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Abstract

We prove that in any compact symmetric space, G/K , there is a dense set of a1, a2 ∈ G such that
if µ j = mK ∗ δa j ∗ mk is the K -bi-invariant measure supported on K a j K , then µ1 ∗ µ2 is absolutely
continuous with respect to Haar measure on G. Moreover, the product of double cosets, K a1 K a2 K , has
nonempty interior in G.
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1. Introduction

In a now classical paper [4], Dunkl proved that the convolution of the surface measure
of a sphere in Rn with itself is absolutely continuous with respect to Lebesgue measure
in Rn . Motivated by this result, Ragozin [9] considered the analogous problem in the
setting of a compact, symmetric space G/K and showed that if µ j are K -bi-invariant,
continuous measures, then µ1 ∗ · · · ∗ µdim G/K is absolutely continuous with respect
to the Haar measure on G. In particular, this is true when µ j are the K -orbital surface
measures supported on the double cosets K a j K , with a j not in the normalizer of K
in G. These singular measures are given by

µ j = µa j = mK ∗ δa j ∗ mK

where mK denotes the Haar measure on K . Equivalently, the dim G/K -fold product
of the double cosets K a j K has nonempty interior for all such a j .

Recently, the authors [5] proved that for the special case of the symmetric space
SU (n)/SO(n) the number of convolution powers (or double cosets in the product)
could be reduced from the dimension of the symmetric space to the rank +1, and that
this is sharp for particular a j ∈ SU (n).

In this paper, we prove that for any compact symmetric space there is a dense subset
D ⊆ G such that if a1, a2 ∈ D, then µa1 ∗ µa2 is absolutely continuous with respect to
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the Haar measure on G and the product of double cosets, K a1K a2K , has nonempty
interior. General results of Ricci and Stein [10] then imply that the convolution product
actually belongs to L p(G) for some p > 1.

One example of this is when H is a compact, simple, connected Lie group,
G = H × H and K = {(h, h) | h ∈ H}. Then G/K is homeomorphic to H , double
cosets correspond to conjugacy classes, and the K -bi-inviariant measures on G/K
can be identified with the central measures on H . Using the representation theory
of compact Lie groups, a stronger result has been proved in this case; namely,
µa1 ∗ µa2 ∈ L2(H) for a dense set of elements of H [6]. It would be interesting to
know whether this stronger result holds for general compact symmetric spaces as
well. This may require further development of the L2 theory for symmetric spaces
(see [2, 8]). Smoothness properties of these orbital measures were also investigated
in [3, 11].

2. Notation and basic facts

2.1. Restricted roots and root vectors Let G be a compact, connected, semi-simple
Lie group and suppose θ is a Cartan involution that fixes the closed Lie subgroup K .
The quotient space G/K is known as a compact symmetric space. We denote by
NG(K ) the normalizer of K in G.

We shall write g= k⊕ p for the corresponding Cartan decomposition of the Lie
algebra g of G.1 Thus p is the −1 eigenspace of θ . Let a⊆ p be a maximal abelian
subspace and extend this to a maximal abelian subalgebra, t , of the Lie algebra g. We
write m for the subspace of k that commutes with a. For a classification of compact
symmetric spaces we refer the reader to [1, p. 219] or [7, p. 518].

Let τ be the conjugation of g which gives the complexified Lie algebra gC and
extend θ by linearity to gC. More generally aC, tC, and so on, will denote the
complexification of the corresponding subspace.

Suppose 8 is the set of roots of gC with respect to tC. We consider the roots
which do not vanish identically on aC and let 6 (6+) denote the corresponding set of
(positive) restricted roots. We denote by gR

α the restricted root space for the restricted
root α ∈6:

gR
α = {X ∈ gC

| [H, X ] = iα(H)X for all H ∈ a}.

The restricted root vectors are the nonzero vectors in gR
α . Similarly, gα will denote the

root space of the root α ∈8.
In contrast to the situation for root spaces, restricted root spaces need not be one-

dimensional. Indeed,
gR
α =

∑
gβ

where the sum is over all root vectors β such that β|a = α. The complexified Lie
algebra can be decomposed as

gC
= tC
⊕

∑
α∈8

gα = aC
⊕mC

⊕

∑
α∈6

gR
α .

1 Following Ragozin, we define our Lie algebras as right-invariant vector fields.
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If H ∈ a, then θ(H)=−H and τ(H)= H . Thus if Xα ∈ gR
α , then

[H, θ(Xα)] = θ [θ(H), Xα] = −θ [H, Xα] = −iα(H)θ(Xα)

and
[H, τ (Xα)] = τ [τ(H), Xα] = τ [H, Xα] = −iα(H)τ (Xα),

with the final inequality coming because τ is conjugate linear. Hence both θ and τ
map gR

α to gR
−α .

2.2. Regular elements Given a restricted root α ∈6 and a ∈ exp a, say a = exp(A)
for A ∈ a, we set α(a)= α(A). We call the element a ∈ exp a regular if α(a) 6= 0
mod π for any α ∈6.

It follows from the Cartan decomposition that the double cosets, K aK , can be
indexed by the elements in exp a⊆ G. The regular elements in exp a are dense in
exp a, and the elements g ∈ G with K gK = K aK for some regular a ∈ exp a are
dense in G. We shall show in Corollary 2.3 that if a is regular, then a /∈ NG(K ).

2.3. Preliminary results For Eα ∈ gR
α set

Fα = Eα + τ Eα + θ(Eα + τ Eα),

F ′α = i(Eα − τ Eα + θ(Eα − τ Eα)),

Gα = Eα + τ Eα − θ(Eα + τ Eα),

G ′α = i(Eα − τ Eα − θ(Eα − τ Eα)).

Of course, Fα, F ′α , Gα, G ′α ∈ gR
α ⊕ gR

−α . All four vectors are fixed by τ and hence
belong to g. Moreover, Fα, F ′α are fixed by θ and thus belong to k, while Gα, G ′α are
negated by θ and hence are in p. If E (1)α , . . . , E (mα)

α is a basis for gR
α and F ( j)

α , F ( j)′
α ,

G( j)
α , G( j)′

α , j = 1, . . . , mα are the corresponding vectors, then

k= span{F ( j)
α , F ( j)′

α | j = 1, . . . , mα; α ∈6} ⊕m

and
p= span{G( j)

α , G( j)′
α | j = 1, . . . , mα; α ∈6} ⊕ a.

We shall follow the usual practice of writing Ad(a) for the action of the group on
the Lie algebra. For Eα ∈ gR

α , we have Ad(a)Eα = eiα(a)Eα , thus

Ad(a)θEα = e−iα(a)θEα,

Ad(a)τ Eα = e−iα(a)τ Eα.

Simple calculation shows that this implies the following result.

LEMMA 2.1.

(i) Ad(a)Fα = cos α(a)Fα + sin α(a)G ′α .
(ii) Ad(a)F ′α = cos α(a)F ′α − sin α(a)Gα .
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COROLLARY 2.2. If a is regular, then Ad(a)k+ k= g	 a.

PROOF. Since a is regular, sin α(a) 6= 0 for any α ∈6 and thus

span{Fα, F ′α, Ad(a)Fα, Ad(a)F ′α} = span{Fα, F ′α, Gα, G ′α}. 2

Since a ∈ NG(K ) if and only if Ad(a)k⊆ k, similar reasoning shows the following
result.

COROLLARY 2.3. An element a belongs to the NG(K ) if and only if α(a)= 0 mod π
for all α ∈6.

There is a particular restricted root vector that we shall be interested in.

LEMMA 2.4. For each restricted root α, there is a restricted root vector Eα ∈ gR
α such

that [Eα, θ(Eα)] ∈ ia.

PROOF. Let g̃= k+ ip. By [1, Proposition 32.5] there is a choice Eα ∈ g̃
⋂

gR
α with

θ(Eα) ∈ g̃
⋂

gR
−α . Hence [Eα, θ(Eα)] ∈ g̃.

Note that θ [X, θ(X)] = −[X, θ(X)], so [X, θ(X)] ∈ pC. An application of the
Jacobi identity proves that for any H ∈ aC and X ∈ gR

α ,

[H, [X, θ(X)]] = −[X, [θ(X), H ]] − [θ(X), [H, X ]]

= −[X, iα(H)θ(X)] − [θ(X), iα(H)X ] = 0.

Hence [X, θ(X)] commutes with all H ∈ aC. Since aC is a maximal abelian subspace
of pC, it follows that [X, θ(X)] ∈ aC.

Consequently, [Eα, θ(Eα)] ∈ g̃
⋂

aC
= ia. 2

Let P : g→ a denote the projection map. Here are some other elementary facts that
will be of use to us later.

LEMMA 2.5.

(i) [Fα, G ′α] − [F
′
α, Gα] = −4(I − θ)i[Eα, τ (Eα)] = −8P(i[Eα, τ Eα]).

(ii) If Eα is chosen with [Eα, θ(Eα)] ∈ ia, then [Fα, Gα] = [F ′α, G ′α].

PROOF. The first equality in (i) is a straightforward computation. Because τ(Eα) ∈
gR
−α , then i[Eα, τ Eα] ∈mC

⊕ aC. But also τ(i[Eα, τ Eα])=−i[τ Eα, Eα] =
i[Eα, τ Eα] and therefore i[Eα, τ Eα] ∈ g. Since (I − θ)/2 projects from g onto p,
we obtain the second equality.

For (ii) one can first check that, for any root α,

[Fα, Gα] − [F
′
α, G ′α]

= 2[θ(Eα + τ(Eα)), Eα + τ(Eα)] + 2[θ(Eα − τ(Eα)), Eα − τ(Eα)]

= 4([θ(Eα), Eα] + τ [θ(Eα), Eα]),

with the latter equality due to the fact that θτ = τθ . But [θ(Eα), Eα] ∈ ia, so
τ [θ(Eα), Eα] = −[θ(Eα), Eα]. 2
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We shall also make use of the following technical result which we could not find
in the literature. We recall that gC admits a Weyl basis {Xβ | β ∈8+} where Xβ ∈ gβ
[7, p. 421]. Such a basis has the property that τ(Xβ)=−X−β and [Xβ , X−β ] = Hβ
where Hβ is the linear functional on tC given by Hβ(t)= β(t).

LEMMA 2.6. For any nonzero Eα ∈ gR
α , P(i[Eα, τ Eα])= cαHα|a where cα is a

nonzero constant (depending on Eα).

PROOF. Since gR
α =

∑
β|a=α

gβ , we can write

Eα =
∑
β|a=α

bβXβ ,

where {Xβ | β ∈8} is a Weyl basis of gC. Thus

[Eα, τ Eα] =

[ ∑
β|a=α

bβXβ , τ

( ∑
β|a=α

bβXβ

)]
=

[ ∑
β|a=α

bβXβ ,−
∑
β|a=α

bβX−β

]
= −

∑
β,γ |a=α

bβbγ [Xβ , X−γ ].

Consequently,

P(i[Eα, τ Eα])=−P
( ∑
β|a=α

i |bβ |
2
[Xβ , X−β ]

)
− P

(∑
β 6=γ

ibβbγ [Xβ , X−γ ]

)
.

When β 6= γ , then [Xβ , X−γ ] either belongs to the root space gβ−γ (if β − γ is a root)
or is zero. In either case, the projection onto a is zero. Hence

P(i[Eα, τ Eα])=−
∑
β|a=α

i |bβ |
2 Hβ |a.

Since β|a = α, Hβ |a = Hα|a. Thus P(i[Eα, τ Eα])= cαHα|a where

cα =−i
∑
β|a=α

|bβ |
2
6= 0

as Eα 6= 0. 2

3. Main theorem

By a measure we mean a finite regular Borel measure on G. The measure µ is K -
bi-invariant if µ(k1Sk2)= µ(S) for all k1, k2 ∈ K and Borel sets S ⊆ G. An example
of a K -bi-invariant measure is the K -orbital measure

µa = mK ∗ δa ∗ mK
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where mK denotes the normalized Haar measure on K and δa denotes the point mass
measure at a. The K -orbital measure, µa , is a singular probability measure which
is supported on K aK , and is continuous (meaning nonatomic) if a /∈ NG(K ) when
viewed as a measure on the symmetric space G/K . These measures are the extreme
points of the unit ball of the space of K -bi-invariant, continuous measures (see [9]).
Of course, if K gK = K aK , then µg = µa .

Ragozin proved that if d ≥ dim G/K , then µa1 ∗ µa2 ∗ · · · ∗ µad is absolutely
continuous with respect to Haar measure on G and the d-fold product of double
cosets K a1K a2 · · · K ad K has nonempty interior if a j /∈ NG(K ). For special orbital
measures the number of convolution powers can be reduced to two. Here is our main
result.

THEOREM 3.1. Suppose a1, a2 ∈ exp a are regular elements and µa1, µa2 are the
associated K -orbital measures. Then µa1 ∗ µa2 is absolutely continuous with respect
to Haar measure on G and K a1K a2K has nonempty interior in G.

PROOF. For any two elements a1, a2 ∈ exp a, let fa1,a2 : K
3
→ G be given by

f (k0, k1, k2)= k0a1k1a2k2.

The proof of [9, Theorem 2.5] (an application of the implicit function theorem) shows
that if the rank of fa1,a2 is full, except possibly on a set of Haar measure zero, for each
a1, a2 in the support of the K -bi-invariant measures µ1, µ2, then µ1 ∗ µ2 is absolutely
continuous and K a1K a2K has nonempty interior. However, an analyticity argument
proves that if the rank of fa1,a2 is full at one point, then it is full on a set whose
complement has measure zero.

Thus to prove our theorem it will be enough to show that whenever a1, a2 are two
regular elements in exp a, then the rank fa1,a2 is full at one point, and this is what we
shall prove. For notational convenience we shall write f for fa1,a2 .

The differential of f at the point (k0, k1, k2), d f |(k0,k1,k2), is the map from k3 to g
given by

d f |(k0,k1,k2)(X0, X1, X2)=−(X0 + Ad(k0a1)X1 + Ad(k0a1k1a2)X2)k0a1k1a2k2

for X i ∈ k. (This is true because of our convention of using right invariant vector
fields.) Thus rank f at (k0, k1, k2) is the dimension of

span{X0 + Ad(k0a1)X1 + Ad(k0a1k1a2)X2 | X0, X1, X2 ∈ k},

which is equal to the dimension of

span{X0 + Ad(a1)X1 + Ad(a1k1a2)X2 | X0, X1, X2 ∈ k}.

Hence it is enough to show that there exists a point k1 ∈ K such that

k+ Ad(a1)k+ Ad(a1k1a2)k= g,
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or, equivalently,
k+ Ad(a−1

1 )k+ Ad(k1a2)k= g.

Note that Corollary 2.2 implies that k+ Ad(a−1
1 )k= g	 a.

As in the previous section, let P be the projection operator defined from g onto a.
Using this notation, it follows that to prove the theorem it suffices to show that for each
a regular, there exists some k ∈ K for which dim(P(Ad(ka)k))= dim(a).

According to Lemma 2.4, for each positive, restricted root α it is possible to choose
a restricted root vector Eα ∈ gR

α satisfying [Eα, θ(Eα)] ∈ ia. Define Fα, F ′α , Gα, G ′α
as described in the previous section with this choice of Eα . Set

Z =
∑
β∈6+

Fβ + F ′β

and for any real number s put ks = exp(s Z). Since Z ∈ k, ks belongs to the
subgroup K .

Fix a ∈ exp a, a regular. For α ∈6+,

Ad(ksa)(Fα + F ′α) = Ad(ks)(cos α(a)(Fα + F ′α)− sin α(a)(Gα − G ′α))

= exp(ad(s Z))(cos α(a)(Fα + F ′α)− sin α(a)(Gα − G ′α))

= cos α(a)(Fα + F ′α)− sin α(a)(Gα − G ′α)+ R + S,

where
R = s[Z , cos α(a)(Fα + F ′α)− sin α(a)(Gα − G ′α)]

and

S =
∞∑

l=2

sl

l!
(ad Z)l(cos α(a)(Fα + F ′α)− sin α(a)(Gα − G ′α)).

Since Z , Fα, F ′α ∈ k, we have P[Z , Fα + F ′α] = 0 for all α ∈6. Also, Fα, F ′α ,
Gα, G ′α ∈

∑
α∈6 gR

α , hence P(Fα + F ′α)= 0= P(Gα − G ′α). Therefore

P(Ad(ksa)(Fα + F ′α))=−s sin α(a)P([Z , Gα − G ′α] + sYα,s)

where

Yα,s =
∞∑

l=2

sl−2

l!
(ad Z)l(Gα − G ′α).

First, consider

[Z , Gα − G ′α] =

[ ∑
β∈6+

Fβ + F ′β , Gα − G ′α

]
= [Fα + F ′α, Gα − G ′α] +

∑
β 6=α

[Fβ + F ′β , Gα − G ′α].
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If β 6= α, then also β 6= −α since β and α are positive, restricted roots. Hence
either [Fβ + F ′β , Gα − G ′α] ∈

∑
γ=±α±β gR

γ or none of ±α ± β are roots, in which
case [Fβ + F ′β , Gα − G ′α] = 0 [1, Proposition 32.5]. In either case, P[Fβ + F ′β ,
Gα − G ′α] = 0.

Combined with Lemmas 2.5 and 2.6, this observation implies that

P([Z , (Gα − G ′α)]) = P([Fα + F ′α, Gα − G ′α])

= P([F ′α, Gα] − [Fα, G ′α])

= −8P i[Eα, τ Eα] = cαHα|a

for some nonzero constant cα . Hence

P(Ad(ksa)(Fα + F ′α))=−s sin α(a)(cαHα|a + sP(Yα,s)).

Thus to show that dim(P(Ad(ka)k))= dim(a) it is enough to prove that for suitably
small s, the set

{P(Ad(ksa)(Fα + F ′α)) | α ∈6}

or, equivalently,
{cαHα|a + sP(Yα,s) | α ∈6}

contains a linearly independent set of size dim a≡ r . To see that this is true, choose
positive, restricted roots, α1, . . . , αr , such that {Hα j |a | j = 1, . . . , r} is a basis for a.
We claim that the set of vectors

{cα j Hα j |a + sP(Yα j ,s) | j = 1, . . . , r}

is linearly independent for sufficiently small s.
Assume otherwise, say,

r∑
j=1

d j (cα j Hα j |a + sP(Yα j ,s))= 0 (3.1)

with not all d j = 0. Since all norms are comparable on a finite-dimensional space,
there exists a positive constant C0 such that∥∥∥∥ r∑

j=1

d j cα j Hα j |a

∥∥∥∥≥ C0

r∑
j=1

|d j cα j | ≥ C0 min |cα j |

r∑
j=1

|d j |.

For any 0< s < 1,

‖P Yα,s‖ ≤ ‖Yα,s‖ ≤
∞∑

l=2

‖ad Z‖l maxα∈6 ‖(Gα − G ′α‖

l!
≡ CZ
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where CZ is independent of α and s. Hence∥∥∥∥ r∑
j=1

d j sP(Yα j ,s)

∥∥∥∥≤ s
r∑

j=1

|d j |CZ .

If we take s < C0 min |cα j |/CZ we clearly cannot satisfy (3.1) and therefore
dim(P(Ad(ka)k))= dim(a). This completes the proof that f has full rank at one
point. 2

COROLLARY 3.2. Suppose µ1, µ2 are K -bi-invariant measures, compactly sup-
ported on

⋃
a∈D K aK where D is the dense set of regular elements. Then µ1 ∗ µ2

is absolutely continuous.

PROOF. This can also be deduced from the same proof, as per the remarks in the first
paragraph. 2

COROLLARY 3.3. Suppose G/K is a compact symmetric space which admits only
one positive restricted root. Then for any a1, a2 /∈ NG(K ), µa1 ∗ µa2 is absolutely
continuous.

PROOF. When there is only one positive restricted root any element of exp a is either
in the normalizer or regular. 2

REMARK. Many of the rank-one symmetric spaces, including SU (2)/SO(2) and
SO(p + 1)/O(p), have only one positive restricted root. It would be interesting to
know if the conclusion of the corollary holds for all rank-one spaces.
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