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SUMMARY

A method for analysing probabilistic models representing an extension
of path analysis, and a model of mixed homogamy based on this method
were introduced recently (Rao, Morton & Cloninger, 1979; Cloninger,
1980). However, constraints imposed by the method on linear models, or
a rationale for and implications of the mixed homogamy model have not
been clearly stated.

A mathematical treatment of the extension of path analysis and of the
mixed homogamy model is presented in this paper. Constraints on linear
models imposed by the extension are obtained. It is demonstrated that
the mixed homogamy model, when applied to analysing nuclear families
in a population, implies the following mating system in the population:
some individuals choose their mates strictly on the basis of group
membership, others choose their mates strictly on the basis of phenotype,
and no individual chooses a mate on the basis of both group membership
and phenotype.

1. INTRODUCTION

Path analysis as a method of analysing probabilistic linear models when some
of the variables are unobservable was introduced by Sewall Wright (1921). The
method has been applied to different models where ' causal' relationships between
analysed variables can be postulated (see recent papers by Cloninger et al. (1983);
Karlin et al. (1983) and Wright (1983) for a review, critique and bibliography
concerning the use of path analysis in epidemiological genetics). Recently, an
extension of path analysis was suggested (Rao, Morton & Cloninger, 1979;
Cloninger, 1980) as a device for analysing probabilistic linear models when clear
' causal' relationships between variables cannot be postulated. A model of assort-
ati ve mating based on this extension of path analysis was called' mixed homogamy'.
The model was criticized by Karlin et al. (1983), who indicated that neither
mathematical justification of it nor the constraints imposed by the model on joint
distribution of the analysed variables have been discussed. Cloninger et al. (1983)
replied to this criticism. However, the question of the constraints on the joint
distribution as well as of a specific mating system implied by the mixed homogamy
model has remained unanswered.

In this paper, a mathematical investigation of the path analysis extension and
of the mixed homogamy model is undertaken. Constraints imposed by this
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extension on the joint distribution of the variables in a probabilistic linear model
are obtained explicitly. The meaning of the mixed homogamy as a mating system
as well as conditions for applicability of the path analysis extension in general are
discussed.

Fig. 1. Nuclear family design under general assortative mating. (X and Y, parental
phenotypes; x and y, parental genotypic values; Zt and Z2, offspring phenotypes; z,
and z2, offpsring genotypic values.)

2. GENERAL ASSORTATIVE MATING

Let us consider a nuclear family design under general assortative mating as
depicted in Fig. 1, where capital letters are used to denote phenotypes of
individuals and lower case letters denote their genotypic values. The lines
connecting parental variables are not the paths of path analysis, but simply
indicate a correlation between the connected variables. The arrows, on the other
hand, are the paths.

We shall assume, as usual in path analysis, that the mean values of all variables
are zero, and that the regression of any variable on any subset of variables is linear,
e.g. E{x\ Y) = aY,E(Z\X, Y,y) = bX+cY+dy, etc.
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We shall also make a number of assumptions simplifying the discussion without
restricting its generality.

(a) There is no cultural inheritance of the character under consideration.
(6) The character is sex-independent. This implies that

var (X) = var (Y) = V (phenotypic variance),
var (x) = va,r(y) =v (genotypic variance),

and that the correlation matrix of the parental phenotype-genotype distribution
P(X, Y, x, y) is of the form
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where R, r, b, c are unknown constants taking values in (— 1,1) and satisfying the
restriction that the matrix is positive definite.

(c) The population is at equilibrium with respect to the distribution of the
character, thus implying

var (Z1) = var (Z2) = V, var (zx) = var (z2) = v.

(d) The phenotype-on-genotype regressions are

E(X\x) = x, E(Y\y =y, 1
E(Z1\z1) = z1, E(Z2\z2) = z2.j

 v ;

I t can be shown that, given (1) and the linearity of the genotype-on-phenotype
regressions, these regressions are

E{x\X) = h*X, E(y\Y) =h*Y,

where h2 = v/V is the heritability. It follows then that the correlation coefficient
b — h, and the correlation matrix of the distribution P(X, Y, x, y) is
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(3)

Under the above assumptions, the whole linear structure of the nuclear family
design is totally specified by the four parameters of the joint parental phenotype-
genotype distribution: correlation coefficients R, r, c and heritability h2. I t is
important for the future discussion to notice that there is no constraint under
general assortative mating on these parameters; all four of them can be mutually
independent (provided only that matrix (3) is a correlation matrix).

The following equations connecting the four parameters of the parental
phenotype-genotype distribution with the three observable correlations between
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phenotypes of the relatives in nuclear families are easily derived under the above
assumptions:

corr (parent, parent) = corr (X, Y) — R,

corr (offspr, offspr) = corr (Zv Z2) = £A2 (1 +r), } (4)

corr (parent, offspr) = corr (X,Z) = \h(c + h).

Notice that these three correlations are the only observable correlations in
nuclear families which are independent of each other under the above assumptions
a-d. At the same time there are four unknown parmeters. Thus there are fewer
equations in the nuclear family design than there are parameters to be estimated.
I t is important to realize that this unfortunate problem is inherent in the nature
of the design and has nothing to do with the specific statistical method used.
Whatever statistical method is employed, there must be four unknown parameters
but no more than three equations to estimate them, if the linearity of regressions
is the only constraint on the joint parental phenotype—genotype distribution.
Therefore, if some method of nuclear family analysis operates with a number of
independent parameters less than four, it must be that some assumptions, albeit
implicit, have been made imposing additional constraints on the distribution
P(X,y,x,y) besides the linearity of regressions.

When path analysis is applied to nuclear families under ' pure' social or ' pure'
phenotypic homogamy, assumptions reducing the number of independent para-
meters in parental phenotype-genotype distribution are implied by the 'causal'
relationships between variables resulting from explicit definitions of these homo-
gamies as specific mating systems.

3. SOCIAL HOMOGAMY
The following definition was given to this mating system: ' Under social

homogamy mates choose each other on the basis of their group membership, which
generates primary correlations between the genotypes and environments of
spouses, and the phenotypic correlation between spouses becomes secondary'
(Rao & Morton, 1980). In other words (neglecting for simplicity the primary
environmental correlation), social homogamy is a system of assortive mating
under which the probability that two individuals mate is completely determined
by their genotypes, independently of their phenotypes, i.e.

P(mate|X, Y,x,y) = P(m&te\x,y). (5)

It is not difficult to prove that this is equivalent to the ' causal' relationship
between genotypes and phenotypes in parents:

PA(X\Y,x,y) = PA(X\x),\
PA(Y\X,z,y) = PA(Y\y) I <b>

(subscript A indicates social homogamy). That is, the probability for a parent to
be of a particular phenotype is completely determined under social homogamy by
the parent's genotype. This ' causal' genotype-phenotype relationship constitutes
the rationale for the path diagram of social homogamy (Fig. 2a).
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It can be shown that (6) leads to the following dependency of the correlation
coefficients RA and cA on the rest of the correlation matrix (3) for the distribution
PA(X,Y,x,y): RA = rAhA, cA = rAhA. (7)

Thus, the number of independent parameters in the nuclear family design is
reduced in the case of social homogamy from four to two: rA and hA, and the three
equations to estimate them follow from (4):

corr (X, Y) = rAhA,
corr(ZltZ2)=lhA(l+rA),

corr(X,Z)=\hA(l+rA).
(8)

(a) (b)

Fig. 2. Path diagrams of the joint parental distributions under 'pure' homogamies:
(a) social homogamy; (6) phenotypic homogamy (r, genotypic correlation; R, pheno-
typic correlation; h2, heritability).

The same system of equations is obtained if the rules of path analysis are applied
to the diagram in Fig. 2a. Since there are more equations then parameters being
estimated, one of the equations is usually used to test goodness of fit of the model.

4. PHENOTYPIC HOMOGAMY
The following definition was given to this mating system: 'Under this system,

mates choose one another strictly on the basis of their phenotypes' (Rao & Morton,
1980), i.e.

P(mate | X, Y, x, y) = P(mate | X, Y). (9)
This can be proved to imply the 'causal' phenotype-genotype relationship in
parents under phenotypic homogamy:

PB(x\X, Y,y) = PB(x\X), PB(y\X, Y,x) = PB(y\ Y), (10)
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(subscript B indicates phenotypic homogamy). In other words, the probability for
a parent to be of a particular genotype is completely determined by the parent's
phenotype. This 'causal' relationship constitutes the rationale for the path
diagram of phenotypic homogamy (Fig. 26).

I t can be shown that (10) leads to the following dependency of correlation
coefficients rB and cB on the rest of the correlation matrix (3) for the distribution
PB(X,Y,x,y):

rB = RBh% cB = RBhB. (11)

Thus the number of independent parameters in the nuclear family design is reduced
under phenotypic homogamy from four to two, RB and cB, and there are three
equations to estimate them:

corr(X,Y) = RB, \

corr {Z1,Zi)=\(\+RBhB)hB, (12)

covr(XZ)=\(l+RB)hB. j

Again there are more equations than parameters being estimated, and one of the
equations is usually used for testing goodness of fit of the model.

5. MIXED HOMOGAMY

It should be emphasized that the reduction in the number of independent
parameters (and, hence, the applicability of path analysis) in the nuclear family
design under pure social and phenotypic homogamies is due to the constraints on
the parental phentoype-genotype distribution ('causal' relationships) implied by
the explicit definitions of these homogamies as specific mating systems.

Unlike social and phenotypic homogamies, mixed homogamy introduced by
Rao, Morton & Cloninger (1979) has never been explicitly defined as a mating
system. It was simply stated that 'a generalization incorporating phenotypic and
social homogamy as two special cases is called mixed homogamy' (Rao & Morton,
1980), and the model was introduced as a 'superposition' of the path diagrams
for social and phenotypic homogamies (Fig. 3) together with a set of rules for
manipulating the superposed diagram: parallel paths (Rao & Morton, 19&0), or
co-paths (Cloninger, 1980). However, no mathematical justification of the path
diagram superposition and of the rules for manipulating the superposed diagrams
has been presented. The meaning of parameters in the superposed diagram (Fig. 3)
is also unclear. I t is said that p is the 'primary correlation between parental
phenotypes, not due to secondary resemblance through social homogamy', and m
is the 'correlation between parental genotypes through social homogamy' (Rao
et al. 1979). Does this mean that p and m are respectively the correlation between
phenotypes of parents under pure phenotypic homogamy and the correlation
between genotypes of parents under pure social homogamy ? If not, then what are
they?

This lack of mathematical justification inevitably invited the question: 'How
do we know that such superposed models do not involve contradictions in their
basic structure or nonrealizable constraints on parameters?' (Karlin et al. 1983).
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Indeed, consider a situation when observable correlations in nuclear families take
the following values (Rao et al. 1982):

corr(X, 7) = 0513,

con-(Z1>Z,) = 0-513, / (13)

corr(Z,Z) = 0-485.

Fig. 3. Path diagram of the joint parental distribution under the 'mixed homogamy'
model (h2 heritability; p and TO, parameters of the 'superposed' diagram).

If the rules of manipulating the superposed diagrams (Rao and Morton, 1980;
Cloninger, 1980) are applied, the following relationships between the observable
correlations and parameters of the mixed homogamy diagram (Fig. 3) emerge:

COTT(X, Y) = p + mh2,

(14)
COTT(X,Z) =

The substitution of the values of observable correlations from (13) into (14) yields
after some transformations the following quadratic equation for the heritability:

(A2)2-0-457A2 + 00560 = 0. (15)

This equation has no real solution. Thus, the mixed homogamy model (Fig. 3)
cannot resolve the situation when observable correlations are as in (13). Some
people would argue that this is a result of neglected environmental correlations,
and that if these correlations were incorporated, the situation would have been
resolved by the mixed homogamy model. This indeed may very well be true. The
important point, however, is that this could just as well be not true, since the
situation can easily be resolved even with zero environmental correlations under
general assortative mating. For example, if the heritability

h* = 0-64
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and other parameters of the joint parental distribution P(X, y, x, y) are: R = 0-513,
r = 0-603, c = 0-412 (matrix (3) in this case is positive definite), the observable
correlations will take values as in (13). This is not the only joint parental dis-
tribution resolving the situation. The set of parameters including the heritability

h2 = 0-52

and R = 0513, r = 0973, c = 0624 also will do. As a matter of fact there is, of
course, a continuum of joint parental distributions resulting in observable
correlations as in (13).

The problem posed by the above example becomes even more acute when the
mixed homogamy model can resolve observable correlations and does provide
estimates of some genetic and other parameters in a population. Where is the
guarantee that the model is applicable to this population and, therefore, that the
estimates of the parameters are indeed correct ? In the case of a pure homogamy
model, its applicability to a particular population is easily decided on the basis
of whether it is believed or not that the corresponding explicitly defined mating
system does operate in the population. A similar decision about the applicability
of the mixed homogamy model cannot, however, be made, since the corresponding
mating system has not been defined.

The following relationships between parameters of the joint parental distribution
P(X, Y, x, y) and parameters of the mixed homogamy model are obtained if the
rules of manipulating superposed diagrams are applied to the diagram in Fig. 3:

R = p + mh2, r = m+ph2, c=(m+p)h. (16)

Recall that under general assortative mating, parameters R, r, c and h2 can be
mutually independent (provided matrix (3) is a correlation matrix). Given (16),
however, this is not true any more, and the following relationship must hold for
these parameters in order for the mixed homogamy model to be applicable:

1 (17)
R + r l+h2'

Notice that this relationship does hold for the parameters of the joint parental
distribution in the case of a pure homogamy. Indeed, (17) follows directly from
either (7) or (11), which in turn result from the 'causal' relationships under the
pure homogamies. Since these 'causal' relationships are implied by the definitions
of these homogamies as specific mating systems, relationship (17) is also implied
in the case of pure homogamies by their definitions and need not be imposed in
order for the model to be applicable. The applicability of pure homogamy models,
as has already been mentioned, is decided on the basis of their definitions as specific
mating systems and not on the basis of whether relationship (17) holds or not.

In the case of the mixed homogamy model, though, since there is no definition
of this homogamy as a specific mating system, relation (17) is not implied, but
rather represents a constraint that must be imposed on the joint parental
distribution in order for the model to be applicable. The applicability of the model
to a particular population should, therefore, be decided on the basis of whether
constraint (17) is satisfied in this population or not. Notice, however, that this
cannot be tested, since (17) involves unobservable parameters.
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In order to find out what mating systems are implied by the mixed homogamy
model, i.e. under what mating systems, besides the pure homogamies, constraint
(17) is satisfied, let us consider the following decomposition of the joint parental
distribution under general assortative mating:

P(X, Y,x,y) =fAPA(X,y,x,y)+fBPB(X, Y!x,y)+fABPAB(X, Y,x,y), (18)

where fA is the proportion of individuals choosing their mates strictly on the basis
of the mate's group membership (pure social homogamy), fB is the proportion of
individuals choosing mates strictly on the basis of the mate's phenotype (pure
phenotypic homogamy) and fAB is the proportion of individuals choosing mates
on the basis of both the mate's group membership and phenotype (intersection of
the pure homogamies). PA(X, Y,x,y), PB(X, Y,x,y) and PAB(X, Y,x,y) are the
joint parental distributions under pure social, pure phenotypic and the intersection
of both homogamies, respectively. The decomposition (18) is, of course, always
possible, provided there are no other mating systems operating in the population,
besides the three mentioned. Given the linearity of all regressions, (18) yields the
following relationship for the elements of the correlation matrix (3):

VA VB VAB

r=f r ^A-+f r ^ + / r ^
JA A v JB B v JAB AB v

'i> VJAB *AB

vV '

>AB VAB
VV '

(Indices A, B and AB indicate variables related to social, phenotypic and the
intersection of both homogamies, respectively, whereas unindexed variables relate
to general assortative mating.) I t should be be remembered that, while there are
restrictions on the parameters of distributions PA (X, Y, x, y) and PB (X, Y, x, y)
implied by the ' causal' relationships of the pure homogamies, there is no restriction
on the parameters of the distribution PAB(X, Y,x,y); under general assortative
mating they can take any values, provided matrix (3) is a correlation matrix.

Since there are more independent variables in (19) than even the original four,
it is obvious that assumptions reducing their number need to be made. We shall
make the following imoportant assumption.

(i) The decision by an individual whether to choose a mate on the basis of the
mate's phenotype or on the basis of the mate's group membership or on the basis
of both does not depend on the individual's own phenotype or group membership.
This is equivalent to assuming that the genotypic and phenotypic distributions
are the same among individuals mating through social homogamy as among those
mating through phenotypic homogamy or through the intersection of both. This
implies

V — V — V — V \
yA — yB — VAB ~ ' \
VA=VB= vAB = v, \ (20)
h2 _ 1,2 _ 1,2 _ 1,2 I
nA — nB — nAB — I - )
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With this assumption and taking into account (7) and (11), system (19) is
reduced to

(21)

fBRB)h+fABCAB)

Given this, constraint (17) implies

= 0. (22)

In order for (22) to be satisfied, it is necessary that either

SAB = 0. (23)

or
h (24)

i.e. either there is no individual mating through the intersection of social and
phenotypic homogamies in the population or, if the population does have such
individuals, parameters of the joint parental distribution among them must satisfy
a relationship analogous to the constraint (17), which is imposed on the joint
parental distribution in the whole population in order for the mixed homogamy
model to be applicable.

Considering relationship (24), notice that, although a similar relationship is
implied in the case of pure homogamies by their ' causal' structures, in the case
of the intersection of the two homogamies relationship (24) is not implied, since
no 'causal' structure can be associated with this mating system. In a particular
population parameters RAB, rAB, cAB and h2 can take arbitrary values (provided
only that matrix (3) is a correlation matrix). To expect that relationship (24) will
happen to hold in a particular population is equivalent, therefore, to expecting that
four continuously distributed random variables will happen to form a specific
combination. The probability of such an event is, of course, infinitesimal.
Relationship (24) will, therefore, almost certainly never hold in a particular
population and it can be safely ignored in the context of the applicability of the
mixed homogamy model.

Thus condition (23), or the absence or individuals mating through the intersection
of social and phenotypic homogamies, represents the only realistic implication of
constraint (17) and, hence, of the mixed homogamy model.

Let us now analyse the meaning of the parameters of the superposed diagram
(Fig. 3), given that the mixed homogamy model is applicable, i.e. (23) is satisfied.
Given this, (21) yields

(25)

Comparing this with (16), it may be concluded that

p=fBRB, m=fArA. (26)
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Thus parameters of the superposed diagram (Fig. 3) have the following meaning
(when the mixed homogamy model is applicable): p is the phenotypic correlation
of mates under pure phenotypic homogamy weighted by the proportion of
individuals who mate through this mating system; m is the genotypic correlation
of mates under pure social homogamy weighted by the proportion of individuals
who mate through this mating system.

6. CONCLUSION

The mixed homogamy model is applicable to analysing nuclear families in a
population only if the following can be assumed.

(i) An individual in the population chooses a mate either strictly on the basis
of the mate's group membership, or strictly on the basis of the mate's phenotype,
and no individual chooses a mate on the basis of both the mate's group membership
and phenotype.

(ii) The decision by an individual whether to choose a mate on the basis of the
mate's group membership or on the basis of the mate's phenotype does not depend
on the individual's own group membership or phenotype.

More generally, the extension of path analysis based on the superposition of path
diagrams is applicable to a probabilistic linear model, only if the model is a mixture
of mutually exclusive causal structures, and the marginal distributions of variables
are the same in all of the causal structures.
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