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Abstract

We give a generalisation of the Cartan decomposition for connected compact Lie groups of type B
motivated by the work on visible actions of Kobayashi [‘A generalized Cartan decomposition for the
double coset space (U(n1) × U(n2) × U(n3))\U(n)/(U(p) × U(q))’, J. Math. Soc. Japan 59 (2007),
669–691] for type A groups. Suppose that G is a connected compact Lie group of type B, σ is a
Chevalley–Weyl involution and L, H are Levi subgroups. First, we prove that G = LGσH holds if and
only if either (I) both H and L are maximal and of type A, or (II) (G, H) is symmetric and L is the Levi
subgroup of an arbitrary maximal parabolic subgroup up to switching H and L. This classification gives a
visible action of L on the generalised flag variety G/H, as well as that of the H-action on G/L and of the
G-action on (G ×G)/(L × H). Second, we find an explicit ‘slice’ B with dim B = rank G in case I, and
dim B = 2 or 3 in case II, such that a generalised Cartan decomposition G = LBH holds. An application
to multiplicity-free theorems of representations is also discussed.

2010 Mathematics subject classification: primary 22E46; secondary 32A37, 53C30.

Keywords and phrases: Cartan decomposition, multiplicity-free representation, semisimple Lie group,
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1. Introduction and statement of main results

Let G be a connected compact simple Lie group of type B and σ a Chevalley–
Weyl involution of G. The aim of this paper is to classify all the pairs (L, H) of
Levi subgroups of G such that G = LGσH holds. The motivation for considering
this kind of decomposition comes from the theory of visible actions on complex
manifolds introduced by Kobayashi [Ko2], and G = LGσH can be interpreted as a
generalisation of the Cartan decomposition to the nonsymmetric setting. (We refer the
reader to [He, Ho, Ma1, Ko4] and references therein for some aspects of the Cartan
decomposition from geometric and group-theoretic viewpoints.)

A generalisation of the Cartan decomposition for symmetric pairs has been used
in various contexts including analysis on symmetric spaces; however, there was no
analogous result for nonsymmetric cases before Kobayashi’s paper [Ko4]. Motivated
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n n n

F 1. Dynkin diagram of type Bn.

by visible actions on complex manifolds [Ko1, Ko2], he completely determined the
pairs of Levi subgroups

(L, H) = (U(n1) × · · · × U(nk), U(m1) × · · · × U(ml))

of the unitary group G = U(n) such that the multiplication mapping L × O(n) × H→G
is surjective. Furthermore, he developed a method to find a suitable subset B of
O(n) which gives the following decomposition (a generalised Cartan decomposition,
see [Ko4]):

G = LBH.

On the other hand, Sasaki recently studied visible actions in the setting where (G, H)
is a pair of complex reductive Lie groups, and gave a generalisation of the Cartan
decomposition G = LBH [Sa1, Sa2].

Returning to the decomposition theory [Ko4], we considered the following
problems for general compact Lie groups and examined the case where G is a
connected compact simple Lie group of type D in another paper (‘Visible actions on
flag varieties of type D and a generalization of the Cartan decomposition’, submitted
for publication).

Let G be a connected compact Lie group, t a Cartan subalgebra, and σ a
Chevalley–Weyl involution of G with respect to t. (Here, we recall that an involutive
automorphism µ of a connected compact Lie group K is said to be a Chevalley–Weyl
involution if there is a maximal torus T of K such that µ(t) = t−1 for every t ∈ T [Wo].
For instance, an involution σ(g) = ḡ defines a Chevalley–Weyl involution of G = U(n)
with the standard maximal torus, and Gσ = {g ∈ U(n) : ḡ = g} ' O(n).)

(1) Classify all the pairs of Levi subgroups L and H with respect to t such that the
multiplication mapping ψ : L ×Gσ × H→G is surjective.

(2) Find a ‘good’ representative B ⊂Gσ such that G = LBH in the case ψ is
surjective.

We call such a decomposition G = LBH a generalised Cartan decomposition. Here
we note that the role of the subgroups H and L is symmetric.

In the present paper, we solve the above problems for connected compact simple
Lie groups G of type B. In order to state the main results, we label the Dynkin diagram
of type Bn as shown in Figure 1.

For a subset Π′ of the set Π of simple roots, we denote by LΠ′ the Levi subgroup
whose root system is generated by Π′. For example, L∅ is a maximal torus of G and
L{αp}

c = U(p) × SO(2(n − p) + 1) for G = SO(2n + 1) (1 ≤ p ≤ n). Here (Π′)c denotes
the complement Π \ Π′.
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T 1.1. Let G be a connected compact simple Lie group of type Bn, σ a
Chevalley–Weyl involution, Π′ and Π′′ proper subsets of the simple system Π,
and LΠ′ and LΠ′′ the corresponding Levi subgroups. Then the following two conditions
on {Π′, Π′′} are equivalent.

(i) G = LΠ′ Gσ LΠ′′ .
(ii) One of the following conditions holds up to switch of the factors Π′ and Π′′ :

Case I. (Π′)c = {αn}, (Π′′)c = {αn}.
Case II. (Π′)c = {α1}, (Π′′)c = {α j}, 1 ≤ j ≤ n.

We note that the pair (G, LΠ′) forms a symmetric pair if and only if (Π′)c = {α1},
and that G/ LΠ′ = G/ LΠ′′ is a (nonsymmetric) spherical variety in case I (see [Kr]).

Theorem 1.1 implies that G = LGσH holds if and only if (G, L, H) satisfies one of
the following two conditions: (I) both H and L are maximal and of type A, or (II)
(G, H) is symmetric and L comes from a maximal parabolic subgroup up to switching
of H and L. In each case, we give a generalised Cartan decomposition G = LBH
explicitly with dim B = rank G in case I and dim B = 2 or 3 in case II. This is stated in
Propositions 3.2 and 3.3.

Application to representation theory. A generalised Cartan decomposition G =

LBH implies that the subgroup L acts on G/H in a (strongly) visible fashion, and
likewise H on G/L, and G on (G ×G)/(L × H). Then Kobayashi’s theory leads us to
three multiplicity-free theorems (triunity à la [Ko1]):

Restriction G ↓ L : IndG
H(Cλ)|L,

Restriction G ↓ H : IndG
L (Cλ)|H ,

Tensor product : IndG
H(Cλ) ⊗ IndG

L (Cµ).

Here IndG
H(Cλ) denotes a holomorphically induced representation of G from a character

Cλ of H by the Borel–Weil theorem. See [Ko1, Ko2, Ko3, Ko5, Ko6] for the general
theory on the application of visible actions (including the vector bundle setting), and
Corollaries 5.4 and 5.5 for type B groups.

Special features of type B groups. We compare the main results with the previous
results for type A [Ko4] and type D.

(1) Although both type A and type D groups are rich in pairs of Levi subgroups
(L, H) satisfying G = LGσH, our classification theorem shows that there are
not many pairs for type B groups. This geometric result is reflected by
the representation-theoretic fact that type B groups do not have many pairs
(λ, µ) of highest weights such that the tensor product representation aλ ⊗ bµ is
multiplicity-free for arbitrary nonnegative integers a, b [Li, St].

(2) The herringbone stitch method was used in type A, D and case II here; however,
we take another approach to find a generalised Cartan decomposition in case I,
that is, L\G/H = U(n)\ SO(2n + 1)/ U(n).
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Organisation of this paper. In Section 2 we give a matrix realisation of the
orthogonal group G = SO(2n + 1) and its subgroups which are used in Sections 3
and 4. In Section 3 we prove that (ii) implies (i). Furthermore, we find explicitly
a slice B that gives a generalised Cartan decomposition G = LΠ′ B LΠ′′ . The converse
implication on (ii)⇒ (i) is proved in Section 4 by using the invariant theory for quivers.
An application to multiplicity-free representations is discussed in Section 5.

2. Matrix realisation

The surjectivity of ψ : L ×Gσ × H→G is independent of the coverings and the
choice of Cartan subalgebras and Chevalley–Weyl involutions. Thus, we may and do
work with the orthogonal group SO(2n + 1) and a fixed pair of a Cartan subalgebra
and a Chevalley–Weyl involution in Sections 2–4.

Throughout this paper, we realise G = SO(2n + 1) as a matrix group as follows:

G := {g ∈ SL(2n + 1, C) : tgJ2n+1g = J2n+1,
tgg = I2n+1},

where tg denotes the transpose of g, and Jm is defined by

Jm :=



1
1

O

. .
.

O
1


∈ GL(m, R).

Then the corresponding Lie algebra g = so(2n + 1) of G forms

g := {X ∈ sl(2n + 1, C) : tXJ2n+1 + J2n+1X = O, tX + X = O}. (2.1)

We take a Cartan subalgebra t and an involution σ of G as follows:

t :=
⊕
1≤i≤n

R
√
−1Hi,

σ : G→G, g 7→ ḡ,

where Hi := Ei,i − E2n+2−i,2n+2−i, and ḡ denotes the complex conjugation of g ∈G. The
differential of σ is denoted by the same letter. Then σ is a Chevalley–Weyl involution
of G with respect to t.

We let {εi}1≤i≤n ⊂ (t ⊗R C)∗ be the dual basis of {Hi}1≤i≤n. Then we define a simple
system Π := {α1, . . . , αn} by

α1 := ε1 − ε2, . . . , αn−1 := εn−1 − εn, αn := εn.
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Let n = n1 + · · · + nk be a partition of n with n1, . . . , nk−1 > 0 and nk ≥ 0. We put

si :=
∑

1≤p≤i

np (1 ≤ i ≤ k − 1),

Π′ := Π \ {αsi ∈ Π : 1 ≤ i ≤ k − 1},

and denote by LΠ′ the Levi subgroup whose root system is generated by Π′. In the
matrix realisation, LΠ′ takes the form

LΠ′ =





A1
. . .

Ak–1

B
Jnk−1

Ak–1 Jnk−1

. . .

Jn1 A1Jn1


:

Ai ∈ U(ni) (1 ≤ i ≤ k − 1),

B ∈ SO(2nk + 1)


' U(n1) × · · · × U(nk−1) × SO(2nk + 1). (2.2)

Here, we note that (G, LΠ′) forms a symmetric pair if and only if (Π′)c = Π \ Π′ = {α1},
and that G/ L{αn}

c is a weakly symmetric space in the sense of Selberg. For later
purposes, we give explicitly an involution τ1 and an automorphism µ satisfying µ4 = id
of which the connected components of fixed point subgroups are L{α1}

c and L{αn}
c

respectively:

L{α1}
c = (Gτ1 )0, τ1 : G→G, g 7→ I1,2(n−1)+1,1gI1,2(n−1)+1,1,

L{αn}
c = Gµ, µ : G→G, g 7→ I√

−1gI√
−1, (2.3)

where K0 denotes the connected component of K containing the identity element for a
Lie group K, and I1,2(n−1)+1,1, I√

−1 are defined by

I1,2(n−1)+1,1 := diag(−1,

2(n−1)+1︷   ︸︸   ︷
1, . . . , 1, −1),

I√
−1 := diag(

n︷             ︸︸             ︷√
−1, . . . ,

√
−1, 1,

n︷                 ︸︸                 ︷
−
√
−1, . . . , −

√
−1).

To obtain a generalised Cartan decomposition by the herringbone stitch method, we
will use an involutive automorphism τp of G (1 ≤ p ≤ n) given by

τp : G→G, g 7→ Ip,2(n−p)+1,pgIp,2(n−p)+1,p,

where

Ip,2(n−p)+1,p := diag(

p︷        ︸︸        ︷
−1, . . . , −1,

2(n−p)+1︷   ︸︸   ︷
1, . . . , 1,

p︷        ︸︸        ︷
−1, . . . , −1).
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Then (Gτp )0 is given by

SO(2p) × SO(2n − 2p + 1)

=




A B
S

C D

 :
(
A B
C D

)
∈ SO(2p), S ∈ SO(2n − 2p + 1)

 .
3. Generalised Cartan decomposition

In this section we give a proof of the implication (ii) ⇒ (i) in Theorem 1.1. The
idea is to use the herringbone stitch method that reduces unknown decompositions for
nonsymmetric pairs to the known Cartan decomposition for symmetric pairs.

3.1. Cartan decomposition for symmetric pairs. In this subsection we recall
a well-known fact on the Cartan decomposition for the symmetric case ([Ho,
Theorem 6.10], [Ma2, Theorem 1]).

F 3.1. Let K be a connected compact Lie group with Lie algebra k and two
involutions τ, τ′ (τ2 = (τ′)2 = id). Let H and L be subgroups of K such that

(Kτ)0 ⊂ L ⊂ Kτ and (Kτ′)0 ⊂ H ⊂ Kτ′ .

We take a maximal abelian subspace b in

k
−τ,−τ′ := {X ∈ k : τ(X) = τ′(X) = −X},

and write B for the connected abelian subgroup with Lie algebra b. Suppose that ττ′

is semisimple on the center z of k. Then

K = LBH.

3.2. Decomposition for case I. This subsection is devoted to showing the following
proposition.

P 3.2 (Generalised Cartan decomposition for case I). Let G = SO(2n + 1)
and (Π′)c = (Π′′)c = {αn}. Then G = LΠ′ exp(a ⊕ q) LΠ′′ where a and q are defined by

a :=
[n/2]⊕
i=1

R(E2i−1,2n−2i+2 − E2i,2n−2i+3 − E2n−2i+2,2i−1 + E2n−2i+3,2i),

q :=
[(n+1)/2]⊕

i=1

R(E2i−1,n+1 − En+1,2n+3−2i − En+1,2i−1 + E2n+3−2i,n+1).

P. Since an automorphism µ of g is an involution of gµ
2

(see (2.3) for the definition
of µ) and a is a maximal abelian subspace of g−µ,

g = gµ ⊕

(⋃
g∈Gµ

Ad(g)a
)
⊕ g−µ

2
. (3.1)
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Let Zgµ(a) denote the centraliser of a in gµ. Then M := exp(Zgµ(a)) is given by

M =

SU(2)m (n = 2m),

SU(2)m × U(1) (n = 2m + 1).

By using this block diagonal matrix group M, we rewrite the third factor g−µ
2

of the
decomposition (3.1) as

g
−µ2

=
⋃
g∈M

Ad(g)q. (3.2)

We omit details since this can be verified by a simple matrix computation.
Equation (3.2) yields (⋃

g∈Gµ

Ad(g)a
)
⊕ g−µ

2
=

⋃
g∈Gµ

Ad(g)(a ⊕ q). (3.3)

Let us verify (3.3). It is clear that the left-hand side contains the right-hand side. We
show the converse inclusive relation. From (3.2), for any l ∈Gµ, X ∈ a and Z ∈ g−µ

2
,

there exist h ∈ M and Y ∈ q satisfying

Ad(h)Y = Ad(l)−1Z.

Then

Ad(l)X + Z = Ad(l)(Ad(h)X) + Ad(lh)(Y)

= Ad(lh)(X + Y).

Thus Ad(l)X + Z belongs to
⋃

g∈Gµ Ad(g)(a ⊕ q), and we have shown (3.3).
We are ready to give a generalised Cartan decomposition for case I. We continue

the decomposition (3.1) as follows:

g = gµ ⊕

(⋃
g∈Gµ

Ad(g)a
)
⊕ g−µ

2

= gµ ⊕

(⋃
g∈Gµ

Ad(g)(a ⊕ q)
)

by (3.3).

Hence we can find that the exponential mapping

exp :
⋃
g∈Gµ

Ad(g)(a ⊕ q)→G/Gµ

is surjective [He]. Consequently,

G = exp
(⋃

g∈Gµ

Ad(g)(a ⊕ q)
)
Gµ

= Gµ exp(a ⊕ q)Gµ

= LΠ′ exp(a ⊕ q) LΠ′′ . �

3.3. Decomposition for case II. The aim of this subsection is to show the following
proposition.
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ss

F 2. Herringbone stitch used for L\G/H in case II.

P 3.3 (Generalised Cartan decomposition for case II). Let G = SO(2n + 1),
(Π′)c = {α1} and (Π′′)c = {α j} (1 ≤ j ≤ n). We define abelian subspaces b1 and b2 of g
by

b1 := R(E1, j+1 − E2n− j+1,2n+1 − E j+1,1 + E2n+1,2n− j+1)

+ R(E1,2n− j+1 − E j+1,2n+1 − E2n− j+1,1 + E2n+1, j+1),

b2 := R(E1,2n− j+2 − E j,2n+1 − E2n− j+2,1 + E2n+1, j).

Then G = LΠ′ exp(b1) exp(b2) LΠ′′ .

P. We put L = LΠ′ , H = LΠ′′ for simplicity. Let us take a symmetric subgroup
G′G′′ = (Gτ j )0 containing H where G′ and G′′ are given by G′ := SO(2 j) × I2n−2 j+1 and
G′′ := I2 j × SO(2n − 2 j + 1). In light of the fact that b1 is a maximal abelian subspace
of g−τ1,−τ j , we can see from Fact 3.1 that

G = L exp(b1)G′G′′. (3.4)

We take a symmetric subgroup (G′)µ = U( j) × I2n−2 j+1 of G′. We again use Fact 3.1 as
follows:

G′ = (G′)τ1
0 exp(b2)(G′)µ. (3.5)

Further, (3.5) can be rewritten as

G′ = (G′)τ1
ss exp(b2)(G′)µ, (3.6)

where (G′)τ1
ss denotes the analytic subgroup of (G′)τ1 with Lie algebra the semisimple

part of the Lie algebra of (G′)τ1 . Then we continue the decomposition (3.4) as follows:

G = L exp(b1)G′G′′ by (3.4)

= L exp(b1)((G′)τ1
ss exp(b2)(G′)µ)G′′ by (3.6)

= L(G′)τ1
ss exp(b1) exp(b2)(G′)µG′′ by (G′)τ1

ss ⊂ ZG(b1)

= L exp(b1) exp(b2)H by (G′)µG′′ = H. �

Figure 2 shows a herringbone stitch which we have used for L\G/H in case II.
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4. Application of invariant theory of quivers

The aim of this section is to prove the implication (i) ⇒ (ii) in Theorem 1.1. We
shall use invariants of quivers for the proof as in [Ko4]. This section could be read
independently of Section 3 which gives a proof of the opposite implication (ii)⇒ (i)
in Theorem 1.1.

4.1. Invariants of quivers. In the following, the proofs of Lemmas 4.1–4.3 are
essentially the same as [Ko4, Lemmas 6.1–6.3], respectively. We therefore give
necessary changes and precise statements, but omit the proofs.

Let σ : M(N, C)→M(N, C) be the complex conjugation with respect to M(N, R).

L 4.1 (see [Ko4, Lemma 6.1]). Let G ⊂ GL(N, C) be a σ-stable subgroup, R ∈
M(N, R), and L a subgroup of G. If there exists g ∈G such that

Ad(L)(Ad(g)R) ∩M(N, R) = ∅,

then G , LGσGR. Here GR := {h ∈G : hRh−1 = R}.

We return to the case G = SO(2n + 1). We fix a partition n = n1 + · · · + nk with
ni > 0 (1 ≤ i ≤ n − 1), nk ≥ 0, and a positive integer r ≥ 2. We consider the following
loop:

i0→ i1→ · · · → ir, is ∈ {1, . . . , 2k − 1}, i0 = ir, is−1 , is (1 ≤ s ≤ r).

Correspondingly, we define a nonlinear mapping

Ai0···ir : M(2n + 1, C)→

M(ni0 , C) (i0 = ir , k),

M(2ni0 + 1, C) (i0 = ir = k),

as follows: let P ∈M(2n, C), and write P as (Pi j)1≤i, j≤2k−1 in block matrix form
corresponding to the partition

2n + 1 = n1 + · · · + nk−1 + (2nk + 1) + nk−1 + · · · + n1

such that

Pi j ∈


M(ni, n j; C) (i, j , k),

M(2nk + 1, n j; C) (i = k, j , k),

M(ni, 2nk + 1; C) (i , k, j = k),

M(2nk + 1, C) (i = j = k),

(4.1)

where n2k−i := ni (1 ≤ i ≤ k). Then we define (P̃)1≤i, j≤2k−1 and Ai0···ik (P) by

P̃i j :=


Pi j (i + j ≤ 2k),

Jni
tP2k− j,2k−iJn j (i + j > 2k, i, j , k),

J2nk+1
tP2k− j,k Jn j (i = k, j > k),

Jni
tPk,2k−iJ2nk+1 (i > k, j = k),
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and
Ai0···ir (P) := P̃i0i1 P̃i1i2 · · · P̃ir−1ir .

The point here is that for any l = (l1, . . . , lk−1, lk) ∈ L := U(n1) × · · · × U(nk−1) ×
SO(2nk + 1) (see (2.2) in Section 2 for the realisation as a matrix), the following
equality holds:

˜(Ad(l)P)i j = liP̃i jl
−1
j . (4.2)

We omit details since (4.2) can be verified by a simple matrix computation. This
equality leads us to the following lemma (see [Ko4, Lemma 6.2]).

L 4.2. If there exists a loop i0→ i1→ · · · → ir such that at least one of the
coefficients of the characteristic polynomial det(λIni0

− Ai0···ir (P)) is not real, then

Ad(L)P ∩M(2n, R) = ∅.

Combining Lemma 4.1 with Lemma 4.2, we obtain the next lemma (see [Ko4,
Lemma 6.3]).

L 4.3. Let n = n1 + · · · + nk be a partition with ni > 0 (1 ≤ i ≤ n − 1), nk ≥ 0, and
L = U(n1) × · · · × U(nk−1) × SO(2nk + 1) which is the corresponding Levi subgroup of
SO(2n + 1). Let us suppose that R is a block diagonal matrix

R :=


R1

R2
. . .

R2k−1

 ,
where Rs, R2k−s ∈M(ns, R) (1 ≤ s ≤ k − 1), Rk ∈M(2nk + 1, R).

If there exist X ∈ so(2n + 1) and a loop i0→ · · · → ir such that

det(λIni0
− Ai0···ir ([X, R])) < R[λ],

then the multiplication map L ×Gσ ×GR→G is not surjective. Here, [X, R] :=
XR − RX.

We shall use Lemma 4.3 in each of the subsequent Propositions 4.4–4.6.

4.2. Necessary conditions for G = LGσH. Throughout this subsection we set G =

SO(2n + 1) and

(L, H) = (U(n1) × · · · × U(nk−1) × SO(2nk + 1),

U(m1) × · · · × U(ml−1) × SO(2ml + 1)),

where n = n1 + · · · + nk = m1 + · · · + ml with ni, m j > 0 (1 ≤ i ≤ k − 1, 1 ≤ j ≤ l − 1),
and nk, ml ≥ 0. We give necessary conditions on (L, H) under which G = LGσH holds.
We divide the proof into three cases (Propositions 4.4–4.6).
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P 4.4. If k = 3, l = 2, m1 = 1, then G , LGσH.

P 4.5. If k = l = 2, n1, m1 ≥ 2, n2, m2 , 0, then G , LGσH.

P 4.6. If k = l = 2, n1 ≥ 2, n2 , 0, m2 = 0, then G , LGσH.

P  P 4.4. Let 1→ 3→ 5→ 2→ 1 be a loop, and R a diagonal matrix
R = diag(1, 0, . . . , 0, −1) of size (2n + 1) × (2n + 1). Then GR coincides with H. Let
us fix u ∈ C and define X = (Xi j)1≤i, j≤5 ∈ so(2n + 1) in block matrix form corresponding
to the partition 2n + 1 = n1 + n2 + (2n3 + 1) + n2 + n1 as (4.1):

X13 := E1,n3+1 =


1

O O
0

 ∈M(n1, 2n3 + 1; C),

X41 := En2,1 =

 O
1

 , X21 := u E1,1 =

u O
 ∈M(n2, n1; C).

We define the block entries X11, X15, X22, X23, X24, X32, X33, X34, X42, X43, X44, X51

and X55 to be zero matrices. The remaining block entries are automatically determined
by the definition (2.1) of so(2n + 1). Then Q := [X, R] has the following block entries:

Q13 = − E1,n3+1, Q41 = En2,1, Q21 = u E1,1 .

By a simple matrix computation (here we recall that k = 3),

A13521(Q) = Q13J2n3+1
tQ13Jn1 Jn1

tQ41Jn2 Q21 = u E1,1 ∈M(n1, C).

Therefore

det(λIn1 − A13521(Q)) = λn1 − uλn1−1 < R[λ] if u < R.

By Lemma 4.3, we have shown that G , LGσH. �

P  P 4.5. We may and do assume without loss of generality that
m1 ≥ n1 ≥ 2. Let 1→ 2→ 3→ 1 be a loop, and R ∈M(2n + 1, R) a diagonal matrix
with the following entries:

R := diag(

m1︷   ︸︸   ︷
1, . . . , 1,

2m2+1︷   ︸︸   ︷
2, . . . , 2,

m1︷        ︸︸        ︷
−1, . . . , −1).

Then GR = H. We fix u ∈ C and define X = (Xi j)1≤i, j≤3 ∈ so(2n + 1) in block matrix
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form corresponding to the partition 2n + 1 = n1 + (2n2 + 1) + n1 as (4.1):

X12 : = E1,n2 +u E1,n2+1 + En1,n2+1 + En1,n2+2

=


O 1 u 0 O

O
O 0 1 1 O

 ∈M(n1, 2n2 + 1; C),

X31 : = −E1,1 + En1,n1

=


−1

O
1

 ∈M(n1, C).

We define the block entries X11, X22 and X33 to be zero matrices. The remaining block
entries of X are determined automatically by (2.1). Then Q := [X, R] has the following
block entries:

Q12 = E1,n2 +u E1,n2+1 + En1,n2+1 + En1,n2+2, Q31 = −2 E1,1 +2 En1,n1 .

By a simple matrix computation (here we recall that k = 2),

A1231(Q) = Q12J2n2+1
tQ12Jn1 Q31

= −2(1 + u) E1,1 +2u2 E1,n1 −2 En1,1 +2(1 + u) En1,n1 ∈M(n1, C).

Consequently,

det(λIn1 − A1231(Q)) = λn1 − 4(1 + 2u)λn1−2 < R[λ] if u < R.

Using Lemma 4.3, we have G , LGσH. �

P  P 4.6. We consider the loop 1→ 2→ 1→ 3→ 2→ 1, and a
diagonal matrix R ∈M(2n + 1, R) with the following entries:

R := diag(

n−1︷   ︸︸   ︷
1, . . . , 1, −1, 0, 1,

n−1︷        ︸︸        ︷
−1, . . . , −1).

Then GR is conjugate to H by an element of Gσ. We fix u ∈ C and define X =

(Xi j)1≤i, j≤3 ∈ so(2n + 1) in block matrix form corresponding to the partition 2n + 1 =

n1 + (2n2 + 1) + n1 as (4.1):

X12 := E1,n2 + E1,n2+1 − En1,n2+1

=


O 1 1 0 O

O
O 0 −10 O

 ∈M(n1, 2n2 + 1; C),

X13 := u E1,1 −u En1,n1

=


u

O
−u

 ∈M(n1, C).
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We define the block entries X11, X22 and X33 to be zero matrices. The remaining block
entries are automatically determined by (2.1). Then Q := [X, R] has the following
block entries:

Q12 = −2 E1,n2 − E1,n2+1 + En1,n2+1, Q13 = −2u E1,1 +2u En1,n1 ,

Q21 = −2 En2,1 − En2+1,1 + En2+1,n1 .

By a simple matrix computation (here we recall that k = 2),

A121321(Q) = Q12Q21Q13Jn1
tQ21J2n2+1Q21 = 8u E1,1 −8u E1,n1 ∈M(n1, C),

and thus
det(λIn − A121321(Q)) = λn1 − 8uλn1−1 < R[λ] if u < R.

By Lemma 4.3, we have shown that G , LGσH. �

4.3. Completion of the proof of Theorem 1.1. We complete the proof of the
implication (i)⇒ (ii) in Theorem 1.1 (Proposition 4.7) by using Propositions 4.4–4.6.
We recall that for a given partition n = n1 + · · · + nk with n1, . . . , nk−1 > 0 and nk ≥ 0,
we have the corresponding Levi subgroup LΠ′ = U(n1) × · · · × U(nk−1) × SO(2nk + 1)
of SO(2n + 1), which is associated to the subset

Π′ := Π \

{
αi ∈ Π : i =

j∑
s=1

ns, 1 ≤ j ≤ k − 1
}

of the simple system Π (see Figure 1 for the labelling of the Dynkin diagram).

P 4.7. Let G be the special orthogonal group SO(2n + 1), σ a Chevalley–
Weyl involution, Π′, Π′′ subsets of Π, and LΠ′ , LΠ′′ the corresponding Levi subgroups.
Then

G , LΠ′ Gσ LΠ′′ , (4.3)

if, for 1 ≤ i, j, k ≤ n, one of the following conditions up to switching of Π′ and Π′′ is
satisfied:

(I) either (Π′)c or (Π′′)c contains more than one element;
(II) (Π′)c = {αi}, (Π′′)c = {α j} and i, j < {1, n};
(III) (Π′)c = {αi}, (Π′′)c = {αn} and i < {1, n}.

P. Let

(LΠ′ , LΠ′′) = (U(n1) × · · · × U(nk−1) × SO(2nk + 1),

U(m1) × · · · × U(ml−1) × SO(2ml + 1)).

First, let us show that the condition (I) implies (4.3). Without loss of generality, we
may and do assume that n1 ≥ · · · ≥ nk−1, m1 ≥ · · · ≥ ml−1 and that (Π′)c contains more
than one element since the roles of Π′ and Π′′ are symmetric.
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Case (I)(1): m1 = 1. Since L and H are contained in

U(n1) × U(n2) × SO(2(n3 + · · · + nk) + 1)

and
U(1) × SO(2(m2 + · · · + ml) + 1)

respectively, we can see that (4.3) holds by Proposition 4.4.

Case (I)(2): m1 ≥ 2, nk , 0. Since L and H are contained in

U(n1 + n2) × SO(2(n3 + · · · + nk) + 1)

and
U(m1) × SO(2(m2 + · · · + ml) + 1)

with m1 ≥ 2 respectively, we find that (4.3) holds by using Propositions 4.5
and 4.6.

Case (I)(3): m1 ≥ 2, nk = 0. In this case n1 is greater than one, and thus (4.3) follows
from Propositions 4.5 and 4.6. Here, we note that L and H are contained in

U(n1) × SO(2(n2 + · · · + nk) + 1) with n2 , 0

and
U(m1) × SO(2(m2 + · · · + ml) + 1),

respectively.

Next, let us treat the conditions (II) and (III). We immediately find that each of
conditions (II) and (III) implies (4.3) by using Propositions 4.5 and 4.6, respectively.

Therefore the proof is complete. �

By Propositions 3.2, 3.3 and 4.7, we have finished the proof of Theorem 1.1.

5. Application of visible actions to representation theory

As an application of Theorem 1.1, we obtain some multiplicity-free theorems by
using Kobayashi’s theory of visible actions. Here we recall the definition of strong
visibility [Ko2].

D 5.1. We say that a biholomorphic action of a Lie group G on a complex
manifold D is strongly visible if the following two conditions are satisfied.

(1) There exists a real submanifold S (called a slice) such that D′ := G · S is an open
subset of D.

(2) There exists an antiholomorphic diffeomorphism σ of D′ such that

σ|S = idS ,

σ(G · x) = G · x for any x ∈ S .
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D 5.2. In the above setting, we say the action of G on D is S -visible. This
terminology will also be used if S is just a subset of D.

Let G be a compact Lie group and L, H its Levi subgroups. Then G/L,G/H and
(G ×G)/(L × H) are complex manifolds. If the triple (G, L, H) satisfies G = LGσH,
then the following three group actions are all strongly visible:

Ly G/H,
Hy G/L,

∆(G)y (G ×G)/(L × H).

Here, ∆(G) is defined by ∆(G) := {(x, y) ∈G ×G : x = y}. The following fact [Ko3,
Theorem 4.3] constructs a family of multiplicity-free representations from visible
actions.

F 5.3. Let G be a Lie group andV a G-equivariant Hermitian holomorphic vector
bundle on a connected complex manifold D. If the following three conditions are
satisfied, then any unitary representation that can be embedded in the vector space
O(D,V) of holomorphic sections ofV decomposes multiplicity-freely.

(1) The action of G on D is S-visible. That is, there exists a subset S ⊂ D satisfying
the conditions given in Definition 5.1. Further, there exists an automorphism σ̂
of G such that σ(g · x) = σ̂(g) · σ(x) for any g ∈G and x ∈ D′.

(2) For any x ∈ S , the fibre Vx at x decomposes as the multiplicity-free sum of
irreducible unitary representations of the isotropy subgroup Gx. Let Vx =⊕

1≤i≤n(x) V
(i)
x denote the irreducible decomposition ofVx.

(3) σ lifts to an antiholomorphic automorphism σ̃ of V and satisfies σ̃(V(i)
x ) =

V
(i)
x (1 ≤ i ≤ n(x)) for each x ∈ S .

We return to the case where G = SO(2n + 1). The fundamental weights ω1, . . . , ωn

with respect to the simple roots α1, . . . , αn are given as follows (see Figure 1 for the
labelling of the Dynkin diagram):

ωi = α1 + 2α2 + · · · + (i − 1)αi−1

+ i(αi + αi+1 + · · · + αn−1 + 1
2αn) (1 ≤ i ≤ n).

By using the Borel–Weil theory together with Fact 5.3 and our generalised Cartan
decompositions, we obtain the following two corollaries of Theorem 1.1.

C 5.4. If the pair (L, λ) is an entry in Table 1, then the restriction πλ|L of the
irreducible representation πλ of SO(2n + 1) with highest weight λ to L decomposes
multiplicity-freely. Here, 1 ≤ i ≤ n and a is an arbitrary nonnegative integer.

C 5.5. The tensor product representation πaω1 ⊗ πbωi decomposes as a
multiplicity-free sum of irreducible representations of SO(2n + 1) for 1 ≤ i ≤ n and
arbitrary nonnegative integers a, b. Likewise, the tensor product πaωn ⊗ πbωn is also
multiplicity-free for any a, b ∈ N.
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T 1. Pairs L, λ such that restrictions πλ|L are multiplicity-free.

Levi subgroup L Highest weight λ

U(n) aωn

U(1) × SO(2n − 1) aωi

U(i) × SO(2n − 2i + 1) aω1

R 5.6. The above representations have been shown to be multiplicity-free by
Littelmann [Li] by checking the sphericity of the product of flag varieties associated
to maximal parabolic subgroups, and by Stembridge [St] by a combinatorial method
using the Weyl character to analyse the tensor product multiplicities. Our approach is
different from these two methods, and uses the notion of visible actions.

We have listed an application of Fact 5.3 only for the line bundle case. Let
us give a simple example of that in the vector bundle setting. Let G be the spin
group Spin(2n + 1) and T a maximal torus of G. We let πλ denote any irreducible
representation of G with highest weight λ and πωn as above. Since πωn is weight
multiplicity-free, that is, πωn decomposes multiplicity-freely as a representation of
T , we can apply Fact 5.3 to the tensor product representation of πλ and πωn by
setting V := G ×T (Cλ ⊗ πωn ), D := G/T , S := {o}, and then conclude that πλ ⊗ πωn

is multiplicity-free as a representation of G (the irreducible decomposition may be
thought of a Pierri rule for a type B group). Here, we note thatVx and Gx for x = o are
given by Cλ ⊗ πωn and T respectively in this setting. We hope that further applications
of Theorem 1.1 and Fact 5.3 to representation theory will be discussed in a future
paper.
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