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Arithmetical properties of the digits

of the multiples of an
irrational number

Kurt Mahler

Little seems to be known about the digits or sequences of digits

in the decimal representation of a given irrational number like

1/2 or IT . There is no difficulty in constructing an

irrational number such that in i ts decimal representation •

certain digits or sequences of digits do not occur. On the

other hand, well known theorems by Tchebychef, Kronecker, and

Weyl imply that some integral multiple of the given irrational

number always has any given finite sequence of digits occuring

at least once in i ts decimal representation: for the fractional

parts of the multiplies of the number lie dense in the interval

(0, 1) .

In the present note I shall prove the following result.

Let a be any positive irrational number and N any positive

integer. Then there exists a positive integer P = P(N)

independent of a with the following property. There is an

integer X satisfying 1 5 X S P such that the decimal

representation of Xa contains infinitely often every possible

sequence of N digits 0, 1, 2, . . . , 9 •

The proof is elementary. A very similar result can be shown for

the digits in the canonical representation of any irrational

p-adic number.

The proof given here is carried out for the more general case of
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the representation of the irrational number a to an arbitrary

basis g where g is an integer at least 2 .

1.

Let g - 2 be a fixed integer, and let

D = {0, 1, 2, ..., g-1)

be the set of all digits to the basis g . By the representation of a

positive number or a positive integer we shall always mean its represent-

ation to the basis g .

If x is any real number, [x] denotes as usual i ts integral part

and (x) = x - [x] i ts fractional part.

Denote by a a fixed real irrational number satisfying

0 < a < 1 ,

and by

°° h

O = I %f 1% « D
h

 f o r aX1 h ~ l )

i t s representation. More generally, if X is any positive integer, let

Ua) = I a ,<? (a . € 0 for all ft > l]

be the representation of (Xa) . The ordered sequences of digits of ot

and (Xa) will be denoted by

A = {a1, a2, ...} and Ax = {a
x x>

 aX 2' " "^ '

respectively, and their study forms the subject of this note.

2.

Let n be any positive integer, and let

be any finite ordered, set of digits in D . By a classical theorem by
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H. WeyI, the numbers

Uct) U = 1, 2, 3, ...)

are uniformly distributed (mod l) . From this it follows easily that

there are infinitely many X for which B is the sequence of certain n

consecutive terms of AY . The same result can also be deduced from
A

Tchebychef's Theorem on inhomogeneous linear approximations, or from

Kronecker's Theorem on such approximations.

In the present note, we shall try to determine an upper bound for X

depending on n , but not on a , N say, such that there always is an

integer X in the interval 1 £ X 2 N such that B occurs infinitely

often in the sequence Av .

3.

Denote by m a second positive integer. The two linear forms in x

and y ,

n i m \ -n"
[g oxyj d g

n i m \ -n"
g [g ox-yj and g x

have the determinant 1 . Hence, by Minkowski's Theorem on linear forms,

there exist two positive integers x and y not both zero such that

(1) \gmox-y\ < g~n and |x | 2 gn .

In fact,

(2) 1 5 \x\ < gn .

For if x = 0 , then y t 0 and therefore

i s \y\ <g'n ,

which is impossible.

With x, y also -a;, -y is a solution of (l) and (2). Without loss

of generality let then from now on

(3) 1 « a < 0n .

Assume further that m is sufficiently large so that
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Then

g ax > 1 > g and hence also y > 1 .

Thus the following result holds.

LEMMA 1. Let m be so large that j a i l , Then there exist two

integers x and y depending on m and n such that

4.

In the lemma just proved, keep the integer n fixed, but allow m to

run successively over a l l integers satisfying g a 2 1 . By the lemma,
there exists to each such m a solution

x = x(m) , y = y(m)

of CO. Thus x(m) always is one of the finitely many numbers

1, 2, 3, . . . , gn ,

while m is allowed to assume infinitely many different values.

It follows that there exists an infinite sequence 5 = {w ĵ of

integers m = m-, satisfying

such that

a ; ( " 7
1 ) = x[m

2)
 = xim

3) = ••• ' = x
0

 Say>

retains a constant value xQ independent of m € 5 . Thus Lemma 1 can be

strengthened as follows.

LEMMA 2. There exists an infinite sequence S of positive integers
m = mv * an integer x independent of m € S 3 and an integer yM

K 0

depending on m € 5 ., such that aluays
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< g~n , 1 £ a: < gn , y(m) 2 1 for m € S .

In this lemma, a?n may still be divisible by g . Denote by g thexQ

highest power of g which divides x~ and put

so that a:, is not divisible by g and therefore distinct from g . The

integer u satisfies 0 S u - n and does not depend on m € S . Add u

to all the elements m of S , call the resulting sums again m = m, , and

denote from now on by S the sequence of these new integers m = m, .

Then Lemma 2 can be replaced by the following stronger result.

LEMMA 3. There exists an infinite sequence S of positive integers

m = m, j a constant integer x , and an integer y{m) depending on

m (. S , such that

(6) gmgmaxx-y(m) gng~n , 1 £ x^ 2 gn - 1 , g | x± ,

y{m) > 1 for m € S .

5.

The number

m
a = g aa^ - y{m) where m € S

cannot vanish because a is irrational; it is therefore either positive

or negative. On replacing, if necessary, 5 by an infinite subsequence,

we can in any case assume that a has a fixed sign for all *"he elements

m of 5 . We write

S = S or S = S~ ,

depending on whether a is positive or negative for all m € S ,

respectively.
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6.

Consider first the case when S = S , and hence, by (6),

0- < gmax1 - y{m) < g~n < 1 for m € S .

This means that g ax has the fractional part

= g ax. - y(m)

and therefore satisfies the inequality

m I — n
0 < \g ax \ < g

Hence the representation of (/"ax. begins with n digits zero. Now the

sequence A , as defined in §1, is obtained from the similar sequence

Am by adding at the beginning certain m digits the values of which
g • x i

are immaterial. Furthermore, this relation holds for all the elements

m of S = S . Hence the sequence A contains infinitely many sub-

sequences at least of length n and consisting entirely of the digit 0 .

7.

A slightly different result holds when S = S~ . Now

0 > gmax1 - y(m) > -g~n > - 1 for m € S .

This implies that

1 > gmaxx - [y(m)-l] > 1 - g~n for m € 5

and that y{m) - 1 is the integral part of g ax^ , hence that

1 - g~n < \gmox-. < 1 for m € S .

This inequality means that the representation of \g ax. begins

with n digits g - 1 . By a consideration similar to that in §6 we
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deduce then that in the present case the sequence A contains infinitely

many subsequences at least of length n and consisting entirely of the

digit g - 1 .

This result for S = S can be put in a more convenient equivalent

form. For this purpose put

a* = 1 - a .

Then

1 - (x.a) and (a; a*)

are identical because both numbers l ie between 0 and 1 , and the

difference

1 - x., a - x.a* = 1 - x.

is an integer. All but the first digit of (x.,a*) are therefore obtained

by subtracting the corresponding digit of (x.a) from g - 1 .

In analogy to Av denote by A* the ordered sequence of digits of
Ji A.

(Xa*) . On combining the result just proved with that obtained in §6, we

arrive at the following result.

LEMMA 4. Let a be an irrational number in the interval

0 < a < 1 j and put a* = 1 - a . To every positive integer n there

exists a positive integer x.. satisfying

1 2 xx 5 g
n - 1

such that either in A or in A* there are infinitely manii sub-
Xi Xj

sequences at least of length n and consisting only of zeros.

From now on denote by a_ that one of the two numbers a and a* to

which the last lemma applies.

8.

In the representation
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X ,* € D
e
 for a11 * 2

(the superscript 0 denotes that the representation is that of the

fractional part of x-ian J > there are by Lemma k infinitely many sequences

of at least n consecutive digits equal to zero; but since a is

irrational, there are of course also infinitely many digits distinct .from

zero.

These facts can be applied as follows. Denote by H an arbitrarily

large positive integer. There exists then a smallest suffix h greater

than H such that

a° , = 0 for h. 2 h < h. + n - 1 ,xi,h 0 0

and there also exists a smallest suffix h for which both

a , * 0 and h > h + n .ari.rti 1 0

Hence, in p a r t i c u l a r ,

a° . = 0 if h 5 h < h. - 1 .x\ ,n 0 1

With ?JQ and h. so defined, put

°̂V 0 -h A , r 0s = i ax, h9 and t = i a

so that

Evidently,

Here the digit in the first term is not less than 1 ; there are

infinitely many digits not zero; and none of the digits is greater than

g - 1 . Therefore
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(7) g'1 < t < 1 .

9.

Denote now by

5 = {bQ,bl, ...,bn_x}

an arbitrary ordered sequence of n digits , and further put

b - fe/-1
 + fc/"2

 + . . . + bn_± .

If £>. = b. = . . . = b = 0 , then, by Lemma h, the sequence B occurs

infinitely often in the ordered sequence of digits of ta01..) • L e t this

case therefore be excluded. Thus at least one of the n digits b . is

distinct from zero, all are at most g - 1 , and i t follows that_

(8) 1 5 b 5 gn - 1 .

The consecutive terms of the arithmetic progression-

t, 2t, 3t, ...

are irrational and of distance less than 1 . Therefore the open interval

between any two consecutive integers contains at least one element of the

progression.

It follows thus in particular that there is a positive integer x^

such that

(9) b < x2t < b + 1 .

In other words, b is the integral part

b = [x2t]

o f x 2 t . F r o m ( 7 ) , ( 8 ) , a n d ( 9 ) ,

*2<
b-?<9.9

n,

whence, since x^ is an integer,
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(10) 1 < x2 5 g
n+1 - 1 .

By (9) and by the definition of i , the number x»t has the

representation

where the b*. are certain digits the exact values of which play no role in
Q

the following considerations. This representation implies that

oo

+ •=! -

On the other hand, since x2 is an integer, the denominator of x 8

is a divisor of g ° ; the highest negative power of g that occurs in

the development to the basis g of x~8 is then at most g ° » and

here. hQ - 1 < h - n .

Since evidently x? (x oc ) - (r i . a ) is a non-negative integer, and

since

we have then found that in the representation

00

f ) = y ° -~^

the sequence of n consecutive digits

(12) a , , where h - n

is identical with the given sequence B .
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10.

In the construction Just given, let now H tend to infinity. The

values of h = h (H) and x2 = xAH) will vary with H , and h , being

greater than H , will likewise tend to infinity. On the other hand, for

all values of H the integer x ? is restricted to the finite interval

(10). It is then possible to select an infinite increasing sequence of

integers B for which x ? remains constant.

With this fixed value of Xg , put

X = xxx2 ;

then, by Lemma h and by (10),

(13) 1 S * S (^-l)(f f"
+1-l) <g2n+1 .

With this choice of X is has Just been proved that, for every ordered

sequence B of n digits, the representation of at least one of the two

number8

(Xa) and {Xa*)

contains infinitely many subsequences of n consecutive digits identical

with the corresponding digits of B .

11.

Next associate with B the new ordered sequence of n digits

B* = {g-bQ-i, g-b^-i, ..., a-b^-i) .

It is obvious that, when B runs over all ordered sequences of n digits,

B* does the same, and vice versa.

Further,

a + a* = 1 , 0 < U a ) < 1 , 0 < (Xa*) < 1 , Xa + Xa* = X ,

and therefore

Uct) + {Xa*) = 1 .

Hence, whenever the sequence B occurs at some position
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h - n 2 h 2 h. - 1 in the representation of (Xa) , the second sequence

B* occurs at the same position in the representation of (Xa*) ; and
naturally an analogous result holds with the two sequences B and B*
interchanged.

Thus, from what has been proved in §10, we obtain the following
result .

THEOREM 1. Let a be an arbitrary positive irrational number, n a
positive integer, and B = {bQ, b. , ..., b .} any ordered sequence of n

digits

0, 1, 2, . . . . g-1 .

Then there exists a positive integer X satisfying

n , y , 2n+l
1 - A < g

such that B occurs infinitely often in the sequence of digits of the
representation of (,Xa) and hence also that of Xa to the basis g .

12.

One particular case of Theorem 1 has special interest.

It is known from combinatoric that for every positive integer N

there exists an ordered sequence B = {i>_, b. , ... , b } of

n = gN + N - 1

Nd ig i t s 0, 1 , 2, . . . , g-1 such that the g subsequences

r_i i w «> -1- > • • •» y -LJ

N
of B are exactly all g possible ordered sequences of N digits. On

identifying the sequence B of Theorem 1 with this special sequence, the

following result is found.

THEOREM 2. Let a be an arbitrary positive irrational number^ and

N any positive integer. Then there exists an integer X satisfying

1 5 X < X

suah that every possible sequence of N digits occurs infinitely often in
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the sequence of digits of the development of Xa. to the basis g .

By way of example, let // = 1 , and g = 10 . The theorem shows then
that for every positive irrational number a every digit 0, 1, ...., 9
occurs infinitely often in the decimal representation of Xa where X is
a certain integer satisfying

1 £ X < 1021 .

Except for the upper bound for X , Theorem 2 is essentially best

possible. For one can easily construct real numbers a with the following

property.

To every positive integer X there exists at least one sequence

B which occurs at most finitely often in the representation of

With very l i t t l e change the method of this note can be applied to the
canonical representation of irrational p-adic numbers when results
completely analogous to Theorems 1 and 2 can be proved.
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