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Abstract
The classic game of Battleship involves two players taking turns attempting to guess the positions of a fleet
of vertically or horizontally positioned enemy ships hidden on a 10 × 10 grid. One variant of this game, also
referred to as Battleship Solitaire, Bimaru or Yubotu, considers the game with the inclusion of X-ray data, rep-
resented by knowledge of how many spots are occupied in each row and column in the enemy board. This paper
considers the Battleship puzzle problem: the problem of reconstructing an enemy fleet from its X-ray data. We gen-
erate non-unique solutions to Battleship puzzles via certain reflection transformations akin to Ryser interchanges.
Furthermore, we demonstrate that solutions of Battleship puzzles may be reliably obtained by searching for solu-
tions of the associated classical binary discrete tomography problem which minimise the discrete Laplacian. We
reformulate this optimisation problem as a quadratic unconstrained binary optimisation problem and approximate
solutions via a simulated annealer, emphasising the future practical applicability of quantum annealers to solving
discrete tomography problems with predefined structure.

1. Introduction

In Battleship, two opposing players secretly position fleets of ships of predetermined lengths horizontally
or vertically on a 10 × 10 grid. Then each player takes turns guessing the locations of enemy ships. This
paper considers a natural extension of the game, wherein each player possesses X-ray telemetry which
gives them knowledge of the row or column sums of occupied ship positions in their opponent’s board,
as in Figure 1. The problem then becomes how to leverage the X-ray data in order to discern the locations
of the enemy fleet.

The Battleship puzzle problem of determining a full Battleship board from its row and column sums,
possibly with some additional hints about ship positions, is known by various names, including Bimaru,
Yubotu and Battleship Solitaire. The origin of the Battleship puzzle problem is attributed to Jaime
Poniachik in 1982 [20]. In practice, these puzzles often feature additional information such as locations
of pieces of ships, which force solutions of the battleship puzzle to be unique. The problem of determin-
ing whether a battleship puzzle has a solution, unique or otherwise, is known to be NP-complete [26].
Here, we focus on the specific case when we have knowledge of the row and column sums only, so that
in general solutions may not be unique.

1.1. Binary Tomography and QUBO

Inspired by Gritzmann [13], our formulation of the Battleship puzzle problem in terms of Battleship with
X-rays underscores the puzzle’s relation with tomography, specifically binary tomography. In classical
tomography, X-rays are sent through a solid object at various angles. By measuring the intensity of the
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Figure 1. Row and column sums for a Battleship fleet. In Battleship with X-rays, X-ray telemetry reveals
the density of the opponents fleet in horizontal and vertical directions, represented by the sum of the
occupied spaces in each row and column in the board.

X-ray exiting the object relative to its original intensity, we can quantify the average density of the object
along the X-ray’s trajectory. Tomography then deals with the mathematical process of reconstructing an
image of the internal structure of the object from these density data.

In binary tomography, we consider a discrete version of the above tomography problem. Our fictitious
X-rays probe information about an m × n binary matrix A, telling us the row and column sums. The
original problem in binary tomography is then to construct an m × n binary matrix with specific row
and column sums. Ryser, and independently Gale, determined necessary and sufficient conditions for
the existence of a binary matrix with specified row or column sums, along with a polynomial time
algorithm for constructing a solution [10, 24, 25]. Furthermore, different solutions are related by a series
of transformations; we refer to as Ryser interchanges. See [14] for a comprehensive treatment.

We can interpret a Battleship puzzle as a binary tomography problem, wherein the locations of ships
are represented by ones in a 10 × 10 binary matrix. However, our problem differs from the one solved
by Ryser in that we must construct solutions corresponding to placements of a Battleship fleet. Thus, it
must necessarily feature ships of predetermined lengths, that is, a specific collection of contiguous line
segments of 1’s. The lengths of these segments depend on the game (e.g. English versus Russian). For
our implementation, we require distinct segments of length 2, 4 and 5, as well as two of length 3. This
presents two problems:

(1) there are many solutions of the binary tomography problem which do not represent fleet positions;
(2) Ryser interchanges break up ships, leading to boards which do not represent fleet positions.

The second problem is addressed in Section 2, where we create a generalisation of Ryser interchanges
which does allow us to preserve the property of representing a Battleship fleet. In particular, this shows
that different Battleship fleets can have the same row and column sums, so that the Battleship puzzle
problem does not have a unique solution unless other constraints are imposed.

The first problem is more serious. In practice, it makes Ryser’s methods of constructing a solu-
tion infeasible. Consider the set U(�r, �c) of all m × n binary matrices with row sums �r = (r1, . . . , rm)T

and column sums �c = (c1, . . . , cn)T . While Ryser gives us a method of constructing a canonical binary
matrix with the desired row and column sums, this canonical solution is unlikely to correspond to any
possible Battleship fleet position. Furthermore, in a typical case there is often a sufficient number of
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binary matrices with the given row and column sums to make a brute force search of the solution space
computationally impractical.

To fix this issue, we explore the set U(�r, �c) defined above. The size of U(�r, �c) can be very large and
determining estimates for its size is an interesting combinatorial question [3, 15]. Via numerical explo-
ration in Section 3, we find that the binary matrices corresponding to Battleship fleets tend close to the
minimum of the sum of the squares of the discrete Laplacian. Intuitively, this is because when we force
the solution to consist of specific contiguous straight lines, we impose a lot of structure and minimise
the presence of edges in the binary matrix. Since the discrete Laplacian works as a sharpening mask
in image processing, this corresponds to having minimal Laplacian values. Thus, our strategy is to find
those elements in U(�r, �c) which are near the minimal Laplacian values.

The strategy outlined in the previous paragraph can be reformulated as a binary optimisation problem.
In Section 4, we translate it into a quadratic unconstrained binary optimisation (QUBO) problem, that is,
the problem of finding a binary vector �x which minimises �xTQ�x for some fixed matrix Q. We may choose
Q such that values �x minimising �xTQ�x correspond precisely to solutions of the discrete tomography
problem which minimise the value of the sum of the squares of the discrete Laplacian. In Section 5,
we approximate solutions of this QUBO problem both with standard methods and using a simulated
annealer. We demonstrate that the vast majority of randomly generated Battleship puzzle problems may
be rapidly solved via both methods.

1.2. Quantum annealing and Ising models

A quantum annealer is a type of quantum computer, a computer which uses quantum phenomena such as
entanglement and tunnelling to perform computations. Specifically, a collection of qubits are arranged
in a particular lattice. Each qubit has two possible observable quantum states, spin up | +1〉 and spin
down | −1〉, and at any particular time is represented by a wave function ψ = a| + 1〉 + b| −1〉 where
a, b ∈C are complex numbers with |a|2 and |b|2 representing the probabilities of being spin up and spin
down, respectively (so that |a|2 + |b|2 = 1). In the presence of a magnetic field, the qubits will tend to
align in various directions, in accordance with a potential energy defined by

E(�x) = −�xTJ�x −
n∑

j=1

βjxj

for some n × n matrix J and some real constants β1, . . . , βn, where n is the number of qubits. Here �x
is a vector whose entries are ±1, corresponding to the direction of the spin of each qubit. The value
βj describes the strength of the force of the transverse field applied to the j’th qubit, and the matrix J
describes the interaction between pairs of qubits [4]. This is referred to as an Ising model. By care-
fully adjusting the transverse field and interaction potential experienced by the qubits inside a quantum
annealer, the energy in a quantum annealer can be made to resemble any desired values of J and
β1, . . . , βn, though with some constraints based on the network topology of the qubits, the number of
qubits and the presence of noise in the system [16]. For an introduction to quantum annealing, see [7].

The Ising problem is the problem of finding �x ∈ {±1}n minimising the energy E(�x) in the Ising model.
Note that one may easily convert between Ising problems and QUBO problems so that both problems
are equivalent. In general, such problems are NP-complete and difficult to solve explicitly, though many
standard methods of approximating solutions exist. A quantum annealer solves an Ising (or QUBO)
problem using quantum mechanics. Starting with each qubit in a supercooled state and in the presence
of a uniform magnetic field, the whole system will be arranged in a global minimum energy state. Then
by gradually evolving the background magnetic field, we can move from a simple equation for the energy
to the energy of the quantum system corresponding to a particular Ising problem. When this process is
performed slowly enough, each qubit will have a high probability of remaining at or near the minimum
energy. Thus, by observing the quantum system, we obtain good approximations to the solution of the
Ising problem. By leveraging quantum phenomena, these approximate solutions are anticipated to be
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Figure 2. Two different Battleship fleets with the same row and column sums. The fleet on the right
is obtained by the one on the left by reflecting the indicated submatrix horizontally across the dashed
vertical line.

obtained far faster than by classical approaches, especially for large problem sizes [16, 23]. However,
whether present hardware exhibits any quantum speedup is contested [2, 17, 23].

Presently, quantum annealers are very constrained in terms of the number of qubits. The largest,
at the time of this writing, is manufactured by D-Wave Systems and features around 5000 qubits – a
slim number when compared to the gigabytes available from RAM cards on classical computing sys-
tems available to the average consumer. However, in the future we anticipate the existence of quantum
annealers with enormous amounts of qubits. Thus, encoding complicated mathematical problems like
the Battleship puzzle problem is a key step in the path of leveraging this future computing resource. We
used the simulated annealer dwave-neal [8] to estimate the performance of our algorithm on an actual
quantum annealer. For a comparison of simulated annealing with quantum annealing on the D-Wave,
see [18].

2. Stealthy fleet positions

In a competitive game of Battleship with X-rays, a player would naturally wish to choose positions for
their ships where the X-ray data, the row and column sums, would not give the game away. In other
words, we would seek stealthy fleet positions, by which we mean Battleship fleets where the row and
column sums are shared between many different fleets. However, it is not obvious at all whether stealthy
fleet positions exist or the row or column sums determine the fleet positions uniquely.

Perhaps surprisingly, examples of stealthy fleet positions are in great supply. For example, see Figure 2
which describes a relationship between two different fleet positions with the same X-ray data, and
Figure 4 which gives examples of nine different fleets with the same row and column sums. Thus, as in
the case of binary tomography, the row and column sums are insufficient to specify the precise position
of the fleet. The source of this lack of uniqueness in the tomography situation is the existence of Ryser
interchanges.

Definition 2.1. Let A be an m × n binary matrix and suppose that 1 ≤ a, c ≤ m and 1 ≤ b, d ≤ n satisfy
A(a, b) = 1, A(c, d) = 1, A(c, b) = 0 and A(a, d) = 0. The (a, b, c, d) Ryser interchange of A is an m × n
binary matrix B whose values are given by

B(j, k) =
{

1 − A(j, k), (j, k) = (a, b), (a, d), (c, b), or (c, d)

A(j, k), otherwise.
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As one can readily see, a Ryser interchange of a matrix A preserves the values of the row and column
sums. Furthermore, Ryser proved that any binary matrix whose row and column sums are the same as
those of A may be obtained via a sequence of Ryser interchanges.

2.1. Generalising Ryser interchanges

In our situation, the problem is complicated by the fact that Ryser interchanges can break up ships,
returning binary matrices whose entries cannot possibly represent the positions of a Battleship fleet. To
combat this issue, we introduce a generalisation of Ryser interchanges which preserve both ships and
the row and column sum data. To start, let Jm represent the m × m anti-diagonal identity and recall that
JmA flips the rows of A up-to-down. Likewise AJn flips the columns of A left-to-right.

Definition 2.2. Let A be an m × n binary matrix and let Ã be a p × q submatrix of A. The submatrix Ã
is said to be column sum-symmetric if the column sums of Ã and JpÃ are the same. Likewise, Ã is said to
be row sum-symmetric if the row sums of Ã and ÃJq are the same. The horizontal subreflection of Ã in A
is the m × n matrix B which is the same as A, but with the submatrix Ã flipped left-to-right. Likewise, the
vertical subreflection of Ã in A is the matrix C which is the same as A, but with the submatrix Ã flipped
up-to-down.

With these definitions in mind, it is straightforward to prove the following proposition.

Proposition 2.3. Let A be an m × n binary matrix and let Ã be a p × q submatrix of A. If Ã is column
sum-symmetric, then the horizontal subreflection of Ã in A has the same row and column sums as A.
Likewise, if Ã is row sum-symmetric, then the vertical subreflection of Ã in A has the same row and
column sums as A.

Now let us restrict ourselves to the situation of a 10 × 10 binary matrix A. A Battleship fleet is
composed of 5 ships: the destroyer, submarine, cruiser, battleship and carrier whose lengths are 2, 3, 3,
4 and 5, respectively.

Definition 2.4. Let A be a 10 × 10 binary matrix. A fleet realisation for A is a choice of the positions of
the five ships in the fleet such that the nonzero entries of A coincide with the positions occupied by the
ships.

It is worth noting that in order for A to have a fleet realisation, it is necessary but not sufficient for it to
have precisely 17 nonzero entries. Therefore, the sum of the row sums and the sum of the column sums
must both be 17. Moreover, it is possible for A to have multiple fleet realisations, for example, when the
destroyer and cruiser are found end-to-end, we will have a decision to make about which sequence of
adjacent ones represents the carrier and which represents the destroyer–cruiser combination.

Definition 2.5. Let A be a 10 × 10 binary matrix with at least one fleet realisation, and let Ã be a p × q
submatrix. We say Ã is non-bisecting if there exists at least one fleet realisation satisfying the property
that any ship whose position overlaps with Ã must lie entirely within Ã.

Thus to find a new fleet position whose row and column sums are the same as the old one, we can
search for a non-bisecting column sum-symmetric or row sum-symmetric submatrix Ã of A and perform
either a horizontal or vertical subreflection. For example, the different fleet positions giving rise to the
same row and column sums in Figure 2 are connected by a horizontal subreflection.

3. Laplace-minimising binary matrices

In this section, we describe the discrete Laplacian operator and observe numerically that when we
arrange binary matrices with discrete row and column sums by the magnitude of the square of their dis-
crete Laplacians, we tend to find legitimate Battleship fleet positions among the minimal values. Thus
to find a Battleship fleet position for a certain set of row or column sums, we are motivated to search for
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those matrices which minimise or nearly minimise the square of the Laplacian. Here, by minimising the
Laplacian, we mean minimising it in the �2-sense.

3.1. Discrete Laplacians

Consider an m × n rectangular sublattice D = {1, . . . , m} × {1, . . . , n} ⊆Z×Z. The discrete Laplacian
of a function f : D →R is the function �f : D →R defined by

−�f (j, k) = 4f (j, k) − f (j − 1, k) − f (j, k − 1) − f (j + 1, k) − f (j, k + 1),

where here we interpret f (j, k) = 0 for (j, k) ∈Z
2\D, imposing a Dirichlet-type condition on the value of

f outside the domain D. Since an m × n matrix A may be interpreted readily as function via f (j, k) = Ajk,
we are naturally able to define the Laplacian of a matrix A, which as an abuse of notation we denote
by �A.

The discrete Laplacian above arises commonly in finite-difference and finite-element numerical
methods for partial differential equations. It also arises naturally in image processing as a digital sharp-
ening filter in edge-detection. The sum of the squares of the Laplacian is the same as the �2-norm squared
of the associated vector.

‖�f ‖2 =
∑

j,k

[
4f (j, k) − f (j − 1, k) − f (j, k − 1) − f (j + 1, k) − f (j, k + 1)

]2
.

It is worth noting that in the continuous case multivariate functions which minimise the squares of
their Laplacians and satisfy some prescribed boundary behaviour were studied in [19], where they were
shown to be biharmonic functions (i.e. �2f = 0) away from interior boundaries of their domains. It is
unclear whether there is some simple characterisation of Laplacian-minimising binary functions.

3.2. Discrete Laplacians of Battleship fleets

In this subsection, we consider the values of the sums of squares of Laplacians for functions with pre-
scribed row and column sums. As we demonstrate, those solutions minimising the value of this sum tend
to be more ordered and more often have Battleship fleet realisations. To begin, consider the following
example.

Example 3.1. Consider the placement of a 2 × 1 destroyer and a 3 × 1 submarine inside a 2 × 5 grid
such that the column sums are all 1 and the row sums are 2 and 3, respectively. There are 10 such binary
matrices with these specific row and column sums and their values along with the sums of the squares of
their Laplacians can be found in Figure 3 below. The arrangements with the smallest Laplacian squared
sums correspond to the actual possible fleet positions.

What we observe in the simpler 2 × 5 case also carries over to the full board. In fact, what we find by
means of direct numerical experimentation is that generically the binary matrices with fleet realisations
have minimal or near-minimal values for the sums of the squares of their Laplacians. Intuitively, this
makes sense because

• straight lines of ones in the binary matrix tend to have smaller Laplacians than shapes with many
turns

• more connected fleet positions tend to have smaller Laplacians than fleet positions with many
connected components, particularly those with stranded single entries.

As a particular case, we explore the set of Battleship fleets featured in Figure 4. Each fleet has the
same row and column sums �r and �c. We use a computer to determine the set U(�r, �c) consisting of all
binary matrices with these row and column sums which are within 4 Ryser interchanges from the starting
fleet. The �2 norm of the Laplacian squared of the entries of U(�r, �c) forms a Gaussian distribution with
mean valueμ= 258.933 and standard deviation σ = 23.656, as indicated in Figure 5. The squared norm
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Figure 3. The 2 × 5 binary matrices whose column sums are all 1 and whose row sums are 2 and 3,
respectively. The sum of the squares of the Laplacian of the matrix is indicated above each arrangement.
The potential Battleship fleet positions correspond with the smallest sum values.

Figure 4. Fleets for a particular row and column sum which are obtained via a sequence of Ryser
interchanges from the starting fleet. The starting fleet is featured in the upper left corner.

values of the binary matrices corresponding to the fleet positions are indicated by the vertical dashed
lines. Notably, all lie at the far left part of the distribution, at or near the minimum value and more than
two standard deviations from the mean.

3.3. Density of Battleship fleets

In general, the fraction of elements in the set U(�r, �c) of binary matrices with fixed row and column sums
�r and �c which are valid Battleship fleets varies widely. In the example in Figure 4, the number of binary
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Figure 5. Histogram of the sums of squares of Laplacians for all binary matrices within 4 Ryser inter-
changes from the starting fleet of the previous figure along with a curve fit to a normalised Gaussian
distribution. The binary matrices with fleet realisations are indicated by the dashed vertical lines and
lie to the extreme left of the distribution around 3σ from μ.

Figure 6. A Battleship fleet whose binary matrix is uniquely determined by its tomographic data.

matrices within 4 Ryser interchanges of the starting fleet is 143,509. The number of fleets in this same
collection is only 9.

In the opposite extreme, some Battleship fleets have very few or no binary matrices with the same
tomographic data. In particular, binary matrices are uniquely determined by their row and column sums
if and only if the data are additive in the sense of [5, 9]. For example, the binary matrix of the Battleship
fleet featured in Figure 6 is uniquely determined by its tomographic data.

Back-of-the-envelope calculations paint a similar picture. The total number of possible Battleship
fleet placements is known to be exactly 30,093,975,536 (about 30 billion). Furthermore for a binary
matrix with 17 ones and prescribed row and column sums, we roughly estimate that we can place 2/3
of the points arbitrarily before using the remaining 1/3 of the points to make the row and column sums
compatible with having a fleet position. This gives a ballpark estimate of

(
100
11

)
fleet positions, so that
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Figure 7. A histogram of the logarithm log |U(�r, �s)| of the number of binary matrices with the same row
and column sums as a Battleship fleet, generated using a population of 10,000 randomly generated fleets.
The minimum, mean and maximum number of matrices were 1, 5431.66 and 23,950,440, respectively.

on average any particular fleet will have roughly 4700 equivalent binary matrices. As we see from the
previous example, some have far more.

There is a fast algorithm for computing the number of binary matrices with specific row and column
sums, at least for small matrices [21]. Using this, we were able to calculate the size of the set U(�r, �c)
of matrices with row and column sums identical to a Battleship fleet, for a large sample of randomly
generated Battleship fleets. A histogram of the logarithm of the number of matrices for a sample size of
10,000 fleets can be found in Figure 7.

However, calculating the density of Battleship fleets requires explicit computation of all the elements
of U(�r, �c), which is computationally intensive. Even so, in a sample of 30 randomly generated Battleship
fleets, the number of fleet positions in U(�r, �c) had mean 3, median 2, min 1 and max 9. This indicates
that the density of Battleship fleets is typically very small.

4. Reconstructing fleet positions

In this section, we describe our method of reconstructing fleet positions from knowledge of the row and
column sums. Our strategy is to reformulate the problem as a QUBO problem of finding the 10 × 10
binary matrices with the correct row or column sums whose values are near the minimum of the square
of the two-dimensional discrete Laplacian.

4.1. Converting to QUBO

Let Q be an n × n matrix, L an m × n matrix and �b length m vector satisfying L�x = �b for some �x ∈
{0, 1}n. Consider the linearly constrained binary optimisation problem of minimising �xTQ�x subject to
the constraint that L�x = �b. It turns out that such a constrained problem can be converted into a QUBO
problem in a standard way.

Theorem 4.1. Let Q and L be as above and define

Qlin = LTL − 2diag(LT �b).
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For ε small enough, solutions of the QUBO problem

minimize �xT(Qlin + εQ)�x, �x ∈ {0, 1}n (4.1)

will also be solutions of the optimisation problem with a linear constraint

minimize �xTQ�x, �x ∈ {0, 1}n, L�x = �b (4.2)

Proof. First note that

�xTLTL�x − 2�xTLT �b + �bT �b = (L�x − b)T(L�x − �b) ≥ 0

with equality if and only if L�x = �b. Since �x is binary, �xT �LT �b = �xTdiag(�LT �b)�x. Therefore, we can see

�xTQlin�x + �bT �b ≥ 0

with equality if and only if L�x = �b. In particular, solutions of the QUBO problem

minimize �xTQlin�x, �x ∈ {0, 1}n.

are precisely the binary solutions of the linear system of equations L�x = �b. Note that viewed as an
optimisation problem, the constant term �bT �b may be ignored.

Now consider the partition of the space of binary vectors consisting of the set
U = {�x ∈ {0, 1}n : L�x = �b} and its complement Uc = {�x ∈ {0, 1}n : L�x �= �b}. Let R be the L2-norm of
Q and take ε < r/(2nR) for r = min�x∈U′ (xTQlin�x + �bT �b). Then for any �x ∈ {0, 1}n, we have ε|�xTQ�x|< r/2.
Therefore,

min
�x∈U

�xT(Qlin + εQ)�x + �bT �b = min
�x∈U

ε�xTQ�x< r/2

while by the triangle inequality

min
�x∈Uc

�xT(Qlin + εQ)�x + �bT �b ≥ min
�x∈Uc

r − ε|�xTQ�x|> r/2.

In particular, the solution of the QUBO problem

minimize �xT(Qlin + εQ)�x, �x ∈ {0, 1}n

will belong to U. This completes the proof.

Remark 4.2. The value ε in the theorem above works as a parameter which must be adjusted to be small
enough that solutions of the QUBO problem satisfy the linear constraint L�x = �b, but large enough so that
the εQ term is sufficiently significant. The above proof suggests taking ε to be on the order of r/(2nR),
which can be very small. However, as one helpful referee pointed out, when Q is positive semidefinite
the proof can be adjusted to take ε < r/minx∈U �xTQ�x, which can be magnitudes larger. In practice, a
reasonable value of ε can be determined from direct numerical experimentation.

Thus, to solve the problem of finding binary matrices with certain row and column sums which
minimise the Laplacian, we can convert the associated linear system to a QUBO problem with
matrix Qlin, construct a matrix Qlap encoding the Laplacian and solve the QUBO problem for the
matrix

Q = Qlin + εQlap

for sufficiently small ε. We discuss this in detail in the next subsection.

4.2. Laplacian-minimising solutions

To calculate the Laplacian-minimising 10 × 10 binary matrices A with prescribed row and column
sums, we start by expressing A as a binary vector �x of length 100 whose entries are x10(j−1)+k = Ajk with
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1 ≤ j, k ≤ 10. Taking the row and column sums of A is then equivalent to multiplying �x by a 20 × 100
matrix L whose entries are

Lm,10(j−1)+k =

⎧⎪⎨⎪⎩
1, 1 ≤ m ≤ 10 and m = k

1, 11 ≤ m ≤ 20 and j = m − 10

0, otherwise
, 1 ≤ j, k ≤ 10

In particular, if �r and �c are column vectors whose entries are the row and column sums of A (in order
from top to bottom or left to right) then L�x = (�r

�c
)
.

The discrete Laplacian of a matrix A is a new matrix �A whose size is the same as A and whose
entries are

(�A)j,k = 4Aj,k − Aj−1,k − Aj+1,k − Aj,k−1 − Aj,k+1,

where entries Am,n outside the bounds of 1, . . . , 10 are taken to be zero. This corresponds to the
multiplication of �x by a 100 × 100 matrix, which as an abuse of notation we also denote by �:

�10(s−1)+t,10(j−1)+k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4, s = j and t = k

−1, s = j and |t − k| = 1

−1, t = k and |s − j| = 1

0, otherwise.

, 1 ≤ j, k ≤ 10.

In this form, the sum of the squares of the Laplacian of a matrix A is equal to the product �xT(�T�)�x
where �x is the vector version of A.

Thus, the search for binary matrices A with prescribed row sums and column sums given by
�r = [r1 . . . r10]T and �c = [c1 . . . c10], respectively, which minimise the square-sum of the discrete
Laplacian, is equivalent to the QUBO problem

minimize �xT(Qlin + εQlap)�x, x ∈ {0, 1}100, (4.3)

where here Qlap =�T� and

Qlin = LTL − 2diag([r1 . . . r10 c1 . . . c10]L).

In practice, the value of ε is a parameter that we can tune to potentially improve performance. The
results of our numerical experiments below were obtained using a value of ε = 0.005.

4.3. Numerical methods

To investigate the practicality of our method of reconstructing fleet positions via solving QUBO prob-
lems, we used two common metaheuristic solving methods: tabu and simulated annealing. Starting with
a randomly generated Battleship fleet, we construct the QUBO problem associated with the given row
and column sums, as described in the previous section. Then we try to reconstruct a fleet with the same
row and column sums using one of these QUBO solvers. Note that we are not interested in whether or
not we recover the specific Battleship fleet we started with, since we anticipate generalised Ryser inter-
changes to allow us to quickly move from a recovered fleet position to the original one. This has been
the situation in every case we have observed, though we have not completed a detailed investigation.

The tabu search method approximates a solution of the QUBO problem of minimising the quadratic
potential energy E(�x) = �xTQ�x by iteratively updating an approximate solution and then moving to the
adjacent vector with lowest potential energy, excluding a certain list of tabu or forbidden states. After
many iterations, the presence of a large set of forbidden states may cause iterations to increase rather
than decrease the potential energy, allowing the algorithm to escape local minima in the potential energy
and more successfully obtain global minima. For details and applications, see [11, 12].
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Figure 8. Performance of tabu search versus number of iterations on reconstructing randomly gener-
ated fleets from their row and column sums, based on an average of 1000 randomly chosen Battleship
fleets. For ≥ 200 iterations, upwards of 92% of randomly generated fleets are able to be reconstructed
via this search method. The axis on the left represents the number of reads taken for the simulated
annealing algorithm. The right axis shows the number of restarts taken for tabu search algorithm.

A simulated annealer works by starting with an initial binary vector �x and then jumping to a random
neighbouring vector which is either of lower energy or potentially of higher energy but with a probability
which decreases based on the iteration. For an introductory account, see [1].

We used simulated annealing as a substitute for an actual quantum annealer, in order to predict the
feasibility of solving our QUBO problem a quantum computer. We expect that QUBO problems which
can be solved by simulated annealing should also be approachable by quantum annealing. Likewise,
evidence suggests that “hard” QUBO problems, ones where traditional algorithms fail to identify optimal
solutions, exhibit the same pitfalls on current quantum architectures [27]. Of course, this ignores certain
other potential barriers to implementation, such as limitations imposed by the hardware topology. As
the scale of quantum computers increases, it is hoped that quantum phenomena will allow quantum
annealers to outperform the classical case, even on difficult problems [27].

For our work, we use the tabu search algorithm implemented by the QBSolv library in Python [6],
which is based on a multistart tabu search method described in [22] using randomly generated initial
states. The main parameter we adjust in this algorithm is the number of times we restart the search
algorithm using a different randomly generated initial state. The algorithm then returns a list of the
minimum energy states found after each restart, which is typically much smaller than the number of
restarts do to the presence of duplicates. We also used the simulated annealing python library dwave-
neal available from D-Wave Systems [8], where the main adjustment parameter is the number of reads,
with each read representing a separate run of the simulated annealing algorithm from a different starting
position. We consider a reconstruction to be successful if one of the fleets returned has a Battleship fleet
realisation.

To get an idea of the viability of both algorithms, we observed the fraction of successful reconstruc-
tions starting with a sample of 1000 randomly generated Battleship fleets. As shown in Figure 8, we are
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Figure 9. A 20 × 20 binary matrix consisting of two convex bodies. The Laplacian norm squared-min-
imising QUBO problem formulated here successfully recovers this image exactly from its binary
tomographic data.

able to obtain a Battleship fleet with the desired row and column sums over 92% of the time for randomly
generated Battleship fleets, as long as we use 1000 algorithm restarts in the tabu search algorithm. The
behaviour of the simulated annealer is similarly successful in solving a similar number of Battleship
puzzle problems, as we use 10, 000 algorithm reads. Note that both experiments are shown on the same
plot to facilitate their comparison. To accommodate this, the left axis denotes the number of reads taken
for the simulated annealing algorithm. The right axis denotes the number of restarts taken for the tabu
search algorithm.

The fact that both algorithms perform well suggests that the majority of Battleship puzzle problems
lead to QUBO problems which are solvable by standard methods. We likewise anticipate that a true
quantum computer would successfully solve most cases.

Cases that fail tend to demonstrate many alternative configurations of the binary matrix with lower
energy than actual solutions. In the future, it would be interesting to characterise the Battleship fleets
which lead to hard QUBO problems that the algorithms fail to solve.

5. Reconstructing other binary matrices

The method proposed for reconstructing certain kinds of binary matrices from their tomographic data
naturally lends itself to more types of matrices than Battleship fleets. In particular, it is natural to expect
that a wide variety of binary matrices, such as binary images, will naturally have smooth edges and thus
smaller Laplacians than other objects with the same tomographic data.

In general, as the size of binary matrices increases, the size of U(�r, �c) characteristically grows at
least factorially. For example, in the case that the row and column sums are all 1, the set U(�r, �c) of n × n
binary matrices with this tomographic data is exactly the set of permutation matrices and has size n!. For
large n, the prospect of searching such a space for the matrices for a particular matrix is daunting. This
makes the potential quantum speedup of the QUBO formulation on future quantum hardware particularly
appealing.

5.1. Two convex bodies

As a basic test case, we consider a 20 × 20 matrix whose nonzero entries consist of two convex bodies,
as shown in Figure 9 below.
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Figure 10. Several 9 × 9 matrices with the same tomographic data. The value of the norm squared of
the Laplacian is listed below each figure. The original image of the heart has a larger Laplacian value
than the others.

In this instance, the setU(�r, �c) of binary matrices with the same row and column sums as the matrix in
Figure 9 is very large and prohibitively computationally intensive to compute. Despite this, the number
of matrices inU(�r, �c) can be computed using the recursive algorithm proposed in [21] and is computed to
be 681981424292938974077440 (approx. 6.8 × 1024). Based on a sample of 2 × 105 of these matrices,
the original figure has minimal norm-squared Laplacian. This explains the success of the QUBO problem
formulation in recovering the original image.

5.2. Heartier QUBO formulations

For more complicated shapes, simply minimising the norm squared of the Laplacian may be insufficient
to recover the original image from its tomographic data. For example, the shape of a 9 × 9 binary heart
is not directly found by our methods due to the presence of tomographically equivalent matrices with
smaller Laplacians, as shown in Figure 10. Minimising the gradient squared runs into this same issue.

To fix this, we can again take our inspiration from Battleship and imagine that we have fired a number
of shots so that we know definitively the values of entries at certain locations. Using the same process
as we did above to impose the linear constraint that the matrix satisfy certain tomographic data, we can
impose the additional linear constraints that its value is equal to a particular number in some number of
places. By imposing just a few such additional constraints at strategically chosen locations, such as at
the three tips of the heart, we are able to recover our original heart shape.

6. Summary

In this paper, we considered the Battleship puzzle problem from the point of view of discrete tomogra-
phy and quantum computing. We demonstrated the existence of different battleship fleets with the same
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discrete tomographic data and showed how to create new fleets with identical tomographic data from
old ones via generalised Ryser interchanges. We demonstrated empirically that Battleship fleets tend to
have lower values for the norm squared of their Laplacians, compared to other discrete binary matrices
with the same row and column sums. Using this, we constructed a QUBO-based algorithm for recon-
structing Battleship fleets from their row and column sum data. Lastly, we demonstrated the success
of this algorithm using both tabu-based and simulated annealing search algorithms. The latter provides
evidence that similar sort of Laplacian-minimising QUBO problems could be successfully solved on a
quantum annealer.
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