projector from 3L (Q) onto fl

and note that i t is also the orthogonal projector from 3H * (Q) onto V

In the present setting, we then have PA = A on the domain

dom(A) = {u e H, hu e H = H 2 (Q) n H}}

where, as above, the dot indicates zero spatial averages. The Navier-

Stokes equations then take the form

(2 3) 3"
-rf - VAK + P{U . VU) = Pf .

A strong solution u of (2.3) on a time interval 0 < t < T satisfies

u e £2(<?J2';dom(A)) n L^iO^TsV) .

The global existence of a unique strong solution for each UQ z V ,

f z 1,2.(0,T;H) and any 0 < T < <*> is established in Temam [4] using a

using a priori estimates based on the relationships

l " ( * ) | 2 + v ||

(2.4) j -4r \\u(t) || 2 + v|Au(t) | 2 = (/(t)jAu(t)) = -{{f(t),u

and on the Poincare" inequalities

( 2 . 5 ) \ i | w | 2 < ||" I I 2 » * 1 I I " I I 2 ^ I A " I 2

where \\ > 0 i s defined below. These relationships are obtained by

multiplying (2.3) by u and Au , respectively, integrating over Q and

using the identit ies

f ( u . Vu) . u = 0 = I (u . Vu) . Au ,
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the latter being peculiar to this two-dimensional spatially periodic

setting. (See Temam [4], page 19).

In this paper we restrict attention to time-independent forcing terms

f , which we assume belong to the space V . The crucial a priori

estimate is then

(2.6)

from which we see that all solutions asymptote towards the bounded subset

B = {u e V; ||w|I < Ki = ||f||/vXi>

of V . This set B is in fact invariant under the Navier-Stokes equations

that is any solution of (2.3) starting in B remains in B . We thus need

only consider these solutions in B . Furthermore, the initial data

Mg £ dom(A) n B we have the additional estimate

(2.7)

which is derived in Foias and Temam [2]. The closed and bounded subset

A = iu e dom(A) n B; |Ay| <, K2)

of dom(A) is also invariant under the Navier-Stokes equations. In the

sequel we restrict attention to solutions in A , which is in fact a

compact subset of the spaces V and H .

The Stokes operator, - PA /is equal to -A here. It has

eigenvalues A i < X 2 - ^ 3 s •*"" and corresponding eigenf unctions

$ 1' $2 /4>3 ̂  - • - dom(A) , satisfying

(2.7) - A K = X£<j>£ and div <!>£ = 0.

These eigenfunctions are complete and orthonormal in H , and orthogonal

in V with

(2-8) H*feM
2 = V

We denote by P the orthogonal projector of JL onto the finite-

dimensional subspace of H spanned by {Ji,^/...iJ } and write

Qn = I - Pn . From (2.8) we obtain the following generalizations of the

Poincare" inequalities

(2.9)
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Defining u = P u and q = Q u , we can consider the Navier-

Stokes equations (2.3) as a system on the finite-dimensional space P V

coupled with a system on the infinite-dimensional space Q V :

3".

(2.10)

since P A = AP and § 4 = Afi here. The finite-dimensional system

(2.11) _ _ v A ^ + P n ( V v V = p ^

on P V obtained by discarding the coupling term is called the nth-order

Gaterk-in approximation of the Navier-Stok.es equations relative to the given

basis of eigenfunctions. We can write i t as a system of linear-quadratic

ordinary differential equations on ]R in terms of the time-dependent

coefficients of the linear span of u (x,t) = Y a . (t) ij> . (x) . We note

that the various priori estimates such as (2.6) and (2.7), for the

Navier-Stokes equations are also valid for any nth-order Galerkin

approximation, so all solutions of (2.11) will be attracted to the subset

P k and remain there. The solutions of the corresponding system of

differential equations in JFT will thus be attracted to, and remain in,

the compact subset of JUT corresponding to P A , namely

{U e JRn ; T W ^ s f \y. ± Kp .
3=1 3 3 0=1 ° °

3. Asymptotically stable attracting sets

We consider an autonomous system of ordinary differential equations
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on _ZK . For the particular needs of this paper, this system will

correspond to an nth-order Galerkin approximation (2.11) of the Navier-

Stokes equations, although our discussion in this section holds more

generally. We suppose that all solutions of (3.1) are attracted to some

bounded subset of IRn , hence exist for all future time, and that F is

uniformly Lipschitz on such a bounded subset.

Let Y be a nonempty, compact subset of JR , which is invariant

under system (3.1). Following Yoshizawa [6], we say that Y is

uniformly stable for (3.1) if for each e > 0 there exists a 6 = 6(e) > 0

such that

dist(y(t;yo),Y) < e for all t > 0

whenever dist(z/g ,Y) < 6 , where y(t;UQ) is the solution of (3.1) with

initial value J/(O;J/g) =2/0 • I f i n addition there exists a SQ > 0 and

a y(e) > 0 for each e > 0 such that

dist (y {t;y0) ,Y) < e for all t > Tie)

whenever di.st{yo,Y) < &o , we say that Y is uniformly asymptotically

stable for (3.1) .

Yoshizawa [6] has given various necessary conditions and sufficient

conditions for a compact subset Y to be uniformly stable or uniformly

asymptotically stable. These involve the existence of an energy-like

Lyapunov function that is a real-valued function defined on a neighbour-

hood of Y and possessing special properties. For such a function V we

define the upper-Dini derivative relative to (3.1) as

t = lim sup{V(y+hF(y)) - F(y)}/h .
7 - -

The following theorem of necessary conditions for uniform asymptotic

stability is a restatement of Theorem 22.5 of Yoshizawa [6]. These

conditions are also sufficient, as can be deduced from sections 14 and 16

of [4], but we do not require that here. We define

S(Y;R0) = {y e m
n: distty.y) < RQ} •
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THEOREM 3 . 1 Suppose that the nonempty, compact subset Y of

JRn is uniformly asymptotically stable for C3.1) and that V is uniformly

Lipschitzian on some sufficiently large neighbourhood of Y . Then there

exists a function

V : ; 0

for some RQ > 0 for which:

(I) V is uniformly Lipschitzian on S(YJRQ) , that is there exists a

constant 0 < .L < «° such that

\V(y_) - Vlu') \< L\y' - y"\

for all y3y' e S{JjR0) ;

(II) there exist continuous monotonically increasing functions

a,e : (Q,RQ) +JR
+ with a(0) = 6(0) = 0 and a(r) < B(r) for r > 0

such that

) <, V(y) <, ^

for all y e 5(Y;i?0) ; and

(in) there exists a constant c > 0 such that

for all y e S(YjR0) .

We note here that

d i s t Q / , y ) = i n f { \ y - y ' \ ; y ' e Y } ,

where the infimum is actually attained for a compact set Y .

4. Main result

The main result of this paper is to show that when a sufficiently

high order Galerkin approximation of the Navier-Stokes equations has a

uniformly asymptotically stable compact attracting set, then the Navier-
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Stokes equations have a nearby, compact in H , attracting set which is

also uniformly asymptotically stable. We prove it here, for simplicity,

for the two-dimensional Navier-Stokes equations with periodic boundary

conditions. Our proof could be extended to the usual case of vanishing

boundary conditions, or to the three-dimensional Navier-Stokes equations

provided the global existence of sufficiently smooth solutions is assumed.

This generalizes a recent result of Constantin, Foias and Temam [/],

who considered the simplest type of attractor, a steady solution. They

made considerable use of the spectral properties of the linearization

about this steady solution. Independently, Kloeden [2] obtained the same

result using Lyapunov functions rather than spectral properties to

characterize the stability. The advantage of this approach, to be used

here, is that it extends naturally to more complicated attracting sets

for which the spectral properties may not be so apparent. There is

however a coupling between the size of the Galerkin approximation and the

stability characteristics of its attracting set, which will be revealed in

the proof of the theorem.

THEOREM 4.1 Suppose that f c V and that A is a nonempty

compact subset of P H which is uniformly asymptotically stable for the

nth-order Galerkin approximation of the two-dimensional Navier-Stokes

equations with periodic boundary condition. In addition suppose that the

eigenvalue X of the corresponding Stokes operator is sufficiently

large in comparison with the stability characteristics of A (as

specified in the proof).

Then there exists a nonempty compact subset A of H which is

uniformly asymptotically stable for the Navier-Stokes equations and is

close to A^ in the Hausdorff metric relative to the H-norm.

Proof. We identify the nth-order Galerkin approximation (2.11) with

a vector differential equation (3.1) by writing y e -2? for the

coordinates of elements in P H relative to the basis •[<J>i ,<f>2 »• • • i§ }

Since the inequalities (2.6) and (2.7) also hold for a Galerkin
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approximation, the attractor A is in fact a subset of P A . As above,
YL YI

we can identify A with a compact subset 7 of J? , which is then

uniformly asymptotically stable for the differential equation (3.1)

corresponding to the Galerkin approximation. By Theorem 3.1 there thus

exists a Lyapunov function V defined on some neighbourhood S{Y ;Rg)

of 7 in IR , with corresponding functions a,6 and constants c3 L

and i?_ (which all depend on n , omitted for typographical convenience).

Now let u{t) e A be any solution of the Navier-Stokes equations (2.3)

and set u (.£) = P u(t) , q (£). = Q u(t) . We can then consider u (t) as
—YL Yl — —Yl Yl- "Tl

a solution of the first system of (2.10)

in P H corresponding to a given forcing term q (t) . Identifying

y e IR with the coordinates of u in P H and G{y ft) with those of
— ~Yl Yl " -

(4.2) - Pn(MM-7?M(t) + %W-Vun + 2M(*)-V?B(t)) ,

we may regard (4.1) as the perturbation

dy
(.4.3) gj = F(y) + G(y,t)

of the appropriate equation (3.1).

We use the Lyapunov function V for the unperturbed system (3.1) to

investigate the stability and boundedness properties of the system (4.3)

for an arbitrary, continuous perturbation G • This requires the

perturbation G to be sufficiently small so that the solutions of (4.3)

under consideration remain in S(Y ;/?„) , the domain of definition of V

From inequalities (2.9) we have for any u e A

(4-4) \ln\
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and

(4.5) | \%\ | * | | * J | /X^ -< |A,| fa , K2/fa
where q = Q u . Using these we shall show in the appendix that

(4.6) |C| = |Pn( VV ? n(t) + qnlt)-?Un |

for any w = M̂  + <Jn e A , where the constant K? depends on Jfj and

(see (5.6)). We now assume that X satisfies
n+1

(4.7) Xn+1 > (4 L K2 K3/c
 2

and define r = &'1 ( i a (i? )) , so that rQ < 9T1 {a (RQ)) < Rg . Then any

solution y(t) of (4.3) with in i t i a l value z/(0) e S(Y ;r.) remains in

S(Y ;RQ\ for al l t ^ 0 . Suppose this were not so. Then there would

exist a f irst instant 0 < T < °° such that dist(i/ (T) ,Y ) = Rg . As

y(t\ remains in the domain of definition of V for 0 ^ t < T , we obtain

from the properties of V (that is Theorem 3.1) and upper-Dini derivatives

and from (4.6)

(4.8) D+
{ 3)V(y(t)) * D+

{ ^(yjt)) + L\G(y(t) ,

i -aV(y(t)) + L K2 £ 3 ^

for 0 < t < T . Hence

V(y(t)) < V(y{O))e~at + (1 - e at) L Kz X3/a

< Vly(O)) + L K2 K3/c X ^

< 6(dist(z/(0),yn)) + j a(Rg)

for 0 < t < T , where we have used (4.7) and the def ini t ion of r .

By the continuity of V and y we thus have

https://doi.org/10.1017/S0004972700004482 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004482


48 P.E. Kloeden

which contradicts the fact that

a(R0) = a(dist(y(.T) ,Jn))

Hence no such T exists and y (£) e S{Y -,R ) for all t > 0 .

We now strengthen inequality (4.7) to

(4.9) Xn+1 > (2 L K2 K3/a m i n ^ a ^ ) })2

and define n = 2 L K2 K3/G X 2. , so that n < V-, min {r-.atr.)} . We
W+l z U U

claim that the nonempty compact subset

ln = iy e IR
n;V(t/) ̂  n> ,

which contains 7 = {y e J?f ;7(z/) =0} in its interior, is uniformly

asymptotically stable for the perturbed system (4.3) as long as the

perturbation G satisfies the bound (4.6) and as long as n is large

enough for (4.9) to be satisfied. Our proof is adapted from that of

Theorem 25.3 of Yoshizawa [6].

j / £ S ( r ; i ? J \ L . Then V(y) > n and from (4.8) we have

D y ( ^ - -°n^ +r

Let

(4.10) < -a n + j Q n = - — a n ,

so any solut ion yit) of (4.3) s t a r t ing in Y must remain in Y ,

t h a t i s Y i s invar i an t under (4.3) . Moreover for y e Y , we have

<x(dist(i/,YM)) ̂

(4.11) dist(z/,Yn) < a"\n) .

Hence Y £ Y £ S(Y ;a (n)) and as a in) "*" 0 for n •* 0 , we have
n n n

Yn close to Yn in the Hausdorff metric on compacta.
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Let 6 . = rg - a~ (n) . Then 6Q > 0 , as n < — min{z> , a ( r . ) } ,

Suppose that a solution y(t) of (4.3) with initial value !/„ e S(J ,-r_)

does not belong to J . Then 7(j/(t)) > n and from (4.10)

< - j o n t + 3(6^ + a~1(n)) ,

which is no greater than n for t £ T* = 2(g(r_) -n)/e n , where T* > 0

1
as n S — a(r.) < 3(*Vn) . Hence for any e > 0 we certainly have

y(t\ e S(Y ;zl for t > 21* and y. £ S(Y ,-rJ , which is the asymptotic

part of the uniform asymptotic stability definition. It remains now only

to show that Y is uniformly stable for (4.3). The proof of this is

exactly the same as on pages 135 and 136 of Yoshizawa [6] and will not be

repeated here, other than to mention that it uses the invariance of Y

and the absorbing property of Y just proven, and the uniform Lipschitz

property of F{y) and G{y,t) in y e S{Y ;i?.) . We thus have that V

is uniformly asymptotically stable for the perturbed system (4.3) and any

admissible perturbation G under consideration. Moreover Y is independen

of any particular admissible perturbation under consideration.

We are now ready to return to the Navier-Stokes equations (2.3), or

in coupled form (2.10). To begin we restrict attention to the bounded

invariant subset A of dom(A) and define

A = iu e A; P u e A }

where
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Clearly A is closed and bounded in P A , so A is closed and bounded

in A . Thus A is a compact subset of V , and also of H . Moreover,

for any u e. A , with P u = £\ y .<j> . (re) , we have from (4.4) and (4.11)

w,A) = dists(Pnu,An) + \Qnu\

= dist(y,Xn) + \Qnu\

< a"1(2 L K2K3/c

which becomes arbitrarily small as n becomes arbitrarily large. The

uniform asymptotic stability of A for the Navier-Stokes equations

restricted to A then follows from that of $n for the appropriate

perturbed equation (4.3) in -2? . Finally, the restriction to A can be

lifted on account of inequality (2.6) and an analogous inequality to (2.7).

Apart from the proof of the auxiliary estimate (4.6) , which is given

in the appendix, this completes the proof of Theorem 4.1.

There are several points that need to be made about the attracting set

A in the above theorem. More than likely it will not be minimal attracting

set for the Navier-Stokes equations, but will contain such a set. (As a

simple illustration, any set [-e,e] is a uniformly asymptotically stable

attractor for the differential equation x = -x , yet only the subset {0}

is the minimal attractor) . In the simple case where the attractor in the

Galerkin approximation is a steady solution, both Constantin, Foias and

Temam [7] and Kloeden [3] have shown that the Navier-Stokes equations have

a nearby attracting steady solution. For more complicated types of a

attractors such as periodic orbits, the attractor in the Navier-Stokes

equations need not be of exactly the same form, though as we can see from

the construction of A , it will be close (for example, in a thin tube

about the original periodic orbit). Methods other than considered here

will be needed to clarify the exact form of the minimal attractor contained

in A .
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Finally, we note that expressions (4.7) and (4.9) involve a coupling

between the size of the eigenvalue X . and the stability characteristics

of the n-th order Galerkin approximation, namely e^, L^, a^R^) , r^

etcetera which we now label with the subscript n . These quantities may

change as n changes, so there is not a priori guarantee that (4.7) and

(4.9) can be made to hold simply by taking a larger value of n . The

problem here is that the successively higher order Galerkin approximations

may have progressively weaker attracting strength, so that in the limit

there is no attraction at all. Constantin, Foias and Temam [7] show that

this cannot happen in the case of an asymptotically stable steady solution.

We do not believe that it can happen in the general case, but are unable

to provide a proof. (This problem does not occur in the converse situation

where the Navier-Stokes equations are assumed to have an asymptotically

stable attracting set and it is to be shown that sufficiently large

Galerkin approximations have a nearby asymptotically stable attracting set;

here the stability characteristics of the original attractor are fixed and

do not depend on the particular approximation being considered.)

Appendix: Uniform bound on the perturbations G

We need now to establish the uniform bound (4.6) on the perturbations

G, which was used in the proof of Theorem 4.1. For this we use the

inequality

\u- Vu| < o\\u\ 2 I AM I * |\v\ | j

which follows from various Sobolev space embedding inequalities. See Temam

[3; pages 11-13]. Then

l?l = I W V ? n + 1n™n + VV?«> I (L2-norms)

C3\tqj Ik

https://doi.org/10.1017/S0004972700004482 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004482


52 P . E . Kloeden

where we have used t h e g e n e r a l i z e d Poincare1 i n e q u a l i t i e s (4.4) and (4.5)

and t h e f a c t t h a t u e A
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