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Abstract. Numerical solutions for the 3-body problem can be extremely sensitive to small
errors. We consider how small errors in calculations can affect the lifetime of these systems. In
particular, we show that numerical errors can shorten the average lifetime of a 3-body system.
This is illustrated using the Sitnikov Problem as an example. To give a theoretical explanation,
we construct an approximate Poincaré map for this problem and delineate the structure of the
escape regions. We show that numerical errors can destroy escape regions and can cause orbits
to migrate to a region in which escape is faster.
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The Sitnikov problem is the problem of the motion of a massless particle, m3 , on the
axis of symmetry of an equal-mass binary (see Moser (1973)). The equation of motion
for m3 is given by

z̈ = −z/
√

z2 + r2
3
, (0.1)

where z is its position and r the distance from the centre of mass to one of the binary
masses. We approximate r to first order in the eccentricity, e, by r ≈ 1

2 (1 − e cos t).
Taking the plane of motion of the binary (z = 0) as a Surface Of Section (SOS), consider
a map, φ : (v0 , t0) → (v1 , t1), which takes m3 from one crossing of the SOS to the next.
If m3 is on the SOS at time t0 , φ is a map which brings v0 = ż(t0) to time t1 > t0 where
v1 = ż(t1) and z(t1) = 0. The map φ has an open domain D in which every point returns
to the SOS. As time enters into the problem with period 2π, we can consider D in polar
co-ordinates where the radial variable is v and the angular variable is given by t.

We integrate initial conditions in D forward in time until they satisfy an escape theorem
outlined in Urminsky (2007). During the integration we save the time and velocity values
for the last 5 crossings of the SOS. Fig. 1(a) shows the structure of these crossings. The
crossings form distinct bands which m3 visits in turn until finally visiting the upper
crescent shaped region before leaving the SOS for the last time. The bands wrap around
each other in a fractal like structure spiralling outwards towards the boundary of D.

Consider a radial segment, R, of initial conditions which traverses these bands and
approaches the boundary of D. We integrate the initial conditions R forward in time using
the Bulirsch-Stoer method for various relative tolerances. Fig. 1(c) shows the average
lifetime over R for increasing relative tolerances. There is a clear decrease in the average
lifetime as the relative tolerance increases. The plateau for small relative tolerances is
due to the maximum time we integrate over and can be increased by integrating longer.

To study the structure of the bands in the SOS we turn to a symplectic approximate
Poincaré map (Urminsky (2007)),

Φ(tn , En ) =
{

tn+1 = tn + 2α(−En − a cos tn − b sin tn )−
3
2

En+1 = En + a cos tn + b sin tn − a cos tn+1 + b sin tn+1
, (0.2)
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Figure 1. (a) The last five crossings m3 makes with the SOS using equation (0.1) for e = 0.61.
(b) The last five crossings m3 makes with the SOS using (0.2) for e = 0.61. (c) Average lifetime
vs. relative tolerance of the Bulirsch-Stoer method using equation (0.1). The maximum time of
integration was 1011 . (d) Average lifetime vs. the magnitude of the noise using (0.2).

on an open domain D† where ti represents time at the ith crossing and Ei represents the
energy of m3 . The constants a and b are approximately proportional to e and α = 2−3/2π.
We repeat the experiment in Fig. 1(a) using Φ; the results are displayed in Fig. 1(b). We
introduce uniformly distributed noise into (0.2) to mimic errors which would be present
by numerically solving (0.1). Varying the magnitude of the noise over a radial segment
of initial conditions we find a similar relationship between the average lifetime of orbits
and the magnitude of the noise (Fig. 1(d)).

To explain this phenomenon we use Φ to determine the width of the bands as they
wrap around the interior of D†. When the width of the bands are comparable to the
amplitude of the noise, bands which represent previous crossing blend with successive
crossings of the the SOS. This process causes orbits to migrate to bands which lead to
quicker escape.
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