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Using cognitive models to combine probability estimates

Michael D. Lee∗ Irina Danileiko∗

Abstract

We demonstrate the usefulness of cognitive models for combining human estimates of probabilities in two experiments.

The first experiment involves people’s estimates of probabilities for general knowledge questions such as “What percentage

of the world’s population speaks English as a first language?” The second experiment involves people’s estimates of

probabilities in football (soccer) games, such as “What is the probability a team leading 1–0 at half time will win the

game?”, with ground truths based on analysis of large corpus of games played in the past decade. In both experiments,

we collect people’s probability estimates, and develop a cognitive model of the estimation process, including assumptions

about the calibration of probabilities and individual differences. We show that the cognitive model approach outperforms

standard statistical aggregation methods like the mean and the median for both experiments and, unlike most previous

related work, is able to make good predictions in a fully unsupervised setting. We also show that the parameters inferred as

part of the cognitive modeling, involving calibration and expertise, provide useful measures of the cognitive characteristics

of individuals. We argue that the cognitive approach has the advantage of aggregating over latent human knowledge rather

than observed estimates, and emphasize that it can be applied in predictive settings where answers are not yet available.
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1 Introduction

The wisdom of the crowd effect involves combining the

decisions or estimates made by a group of people, and

observing that the resulting group decision or estimate

has a good level of performance relative to that of the

individuals. The effect is based on the amplification of

the common knowledge shared by people, and the ag-

gregation of the different knowledge dispersed over peo-

ple (Surowiecki, 2004). Often the mechanisms by which

knowledge is combined are simple statistical ones, such as

taking means, medians, or modes.

A different approach is to treat the challenge of aggrega-

tion as a cognitive modeling problem (Lee, Zhang, & Shi,

2011; Merkle & Steyvers, 2011; Turner, Steyvers, Merkle,

Budescu, & Wallsten, 2013). The basic data that need

to be combined are behavioral observations, generated

by cognitive decision-making processes based on people’s

knowledge. The motivation for a cognitive approach is

that it is the knowledge people have, and not their behav-

ioral estimates, that should be combined. This view rec-

ognizes that people can be prone to biases and distortions

in how they represent and express information. A good
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cognitive model of their representations and processes can

serve to “undo” the distortion, and allow for useful infer-

ences about the knowledge people have. Combining this

inferred knowledge can potentially lead to group answers

that outperform the statistical combination of the observed

behavioral estimates.

A natural framework for approaching wisdom of the

crowds aggregation as a cognitive modeling problem is

provided by hierarchical Bayesian models (Lee, 2011; Lee

& Wagenmakers, 2013). Hierarchical models are able to

represent knowledge at different levels of abstraction, and

so can represent both individual- and group-level infor-

mation in latent parameters. Using Bayesian inference,

these parameters can be linked to observed behavioral data

through models of decision-making processes.

Turner et al. (2013) use hierarchical Bayesian methods

to pursue the problem of using individual judgments to

forecast probabilistic events. Their models incorporate a

key insight from the existing literature on human estima-

tion of probabilities, which is that people may be mis-

calibrated in their perception of probabilities (see Bren-

ner, Kohler, Liberman, & Tversky 1996; Lichtenstein,

Fischoff, & Phillips, 1982; Yates, 1990, for reviews). The

models developed by Turner et al. (2013) explicitly in-

corporate calibration processes, and build on the work of

Budescu and Johnson (2011) and Merkle (2010) to use hi-

erarchical methods to allow for individual differences in

calibration.

A second insight from the existing literature is that there

are individual differences in expertise (Weiss & Shanteau,

2014). This aspect of individual differences is not in-
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cluded in the models developed by Turner et al. (2013).

One way they can be included within a hierarchical mod-

eling approach is developed by Lee, Steyvers, de Young,

and Miller (2012), in the context of different but related

wisdom of the crowd problem involving ranking data. The

basic idea is to assume that people’s representations are all

centered on a common ground truth, but the expertise of

the individual determines how precisely they represent the

truth.

In this paper we develop a hierarchical model for the

cognitive aggregation of individual behavior to the prob-

lem of combining human estimates of probabilities. Our

model differs in three important ways from previous

models that forecast binary events based on combining

people’s probability estimates (e.g., Turner et al., 2013;

Baron, Mellers, Tetlock, Stone, & Ungar, 2014; Satopää,

Baron, Foster, Mellers, Tetlock, & Ungar, 2014). First,

our model includes not just calibration processes, but also

allows for individual differences in both calibration and

the expertise of individuals. Second, we evaluate the

model by collecting two new data sets in which people

are asked to estimate directly the probabilities of events.

The first data set involves general knowledge questions,

and the second involves questions coming from the real-

world statistical environment provided by football (soc-

cer) games. The detail provided by continuous ground

truth probabilities, as opposed to binary outcomes gen-

erated from those probabilities, allows for more detailed

model evaluation. Thirdly, our modeling approach is com-

pletely unsupervised, in the sense that it never receives

feedback about true probabilities (nor outcomes of proba-

bilistic events generated from those probabilities). We find

that our cognitive model for combining people’s estimates

outperforms simple statistical methods, and that there is

interpretable structure about how individual performed in

the inferred individual differences within the model.

2 Experiments

We conducted two experiments to collect people’s es-

timates of probabilities. The first experiment involved

general knowledge questions, and the second experiment

involved questions relating to football (soccer) games.

Because the experiments are methodologically extremely

similar, we describe both together. The full datasets are

provided as supplementary materials along with this paper

on the page for this issue: http://journal.sjdm.org/vol9.3.

html.

2.1 Participants

For each experiment, 145 participants were recruited using

Amazon Mechanical Turk. Participants were paid US$1

for completing the questionnaire within the Qualtrics sur-

vey software interface. Completing an experiment took an

average of about 20 minutes.

2.2 Probability estimation questions

2.2.1 General knowledge questions

We constructed 40 questions requiring the estimation of a

probability or a percentage, as detailed in Table 1. The

answers were found from a variety of sources includ-

ing the 2013 CIA World Factbook, Government websites,

the websites of the relevant professional societies, and

Wikipedia. The questions were presented in a random or-

der for each participant. After the questions had been an-

swered, each participant was asked a final question “On a

scale of 1 (very poor) to 7 (very well), how well do you

think you estimated probabilities?”

Because participants were recruited through Amazon

Mechanical Turk they were not supervised and had access

to the internet while completing the estimation task. To

address the possibility that participants could search for

answers, we vetted questions to insure they could not be

immediately answered through a simple Google search.

This meant that a search using the question text or key-

words from the question did not display the answer in the

top matches returned by Google visible on the returned

page from the search. Of course, participants could have

conducted more detailed searches to find the answers, but

we could find no evidence for this behavior in the accura-

cies of their answers or the time taken to provide them.

2.2.2 Football questions

Sports like football provide real-world statistical environ-

ments that have been widely analyzed (see, Albert, Ben-

nett, & Cochran, 2005, for a relatively recent anthology

of papers). Because most people have some level of un-

derstanding of a popular sport like football, and statistics

characterizing the outcomes of games are readily avail-

able, it is a convenient setting for studying the psychol-

ogy of probability estimation (e.g., Bar-Hillel, Budescu, &

Amar, 2008). To compile the necessary statistical charac-

terization of the football environment, the details of 6072

first-division professional games played between 2001 and

2011 in the domestic leagues of a large number of coun-

tries were obtained from http://soccerbot.com. From the

information available in these records, we parsed the se-

quence of goals scored by the home and away team. For

example, the information recorded for a US Major League

Soccer game between home team Chicago Fire and and

away team Los Angeles Galaxy was that the home team

scored goals in the 1st and 84th minutes, and the away

team scored a goal in the 78th minute.
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Table 1: The 40 general knowledge questions and their answers.

Question Answer

What percentage of the world’s freshwater is in permanent ice/snow? 69%

What percentage of the United States land is covered by forest? 33%

What percentage of the world’s population lives in urban areas? 51%

What percentage of the United States population is between 0 and 64 years of age? 86%

What percentage of the world’s population speaks English as a first language? 5%

What percentage of the world’s population is between 0 and 24 years of age? 43%

What percentage of the world’s electricity does not come from fossil fuels? 33%

What percentage of the world’s water is not freshwater? 98%

What percentage of the human body mass is nitrogen? 3%

What percentage of adult human skeleton bones are found in the hands? 26%

What percentage of the United States population has blood type O+? 38%

What percentage of the United States population is of Native American descent? 1%

What percentage of the 2013 congress is women? 19%

What percentage of the United States working population work from home? 9%

What percentage of the United States population between the ages 18 and 44

voted in the 2012 presidential election? 53%

What percentage of the United States population is not foreign-born? 87%

What percentage of the world’s population over 65 years of age is women? 56%

What percentage of United States households own a pet? 62%

What percentage of the world’s countries are located in North America? 12%

What percentage of coffee beans in the world are produced by Brazil? 30%

Exports make up what percentage of the United States’s GDP? 13%

What percentage of London 2012 Olympic medals were won by European countries? 46%

What percentage of the United States population wears glasses (not contacts)? 64%

What percentage of world languages are spoken by more than 100,000 people? 20%

What percentage of FIFA world cups have been won by South American countries? 47%

What percentage of the world population lives on the continent of Asia? 59%

What percentage of NFL teams make it to the playoffs every year? 25%

What percentage of the world’s airports are in the United States? 34%

What percentage of the world’s landmass is within the United States? 7%

What is America’s percentage of world GDP? (2009 - nominal) 25%

What percentage of words in the Oxford English dictionary are verbs? 14%

What percentage of California land is considered desert? 24%

What percentage of American artificial Christmas trees are imported from China? 80%

What percentage of the world’s species live in the oceans? 50%

What percentage of the world’s protein supply is located in the oceans? 20%

What percentage of the world’s energy supply is consumed by Americans? 26%

What percentage of the world’s annual petroleum supply is produced by the United States? 6%

What percentage of the United States population lives in counties located on the shoreline? 39%

What percentage of coal consumed in the United States is used to generate electricity? 90%

What percentage of the United States’ electricity is generated by wind turbines? 2%
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Figure 1: Analyses of the football game environment, based on 6072 games from first-division games played in domestic

leagues between 2001 and 2011.
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From these goal scoring data, a variety of statistical

analyses of the football game environment are possible.

Figure 1 shows a set of analyses on which our probability

estimation task questions are based. The panel in the top

left shows the (frequentist) probability of the team cur-

rently ahead eventually winning or losing a game, as a

function of the time at which they are currently ahead.

The panel in the top right shows the probability a team

will score their first goal at a certain time, for both home

and away teams. The sequence of panels in the middle

row show the distribution of game scores (i.e., home team

goals and away team goals) at four different times dur-

ing a game. The bottom panels show the distributions of

the times goals are scored, and the length of time between

goals.

The 40 estimation questions are detailed in Table 2, to-

gether with the empirical ground truth found by analyses

of the game data shown in Figure 1. The questions were

developed in terms of eight types — such as questions

about probabilities of the team ahead winning — with five

specific questions for each type. The question types were

always completed in the same order listed in Table 2, but

the order of the specific questions within each type was

randomized for each participant. In addition, the question-

naire began by asking participants to self-rate their foot-

ball expertise on a seven-point scale, and answer seven

multiple-choice trivia questions involving football facts.

2.3 Basic results

Figure 2 summarizes the performance of the individuals

in both probability estimation tasks. Performance is mea-

sured as the mean absolute difference between a partici-

pant’s estimates and the answers over all 40 questions. The

histograms of stick figures show the distribution of perfor-

mance for all of the participants in the general knowledge

(upper panel) and football (lower panel) experiments. It

is clear that there is a wide range of performance across

people, with the best-performed participants within about

0.1 of the true probabilities on average, and the worst-

performed participants 0.3 or 0.4 from the truth on aver-

age. Inset with each histogram in Figure 2 are two panels
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Table 2: The 40 football estimation questions and their empirical answers.

Question Answer

Team Ahead Winning

What is the probability that a team that is ahead at the 5th minute will win? 0.59

What is the probability that a team that is ahead at the 25th minute will win? 0.71

If a team is ahead at half-time, what is the probability that this team will win? 0.78

If a team is leading at the 60th minute, what is the probability that it will win? 0.88

If a team is leading at the 85th minute, what is the probability that it will win? 0.96

Games at Half Time

What percentage of games are 0–1 at half-time, with the away team leading? 15%

What percentage of games are 2–0 at half-time, with the home team leading? 8%

A score of 2–1 at half-time, with the home team leading, occurs in what percentage of games? 4%

A score of 3–2 at half-time, with the home team leading, occurs in what percentage of games? 0%

1–0 scores at half-time, with the away team leading, occur in what percentage of games? 20%

Team Ahead Losing

What is the probability that a team that is ahead at the 15th minute will lose? 0.30

If a team is ahead at the 35th minute, what is the probability that this team will lose? 0.19

What is the probability that a team that is ahead at half-time will lose? 0.29

If a team is leading at the 50th minute, what is the probability that it will lose? 0.26

If a team is leading at the 80th minute, what is the probability that it will lose? 0.37

Games at Full Time

What percentage of games are 1–0 at full-time, with the home team winning? 11%

What percentage of games are 0–2 at full-time, with the away team winning? 4%

A score of 2–1 at full-time, with the home team winning, occurs in what percentage of games? 9%

A score of 1–2 at full-time, with the away team winning, occurs in what percentage of games? 6%

2–3 scores at full-time, with the away team winning, occur in what percentage of games? 2%

Goals Scored

What percentage of goals are scored between the 0 and 15th (inclusive) minute? 13%

What percentage of goals are scored during the first half of the game? 44%

In between the 40th and 55th minute, what percentage of goals are scored? 19%

In between the 55th and 75th minute, what percentage of goals are scored? 24%

Goals scored between the 85th and 90th minute make up what percentage of total goals? 11%

Games With Draws

What percentage of games are at draws (ties) at half-time? 43%

What percentage of games are at a draw (tie) at full-time? 25%

What percentage of games are at a 0–0 draw (tie) at half-time? 31%

What percentage of games are at a 2–2 draw (tie) at full-time? 5%

What percentage of games are at a 1–1 draw (tie) at full-time? 11%

First Goals Scored

What percentage of first goals of a game are scored between the 0 and 10th minute? 15%

What percentage of first goals of a game are scored between the 15th and 35th minute? 27%

In between the 45th and the 65th minute, what percentage of the first goals of a game are scored? 22%

In between the 70th and the 85th minute, what percentage of the first goals of a game are scored? 12%

What percentage of goals are first goals scored between the 80th and 90th minute? 9%

Another Goal

After a goal is scored, what is the probability that a goal is scored in the following 5 minutes? 0.21

After a goal is scored, what is the probability that a goal is scored in the following 20 minutes? 0.64

After a goal is scored, what is the probability that a goal is scored in the following 30 minutes? 0.79

What is the probability that 45 minutes separates two goals of either team? 0.92

What is the probability that 10 minutes separates two goals of either team? 0.39
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Figure 2: Histograms of stick people showing the distribution of performance, measured as the mean absolute difference

between estimates and true probabilities, for all participants in both the general knowledge (upper) and football (lower)

experiments. The inset panels show, for each experiment, the relationship between the estimates and the answers for the

best- and worst-performed participants.
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showing the performance of the best- and worst-performed

participants. These panels show scatter plots of the rela-

tionship between the estimates provided by these partici-

pants to all of the questions, and the true answers.

3 A model for combining probabil-

ity estimates

3.1 Theoretical assumptions

The primary data collected from each of the experiments

consist of probability (percentage) estimates of the 145

participants to all 40 questions. It is straightforward, for

each question, to find the mean and median estimate, as

standard statistical approaches to combining people’s esti-

mates.

Developing a cognitive model of the data requires mak-

ing assumptions about how people represent probabilities,

and how they produce estimates. Figure 3 shows the basic

assumptions and motivations for the cognitive model we

developed and applied to the data. The founding assump-

tion is that the true probability for each question is a latent

parameter, represented by πi for the the ith question. The

goal of a cognitive modeling approach is to specify how

that knowledge is represented within individuals, and how

decision processes act on the knowledge to produce the

observed data.

The first psychological assumption involves the mis-

calibration of probabilities. It has often been found in

probability estimation tasks that people systematically

over-estimate small probabilities and under-estimate large

probabilities (see, Zhang & Maloney, 2012, for a review).

This means that the behavioral estimates generated by

people are distorted versions of a person’s latent knowl-

edge of the probability. Building a calibration process into

a model allows for the distortion to be corrected. The goal

is to combine people’s latent knowledge, free from the ef-

fects of miscalibration. One simple calibration model is

shown in the bottom-left panel of Figure 3 and involves a

non-linear function that maps true to perceived probabil-

ities, consistent with the over-estimating small probabili-

ties and over-estimating large ones. A number of different

mathematical forms, motivated in part by different theo-

retical assumptions, have been proposed for this function,

although they share the same basic qualitative properties

(Cavagnaro, Pitt, Gonzalez, & Myung, 2013, Goldstein

& Einhorn, 1987; Gonzalez & Wu, 1999; Prelec, 1998;
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Figure 3: The theoretical framework for our cognitive model of probability estimation. The ith probability is assumed to

have a latent truth πi that is subjected to calibration and expertise processes in producing an observed estimate. Calibra-

tion operates according to a non-linear function that maps true to perceived probabilities, such that small probabilities

are over-estimated and large probabilities are under-estimated. Expertise controls how precisely a perceived probability

is reported through the standard deviation of the Gaussian distribution from which the behavioral estimate is sampled.

Both the level of calibration and expertise processes are controlled by participant-specific parameters that allow for

individual differences.
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Turner et al., 2013; Tversky & Kahneman, 1992; Zhang &

Maloney, 2012).

We chose to use a linear-in-log-odds functional form

with a single parameter capturing the magnitude of over-

and under-estimation, because it has a natural interpre-

tation that helps in defining the model. The single pa-

rameter δj for the jth participant scales the log-odds

log (πi/ (1− πi)) representation of πi. On the log-odds

scale, a probability of πi = 0.5 lies at zero and as prob-

abilities move towards zero and one their log-odds rep-

resentation moves to larger negative and positive num-

bers, respectively. Thus, scaling a log-odds representa-

tion by a factor 0 < δj < 1 has the effect of “shrink-

ing” a probability towards 0.5. This naturally leads to a

transformation that over-estimates small probabilities and

under-estimates large probabilities. Thus, the transformed

probability on the log-odds scale for the jth participant’s

perception of the probability for the ith question is given

by ψij = δj log (πi/ (1− πi)).

This calibration function is shown in the bottom-left of

Figure 3. The expected (mean) prior transformation is

shown by the solid line and the 90% and 99% credible

regions are shown by successive shading. The transfor-

mations of three different true probabilities are shown by

three lines, which trace the ith true probability πi to the

perception of that probability by the jth person ψij . In

the specific examples shown, the first person is well cal-

ibrated, so ψ11, ψ21, and ψ31 are very similar to π1, π2,

and π3. The second person, however, is miscalibrated,

and so their perceived probability ψ12 overestimates the

small true probability π1, while the perceived probabili-

ties ψ22 and ψ32 underestimate the large true probabilities

π2 and π3.

The second psychological assumption made by the

model involves expertise. Different people seem likely to

have different levels of understanding of the true environ-

mental probabilities, and this will affect the precision of

their knowledge and the accuracy of their answers. One

way to incorporate this assumption, used successfully in

a related modeling problem by (Lee et al., 2012), is to

assume people’s estimates are draws from Gaussian dis-

tributions that have a level of variability associated with

their knowledge. This approach is shown at the bottom-

right of Figure 3, When the jth participant answers the ith
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Figure 4: Graphical model for behavioral estimates of

probabilities made by a number of participants for a num-

ber of questions. The latent true probability πi for the ith
question is calibrated according to a parameter δj for the

jth participant to become the value ψij . This calibrated

values then produces an observed estimate pij according

to the expertise σj of the participant.
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question, the assumption is that their estimate comes from

a Gaussian distribution that is centered on their perceived

probability ψij , but has a standard deviation σj . The as-

sumption is that σj is a property of the participant, and is

the same for all of the questions. In this way, the param-

eter σj represents the level of knowledge or expertise of

the jth participant, with smaller values corresponding to

greater expertise.

3.2 Graphical model

The graphical model in Figure 4 formalizes our cognitive

model. Graphical models are a standard tool in statistics

and machine learning (Jordan, 2004; Koller, Friedman,

Getoor, & Taskar, 2007), and are becoming an increas-

ingly popular approach for implementing and evaluating

probabilistic models of cognitive processes (Lee, 2011;

Lee & Wagenmakers, 2013; Shiffrin, Lee, Kim, & Wagen-

makers, 2008). In graphical models, nodes represent vari-

ables and data, and the graph structure is used to indicate

dependencies between variables. Continuous variables

are represented with circular nodes and discrete variables

are represented with square nodes. Observed variables,

which are usually data or properties of an experimen-

tal design, are shaded and unobserved variables, which

are usually model parameters, are not shaded. Plates are

square boundaries that enclose subsets of the graph that

have independent replications in the model. The attraction

of graphical models is that they provide an interpretable

and powerful language for expressing probabilistic mod-

els of cognitive processes, and can easily be analyzed us-

ing modern computational Bayesian methods. In partic-

ular, they can be implemented and evaluated in standard

software like WinBUGS (Lunn, Thomas, Best, & Spiegel-

halter, 2000) and JAGS (Plummer, 2003) that automati-

cally approximates the full joint posterior distribution of a

model and data.

In Figure 4, the underlying latent probability πi for the

ith question is an unobserved and continuous variable, and

so is shown as an unshaded circular node. These are the

“true” answers to the probability questions that we want

to infer. The behavioral data take the form of probability

estimates pij given by the jth person for the ith question.

These are observed continuous values, and so are shown as

shaded circular nodes. The cognitive model describes the

process that generates the observed behavior from the as-

sumed latent knowledge. It is important to understand that

the model is never provided with the answers to the ques-

tions. This means that the latent parameters inferred —

the latent ground truths of the questions, and the calibra-

tion and expertise parameters of participants — are based

solely on using the model to account for the generation of

the behavioral data.

The graphical model naturally shows how the two core

psychological assumptions convert the latent true proba-

bility to the observed behavioral estimate. First, the latent

probability πi is transformed according to the calibration

function. Since ψij is a function of πi and δj it is shown

as a double-bordered deterministic node. The extent of

over- and under-estimation is controlled by the prior dis-

tribution of δj , which is naturally expressed as a beta dis-

tribution. As Figure 4 shows, we chose δj ∼ Beta
(

5, 1
)

because it gives most weight to large values of δj that will

not transform the latent probabilities drastically, consistent

with existing empirical findings and theory. We settled on

the exact beta distribution by inspection of the prior distri-

bution for the calibration function it defines, as shown in

the bottom-left of Figure 3. It is important to note that we

defined this prior, as we developed the model, before we

used the model to analyze data and did not adjust the prior

to optimize the results obtained.

The second processing stage produces the estimate pij
as a draw from a Gaussian distribution. The mean is the

calibrated probability ψij re-expressed on the probability

rather than log-odds scale as exp (ψij) / (1 + exp (ψij)).
The standard deviation of the Gaussian distribution is σj
for the jth person, and is given a simple weakly informa-

tive prior σj ∼ Uniform
(

0, 1
)

(Gelman, 2006).1 The

plates in the graphical model in Figure 4 replicate over

the questions and over the participants. The latent ground

truth πi for each question interacts with the calibration δj
and expertise σj of participants to produce the observed

data pij .

1Note that we follow the convention used by JAGS of parametrizing

the Gaussian distribution in terms of mean and precision parameters.
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This model is related to the “hierarchical calibrate

then average” graphical model presented by Turner et al.

(2013), but there are important differences. The Turner

et al. (2013) model accounts for the binary outcomes of

probabilistic events (e.g., “whether a soccer team actually

won a game”), whereas our model accounts for the under-

lying probabilities themselves (e.g., the latent probability

the team will win the game). Of course, as part of predict-

ing outcomes the Turner et al. (2013) model determines

probabilities that could be assessed against the data from

our experiments, and so the difference might be regarded

as relatively superficial. But, it remains the case that these

are not the data the model was designed to predict.

More fundamentally, the Turner et al. (2013) model

does not incorporate individual differences in the repre-

sentation of the true probabilities, and uses a different

two-parameter form of the linear-in-log-odds calibration

function, including an intercept parameter. This differ-

ence in modeling assumptions can probably be traced to

the third — and most fundamental — difference between

the two models. The Turner et al. (2013) model observes

the outcomes of the binary events it is designed to pre-

dict, and relies on cross-validation methods for evalua-

tion. Our modeling approach, in contrast, never presents

the ground truth probabilities to the model. In machine

learning terms, the modeling is fully unsupervised, and so

models can be directly assessed in terms of their predic-

tions, since there is no possibility of a model being able to

over-fit data because of its complexity. This difference re-

quires our model to specify a priori psychologically plau-

sible distributions over models parameters, since they can-

not be inferred from data, and so makes the model a more

complete attempt to describe the processes involving in

people’s knowledge of probabilities, their estimation pro-

cesses, and individual differences in both (Vanpaemel &

Lee, 2012).

We also considered reduced versions of our model

that included only the calibration or only the exper-

tise assumption. This was done by maintaining either

the calibration or the expertise elements of the graphi-

cal model in Figure 4, but not both, so that only one

of the theoretical assumptions was incorporated in the

model. Formally, the model that has only calibration used

a single σ parameter for all participants, so that pij ∼

Gaussian
(

exp (ψij) / (1 + exp (ψij)) , 1/σ
2
)

, while the

model that uses only individual differences has no calibra-

tion function, so that pij ∼ Gaussian
(

πi, 1/σ
2

j

)

. Consid-

ering these reduced models allows us to explore whether

both calibration and individual differences are useful as-

sumptions, and whether each makes a contribution above

and beyond what the other provides.

4 Modeling results

We implemented the graphical model in Figure 4 using

JAGS, and applied it to both the general knowledge and

football probability estimation data sets. For both analy-

ses we collected eight independent Markov chain Monte

Carlo chains, each with 2000 burn-in samples that were

discarded and 2000 collected samples. Standard mea-

sures of convergence and auto-correlation, including the

R̂ statistic (Gelman, 1996), were evaluated to validate the

samples as good approximations to the posterior distribu-

tion. We implemented and analyzed the reduced models

incorporating only calibration or individual differences in

exactly the same way.

4.1 Estimation accuracy

The expectation (mean) of the marginal posterior distribu-

tion πi is a natural measure of a model’s inference about

the answer to the ith question. These were calculated for

the full model, and for the reduced models that included

only the calibration or expertise component. In addition,

we calculated the mean and the median of the behavioral

estimates for each question across all participants as stan-

dard statistical wisdom of the crowd estimates.

The performance of each of these five measures — three

based on cognitive models, and two on statistical sum-

maries — is shown for the general knowledge experiment

in Figure 5. The bottom panel shows the distribution of

individual participant performance presented in Figure 2

and superimposes as vertical lines the performance of the

five methods. The best performing method is the cogni-

tive model with calibration and expertise, which produces

estimates on average 0.125 from different from the true

probabilities. The median of participant’s answers is 0.127

different on average, followed by the reduced models as-

suming only calibration or expertise, which are 0.131 dif-

ferent on average. The mean of participant’s answers is

the worst-performed method, with an average difference

of 0.135.

The inserted panels in Figure 5 show as scatter plots the

relationship between the true answer and the answer gen-

erated by each method. The methods themselves are or-

dered from left to right from best performing to worst per-

forming, as measured by the average difference between

the true answer and the method’s answer. It is clear that

all of the wisdom of crowds methods perform relatively

well, in relation to individual performance, with lower av-

erage differences than all but a few individuals.

Figure 6 provides the same analysis of estimation accu-

racy for the football questions. The model that includes

calibration and expertise performs much better than the

other approaches, being an average of 0.128 from the true

empirical probabilities, and is again better performed than
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Figure 5: The performance of three cognitive models and two statistical methods in estimating probabilities for the

general knowledge questions, and the relationship of their levels of performance to individual participants. The cog-

nitive models assume calibration and expertise (“Calibrate+Expertise”), just calibration (“Calibrate”) or just expertise

(“Expertise”). The statistical methods are the median and the mean of individual responses for each question. The top

panels show the relationship between true and estimated answers for all 40 questions for each method. The bottom panel

shows the distribution of individual performance as stick figures and the levels of model performance as broken lines.

The performance of the models and individuals is measured as mean absolute difference from true answers.
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Figure 6: The performance of three cognitive models and two statistical methods in estimating probabilities for the

football questions, and the relationship of their levels of performance to individual participants. The same information

is presented in the same format as for the general knowledge questions presented in Figure 5.
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all but a few individual participants. The two reduced

models also outperform both of the statistical approaches.

Once again, the best-performed cognitive modeling ag-

gregation methods are among the best-performed partic-

ipants.

We repeated the same analyses using root-mean-

squared-error rather than mean absolute deviation as a per-

formance measure for the models and people. All of the

important conclusions — that there are large individual

differences in performance, that calibration and expertise

is as good as the median and better than all other ap-

proaches for the general knowledge data, and better than

all approaches for the football data, and that the calibration

and expertise model performs about as well as the best in-

dividuals — all continued to hold.

4.2 Expertise and calibration

The two parameters inferred for each participant are the

σj measure of expertise and the δj measure of calibra-

tion. Their expected posterior values for each participant

are shown in Figure 7 as scatter plots for both the general

knowledge (left) and football (right) experiments. In both

experiments a wide range of values are inferred for both

parameters. The expertise parameter — which is a stan-

dard deviation for an assumed Gaussian distribution lying

on the probability scale from 0 to 1 — ranges from about

0.1 to about 0.3. The calibration parameter — which is

a multiple of log-odds — ranges from about 0.95 down

to about 0.5 for the general knowledge experiment and

lower to 0.3 or 0.4 for the football experiment. Thus, it

seems clear that both parameters capture variation under-

lying the probability estimates produced by different par-

ticipants. There is also no obvious strong correlation be-

tween the two parameters for either experiment, suggest-

ing they capture, at least in part, different aspects of the

variation in people’s performance.

Also shown for the general knowledge experiment in

Figure 7 are the detailed performance of four individual

participants. These participants were selected at the “ex-

tremes” of the joint parameter space, to give an indication

of the type of estimates inferred to have high and low ex-

pertise and strongly or weakly miscalibrated. The partic-

ipant labeled “A” in the top-left panel is relatively accu-

rate in their estimates and shows no systematic miscali-

bration, and is inferred to have high expertise and be well

calibrated. Participant “B” in the bottom-left panel sys-

tematically over-estimates small probabilities but under-

estimates large ones, and is inferred to be similarly ex-

pert but miscalibrated. Participants “C” and “D” show

poor performance, and are inferred to be much less ex-

pert. Participant “C” does not appear to mis-estimate sys-

tematically while the participant “D” does over-estimate

small probabilities often. The calibration parameters that

the model infers are consistent with this difference.

4.3 Inferred expertise and performance

Figure 8 presents an analysis of how the inferred exper-

tise of participants relates to their actual performance on

the probability estimation tasks. The top-left panel shows

their relationship for the general knowledge questions,

while the bottom-left panel shows the relationship for the

football questions. For both sets of questions there is a

strong positive correlation, with people who were inferred

to have greater expertise having performed better.

Figure 8 also shows how the various self-reported mea-

sures of expertise collected in the two experiments relate

to performance. The top-right panel shows the relation-

ship between self-reported expertise and performance in

the general knowledge experiment. The two panels in the

bottom row shows the relationship between self-reported

football expertise and the number of trivia questions an-

swered correctly in the football experiment. None of these

self-reported measures are strongly correlated with perfor-

mance.

5 Discussion

Our motivating goal was to evaluate a cognitive modeling

approach to aggregating probability estimates, and com-

pare its performance to standard statistical methods. Thus,

our key result is that a simple cognitive modeling assum-

ing calibration and individual differences performed as

well or better than statistical methods for general knowl-

edge and football questions. We built into our model an

understanding of the way people often miscalibrate prob-

abilities, as well as an acknowledgment of individual dif-

ferences in this calibration process, as well as their gen-

eral expertise. Making these assumptions allowed group

answers to be inferred that were as close or closer to the

truth than standard wisdom of the crowd methods based on

the median and mean. Thus, our results provide some sup-

port for the idea that better wisdom of the crowd answers

can be found by aggregating over inferred latent knowl-

edge than observed estimates.

As part of formalizing the cognitive process people are

assumed to use to make probability estimates, the cogni-

tive model introduces parameters that control individual

differences between people. In our model, one process re-

lated to calibration and another to expertise, and both in-

volved a single parameter. One perspective on these pro-

cesses and parameters is that they support the improved

inference of the underlying probabilities. Inferring that an

individual participant is miscalibrated allows that distor-

tion to be “undone” in the inference of the latent probabil-

ities. Inferring that an individual participant is relatively
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Figure 7: The expected posterior expertise σj and calibration δj parameters for each participant in the general knowledge

(left) and football (right) experiments. For the general knowledge experiment, four participants are highlighted and the

scatter plot of their estimates relative to the answers are shown in inserted panels.
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Figure 8: The relationship between model-based inferences of individual expertise, self reported measures of expertise,

and actual performance in estimating probabilities across individuals. The top two panels relate to the general knowledge

questions, and show how the model-based expertise and self reported expertise correlate with performance in estimating

probabilities. The bottom three panels relate to the football questions, and show how the model-based expertise, self

reported expertise, and trivia question performance relate to performance in estimating probabilities. For each scatter

plot the Pearson correlation coefficient is also shown.
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more expert allows their estimates to be “up-weighted”

in inferring the latent probabilities. From this machine

learning or statistical perspective (Turner et al., 2013), the

graphical model in Figure 4 can be conceived as a method

for the non-linear averaging of behavioral estimates of

probabilities that performs well in approximating the un-

derlying true probabilities.

A complementary cognitive science perspective is that
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the effectiveness of the modeling provides evidence for

its core assumptions as important components of human

decision-making. From this perspective, the behavioral

data collected in the experiments provide further empiri-

cal evidence for the systematic miscalibration of probabil-

ity estimates and for the presence of significant individual

differences in expertise. The analyses of the parameters

associated with these processes, presented in Figures 7 and

8, provide insight into basic psychological characteristics

of the people providing estimates. The inferred parameter

values identify people who are calibrated or miscalibrated

and relatively more or less expert.

We emphasize that these inferences are made without

knowledge of the answers to the questions. The graphi-

cal model in Figure 4 does not contain the answers to the

questions. This is an especially important point in under-

standing the contribution the success of our model makes

to assessing psychological theory. Leaving the data to be

predicted unobserved forces not just the data generating

process — involving calibration and individual differences

— to be specified in the model, but also the values of the

parameters that control those processes. It is not possi-

ble, for example, to infer appropriate values for a cali-

bration function from the performance of the model on

previously-made predictions. Instead, the priors for these

sorts of parameters must formalize the relevant psycho-

logical assumptions, making the model more theoretically

complete, and more readily falsifiable (Vanpaemel & Lee,

2012). This means, for example, it is not a trivial result

that the model was able to infer the miscalibration of par-

ticipant “B” in Figure 7. It is clear from the scatter plot

that this participant over-estimates small probabilities and

under-estimates large probabilities systematically, but the

model was able to determine this miscalibration without

reference to the answers.

Similarly, the ability to infer expertise without reference

to the answers means our modeling approach makes pre-

dictions about the performance of the individuals. This is

because inferred value of the σj expertise parameters is

available before the answers to the questions are consid-

ered. Thus, the strong positive correlation between exper-

tise and accuracy shown in Figure 8 has obvious applied

possibilities, especially since the basic self-report mea-

sures we considered do not correlate with performance in

the same way. In our experiments, of course, the answers

were determined as the questions were generated. But the

same modeling approach would apply in genuinely predic-

tive settings for which answers are not yet known. For ex-

ample, people could be asked to estimate probabilities for

football games for the upcoming season, so that answers

are only available after the season has finished. The model

we have developed would immediately make predictions

about people’s individual expertise and our current results

suggest those predictions could be usefully accurate.

It is natural to ask how the modeling approach is able to

identify experts and miscalibration without knowing the

answers. The easy answer is that it naturally follows from

the generative modeling approach we adopted. By speci-

fying a set of reasonable psychological processes as mech-

anisms for translating latent probabilities to all the ob-

served data, the psychological parameters will be inferred

to take the values that make the data likely, and those val-

ues should capture psychologically meaningful variation.

The beauty of generative statistical modeling is that, hav-

ing specified how data are produced, the problem of in-

ference is completely and automatically solved by Bayes

rule. A more concrete and perhaps more satisfying answer

is that the model works by identifying agreement between

the participants in the high-dimensional space defined by

the 40 questions. Thinking of each person’s answer as

a point in a 40-dimensional space makes it clear that, if

a number of people give similar answers and so corre-

spond to nearby points, it is unlikely to have happened

by chance. Instead, these people must be reflecting a com-

mon underlying information source. It then follows that a

good wisdom of the crowds answer is near this collection

of answers, people who are close to the crowd answer are

more expert, and people who need systematic distortion of

their answers to come close to this point must be miscali-

brated. Based on these intuitions, the key requirement for

our model to perform well is that a significant number of

people give answers that contain the signal of a common

information source.

Of course, the two experiments presented here consti-

tute only a limited test of the model. Each experiment

is a significant empirical undertaking — especially the

football experiment for which answers had to be deter-

mined through a time-consuming compilation and anal-

ysis of a large data-set — but additional experiments in

additional domains should be conducted to test modeling

performance further. It would be particularly worthwhile

to undertake a genuinely predictive test, asking questions

for which answers cannot yet be known. We note that

existing work using cognitive models for aggregating hu-

man judgments in probabilistic forecasting is structured

slightly differently from our experiments. In the standard

predictions tasks in this area, people are asked whether or

not a real-world event, such as “Obama will win the 2014

US Presidential election” will happen. These probability

estimates are amenable to cognitive aggregation, but are

challenging to assess because only a binary ground truth

is observed (e.g., Turner & Steyvers, 2011). The fact that

Obama won the 2012 US Presidential election gives rela-

tively little information for distinguishing between people

who gave probability estimates of 0.7, 0.8 or 0.9 for this

event. In contrast, our statistical characterization of a real-

world environment like football games allows empirical

ground truth for event probabilities to be measured.
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It is also true that the graphical model in Figure 4 is

not the only possible formalization of the psychological

assumptions about calibration and individual differences.

Our model assumed that true probabilities were first cal-

ibrated, and then subject to individual differences in how

accurately they led to behavioral estimates. It would be

possible to develop models in which there were first indi-

vidual differences in the perception of latent true proba-

bilities, and then calibration before estimation. It would

also be possible to relax the assumption that each individ-

ual has exactly one calibration curve, as parametrized by

δj , and one level of knowledge, as parametrized by σj ,

that apply to all questions. And it would also be possible

to introduce different and more general calibration func-

tions, or allows for mixtures of different latent grounds

truths, or accommodate a host of more sophisticated psy-

chological assumptions about how people estimate proba-

bilities. All sort of theoretical assumptions are naturally

implemented within the graphical modeling framework,

using hierarchical extensions and latent mixtures to for-

malize the processes that generate behavior from knowl-

edge (Lee, 2011).

While there is clearly much more that can be done, we

think the current results have a clear message. The wis-

dom of the crowd phenomenon is rooted in what peo-

ple know, and so theories and models from cognitive

psychology should play an important role. Generic sta-

tistical approaches to combining estimates or judgments

are simple to understand and implement, and often work

well, but leave room for improvement. We hope to have

demonstrated one approach for achieving this improve-

ment, based on modeling the way in which people produce

estimates. The model we developed and applied relied

on basic theoretical assumptions about individual differ-

ences in knowledge representation and the decision mak-

ing processes, and performed well relative to the perfor-

mance of individuals and statistical methods in estimat-

ing the ground truth in two different domains. In addi-

tion, the model incorporated psychologically meaningful

parameters that permitted useful inferences about the ex-

pertise of individuals and their calibration of probabilities.

We think the dual promise of improved applied perfor-

mance and deeper psychological insight means cognitive

modeling approaches to finding the wisdom in crowds is a

promising approach.
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