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Modulation of forced isotropic turbulence by an
anchored droplet with near-Kolmogorov
diameter and varying volatility
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Utilizing a fan-stirred chamber and two-dimensional particle image velocimetry, we
analyse the modification of homogeneous and isotropic turbulence (50 ≤ Reλ ≤ 140, with
supplementary data out to Reλ = 310, where Reλ is the longitudinal Taylor Reynolds
number) induced by both a non-volatile (water) and a volatile (ethanol) isolated and
anchored droplet in the range (0.3 ≤ d/η ≤ 5.1), where d/η is the ratio of droplet diameter
to the Kolmogorov length scale. The dissipation rate, ε, is calculated via the corrected
spatial gradient method, and the resultant fields of both turbulent kinetic energy, k, and
ε are presented as spatial heat maps and as shell averages, k�r and ε�r, vs the radial
coordinate normalized by the droplet radius, r/R. The dissipation rate near the water
droplet surface may exceed the corresponding unladen flow value by a factor of twenty or
more. The normalized radius of recovery, r∗, which designates the radial location where
k�r or ε�r has returned to within 10 % of the unladen value, is reasonably expressed
as r∗ ∝ (d/λ)−C2 in either case, where λ is the longitudinal Taylor microscale and C2
is a positive empirical fitting parameter. Recovery of k�r and ε�r may take up to 14
normalized radii when d/λ is small. Trend line extrapolation suggests that the attenuation
region becomes negligible as d/λ→ 1. Ethanol, which evaporates up to five times
faster than water, induces a much smaller dissipation spike near the surface. The mass
ejection phenomenon appears to reduce the strong near-surface damping of the radial
root-mean-square component. However, the radius of recovery trend for fields surrounding
a volatile ethanol droplet falls directly in line with the non-volatile water droplet data for
both k and ε, indicating that droplet vaporization has little effect on the far-field return to
isotropy.
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1. Introduction

Gas flows in nature and engineering applications are quite often turbulent and, in
certain cases, may carry a dispersed solid or liquid particulate phase. This configuration
imposes additional complexities on the analysis of the field, as the kinematics of the
particles are coupled to the magnitude and distribution of the carrier-phase turbulent
energy. The response of the flow’s turbulent properties to the presence of suspended
particulates is known as turbulence modulation. The modulation problem has been
thoroughly analysed utilizing both experimental and numerical approaches. Considering
the number of parameters which characterize two-phase flows (Gore & Crowe 1991)
and, as a result, impact modulation, it is not surprising that investigations continue
unabated. Liquid droplets, however, have received far less scrutiny than their solid
(usually spherical) counterparts. Setting aside the obvious discrepancy in deformation
capabilities, liquid droplets often evaporate at a rate that is highly dependent on the level of
gaseous turbulence, thus adding another layer of complication to the modulation problem.
Furthermore, the issue of droplet vaporization lies at the heart of spray combustion systems
which power the world’s transportation needs.

Broadly speaking, modulation investigations either analyse the global properties of a
heavily laden flow or focus on the near-interface fluid dynamics of a small number of
particles. The former represents a more realistic test case and helped build a foundation of
knowledge on the subject. The latter has become more feasible with advances in computing
power and full-field experimental techniques such as particle image velocimetry (PIV).
Gore & Crowe (1989) summarized much of the early experimental work on particle-laden
jet and pipe flows and suggested that the ratio of particle diameter to integral length
scale, d/L, provides a strong indication of whether the (centreline) turbulent energy
is increased (augmentation) or decreased (attenuation). The kinetic energy of small
particles (d/L � 0.1) is increased through drag at the expense of the carrier phase
turbulent kinetic energy (TKE), k, whereas large particles (d/L � 0.1) tend to promote
wakes which, in turn, increase the level of turbulence in the flow. In another review
published in the same year and incorporating the same data, Hetsroni (1989) favoured
a particle Reynolds number, Rep, of ∼400 as the demarcation between attenuation
and augmentation, where the wakes (specifically, vortex shedding) presumed to exist at
elevated Rep are again given credit for increasing the turbulence level. Hetsroni (1989)
also addressed the lack of reliable experimental data. Around that time, the first direct
numerical simulation (DNS) investigations appeared (Squires & Eaton 1990; Elghobashi
& Truesdell 1993). These studies, and many that would follow, utilized a point-particle
approach, where the fluid–particle interaction is modelled. Although the point-particle
strategy is approximately restricted to sub-Kolmogorov particles, even today it remains
the economical choice for simulating practical atomization processes at realistic Reynolds
numbers. Both aforementioned DNS studies analysed the turbulent dissipation rate, ε, a
quantity that traditionally defied reliable experimental calculation, and both concluded
that the sub-Kolmogorov particles extract energy from the large scales and transfer it to
the small scales, ultimately increasing the dissipation rate. To avoid digressing into a very
complex topic, we now focus on the research with the most relevant attributes to the present
work: experimental campaigns in homogeneous and isotropic turbulence (HIT), analyses
of fixed particles and studies focused on near-particle kinetic energy and dissipation.

Poelma & Ooms (2006) surveyed the existing literature pertaining to the effect
of a particulate phase on the turbulent characteristics of HIT. They cited only three
experimental studies (Schreck & Kleis 1993; Hussainov et al. 2000; Geiss et al. 2004)
that emphasized carrier-phase modification – each used grid-generated turbulence and
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single-point laser diagnostics. Schreck & Kleis (1993) reported a significant increase
in the downstream decay rate of TKE with the addition of a modest concentration
(φ < 0.015, where φ is the volume fraction) of buoyant plastic and heavy glass particles
to a turbulent water flow. Plots of unladen spectra indicated anisotropy at the large and
small scales, and the addition of particles helped improve the overlap of the longitudinal
and lateral spectral curves at high wavenumbers (small-scale isotropy). Hussainov et al.
(2000) used air as the carrier phase instead of water and presented clear attenuation of
the turbulent energy by large glass particles. Interestingly, Geiss et al. (2004) reported
significant augmentation of the carrier-phase TKE when an airflow was laden with
480 μm glass beads at φ = 0.004. In contrast to Schreck & Kleis (1993), they reported
particle-induced anisotropy. Downstream particle-induced anisotropy was confirmed by
Poelma, Westerweel & Ooms (2007) in water tunnel grid turbulence. The anisotropy
is caused by a transfer of turbulent energy from the cross-stream to the streamwise
component, and the effect increases with mass loading. Unsatisfied with the existing
strategies (or lack thereof) to correlate the modulation effect, Poelma et al. (2007)
suggested that the particle-induced dissipation increases linearly with the product of the
Stokes number, Sk, and a non-dimensional number density. They also showed a major
slip-induced wake structure by ensemble averaging the near-particle PIV fields. The
redistribution of energy from large to small scales is clearly depicted in spectral plots
– a phenomenon termed ‘pivoting’. Finally, Poelma et al. (2007) demonstrated that the
particle production of turbulence, by virtue of remaining relatively constant, can become
non-negligible when compared with the total turbulent dissipation, which decays along the
flow direction. Practical applications notwithstanding, the significant mean flow inherent
in grid turbulence makes elucidating the effects of the pure turbulent fluctuations a
challenge.

When experimentalists aim to analyse a problem in the absence of bulk convection,
they typically turn to zero-mean-flow (ZMF) chambers. Many studies in this area (Fallon
& Rogers 2002; Yang & Shy 2003; Good et al. 2014) focused on the particle dynamics,
including clustering phenomena and the settling velocity, but as diagnostic techniques
and experimental objectives evolved, it became possible to extract additional information
from the fluid. Yang & Shy (2005) quite clearly illustrated a directional dependence on
the attenuation vs augmentation regimes of falling spheres – an effect which becomes
more dramatic with increasing Sk. Augmentation of the spectra generally begins around
the Taylor microscale. Hwang & Eaton (2006) dropped small, heavy spheres (Sk ∼ 50)
through a chamber with eight synthetic jet actuators and, surprisingly, noted a global
decrease in dissipation rate. This contradicts the spectral pivoting theory but, it should
be noted, is not the only study that finds ε attenuated (Boivin, Simonin & Squires 1998).
When comparing the results from various studies, it is not entirely clear if the near-surface
dissipation is always treated in a consistent manner – for instance, after a plot showing
a major decrease in ε with increasing mass loading, Hwang & Eaton (2006) introduced
a new and separate dissipation term, εp, which designates the extra dissipation due to
particles. A recent study by Petersen, Baker & Coletti (2019) used a large jet-stirred tank
to produce zero-mean turbulence and confirmed the pivoting effect described by Poelma
et al. (2007). The high levels of anisotropy, however, were not recreated. Petersen et al.
(2019) speculated that the large Reynolds number in their study contributed to the more
evenly distributed energy.

The two ZMF experimental studies that are most relevant to the present campaign are
Tanaka & Eaton (2010) and Hoque et al. (2016). Tanaka & Eaton (2010) took the familiar
configuration of mono-disperse spheres falling through a jet-stirred chamber and added
sub-Kolmogorov-resolution two-dimensional (2-D)-PIV (�x/η = 0.55, where �x is the
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vector spacing and η is the Kolmogorov scale). This opened up the potential to resolve
the dissipation using spatial gradients, and they presented the ensemble near-particle
dissipation and kinetic energy fields for 500 μm spheres of glass along with 250 μm
spheres of glass and polystyrene. Tanaka & Eaton (2010) reported strong attenuation of
k out to r/R ≈ 2, where r/R is the radial coordinate normalized by the droplet radius,
and surface dissipation rates up to three times larger than the unladen value, ε0. The
falling particles promote asymmetries in the k and ε fields in most cases, complicating
the interpretation. Hoque et al. (2016) implemented yet another common test rig – water
agitated between two oscillating grids – added a fixed glass sphere of variable diameter
(10 � d/η � 77), and analysed the field via 2-D-PIV. Unlike Tanaka & Eaton (2010),
Hoque et al. (2016) did not achieve sub-Kolmogorov resolution, yet the study is unique
since it is perhaps the only experimental investigation in HIT that holds the object fixed
in place. Despite the PIV resolution, spatial gradients were used to calculate ε, and the
expected near-surface increase was verified. The TKE was generally augmented because
of the large size of the spheres (d/L ≥ 0.32). Neither study developed data in the d/η < 1
regime.

To truly capture the near-interface dynamics, the configuration must be particle (or
interface) resolved. Numerically, a particle-resolved strategy implies that the near-particle
mesh is fine enough to properly resolve the flow gradients introduced by the no-slip
boundary condition – the extent of the grid cells is typically many times smaller than
the unladen Kolmogorov length scale, η0. No interface modelling/approximations are
required if a spherical, body-fitted mesh is employed; the no-slip and kinematic constraints
existing at the interface are introduced as boundary conditions on the relevant cell faces. To
mitigate the computational expense of body-fitted spherical grids centred at each particle,
alternative approaches including the immersed boundary and lattice Boltzmann methods
are commonly applied to high-volume-fraction flows. The most relevant numerical studies
are particle-resolved DNS (PR-DNS) with one or more fixed spheres. The authors of these
studies generally acknowledge the limited scope of the fixed-in-place configuration but
extol the benefits of first understanding the simplified physics surrounding spheres that
cannot convert fluid turbulence into their own kinetic energy. The studied configurations
include turbulent channel flow (Zeng et al. 2008; Mehrabadi et al. 2015; Peng, Ayala &
Wang 2020), decaying HIT (Bagchi & Balachandar 2004; Burton & Eaton 2005; Botto
& Prosperetti 2012) and stationary HIT (Vreman 2016). The Vreman (2016) simulation of
64 fixed spheres (d/η = 2) arranged in a cubic lattice (separation of 8d, φ = 0.001) and
exposed to a stationary HIT field (Reλ = 32) with no mean flow is conditionally closest to
the present experiments. The radially averaged k field returns to 93 % of the unladen value,
with 90 % recovery achieved at approximately r/R = 5. More importantly, the surface
dissipation spikes to over 100ε0. We hope to recreate these types of informative radial
profiles using experimental data.

The term ‘particle resolved’ is rarely associated with experiments; we suggest an
experiment may be reasonably classified as particle resolved if it provides full-field
velocity information, starting at the fluid–particle interface and extending outward to
several normalized radii, with sub-Kolmogorov resolution. Such a definition does not feel
overly restrictive (especially when broad comparisons with DNS studies are desired) and
yet, to the best of our knowledge (the introductory statement in Vreman (2016) concurs),
there is but a single experiment that falls into this category – the aforementioned Tanaka
& Eaton (2010) study. While sub-Kolmogorov resolution is a prerequisite to determining
ε via the spatial gradient method (Tanaka & Eaton 2007, 2010; Verwey & Birouk 2022),
experiments can still provide valuable insight into single-point statistics such as k. Even so,
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relaxing the sub-Kolmogorov resolution requirement does not introduce many additional
experimental studies. Experiments and simulations with poor near-particle resolution
may also be inadequate for global modulation predictions; Vreman (2016) found that
over 10 % of the total dissipation occurs in 0.5 % of the flow volume. The region of
extreme dissipation is made up of the shells surrounding the particles where, as previously
mentioned, surface dissipation values can exceed the corresponding unladen quantities by
a factor of 100.

While the volume of literature pertaining to modulation in general is extensive, only a
small fraction examined the effects of droplet evaporation. Early DNS studies (Mashayek
1998; Miller & Bellan 1999; Wang & Rutland 2006) indicated that liquid drops help return
kinetic energy to the flow as they evaporate. This effect may not be noticed depending
on the initial conditions pertaining to liquid–vapour equilibrium (Russo et al. 2014).
More recent DNS investigations have utilized a particle-resolved strategy, but evaporative
feedback on the carrier turbulence was either not the focus (Dodd et al. 2021), too weak to
have any effect (Lupo et al. 2020) or negligible compared with the liquid-phase modulation
(Shao, Jin & Luo 2022). Experimental studies are seemingly non-existent (Elghobashi
2019).

1.1. Summary and objectives
The default fundamental turbulent flow is one that is homogeneous and isotropic with
a negligible mean component. It is, therefore, interesting that very little benchmark
experimental data have been collected in this regime for the complex problem of
particle/droplet modulation. To provide straightforward validation cases and general
insight, we analysed with 2-D-PIV the modulation induced by a single suspended water
droplet in both sub- and super-Kolmogorov regimes, primarily in the Reλ range of 50–140.
The fixed droplet geometry reduced the (extensive) parameters at play and allowed us to
focus on the relative size effect – this configuration is also relevant for heavy particles
which do not react kinematically to the flow (Burton & Eaton 2005) and, at the other end
of the spectrum, small drops which are travelling with the mean. The latter possibility is
often mentioned in conjunction with dilute fuel sprays, hence rapidly evaporating ethanol
droplets were also investigated. Results are intuitively presented in physical space in the
form of spatial heat maps and radially averaged profiles. Furthermore, the experimental
details and processing techniques are allocated additional space due to the infrequent
publication of similar campaigns.

2. Experimental methods

2.1. Overview
Four parameters were independently manipulated in this study: the droplet diameter,
the droplet composition (non-volatile vs volatile), the TKE of the carrier phase and the
composition of the carrier phase. Variation of the droplet diameter was achieved by
controlling the initial diameter, d0, and by continuously monitoring the flow field via PIV
as the drop evaporated. The droplet was either water or ethanol – the former approximated
a non-volatile case, while ethanol introduced the effects of rapid mass transfer and surface
regression. Turbulence was generated via eight fans which agitated the gas in an enclosed
chamber – the level of turbulent kinetic energy was altered by adjusting the rotational
speed, N, at which the fans were driven, where k1/2 ∝ N. The study primarily utilized
helium as the background gas. Due to the high kinematic viscosity of helium, it was
possible to resolve the Kolmogorov scales with standard PIV equipment (Verwey &
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(a) (b)

Laser
Camera

Frame

Injector

Fan motor (1 of 8)

y

x

Figure 1. (a) Overhead and (b) cross-sectional view (camera perspective) of the spherical chamber. The light
sheet blockage is depicted in (b) for a droplet of exaggerated diameter. The red square in (b) is the camera FOV,
approximately to scale.

Birouk 2022). Furthermore, the relatively large size of η in helium allowed the inclusion
of the important d/η < 1 flow regime. Selected test points were repeated in nitrogen, and
although the dissipation of nitrogen could not be calculated directly, comparisons of TKE
modulation made it a valuable addition. Room temperature and atmospheric pressure were
maintained throughout the study.

2.2. Fan-stirred spherical chamber
Experiments were performed in a 0.029 m3 fan-stirred spherical chamber. Eight fans,
each having six blades and a diameter of 100 mm, direct flow toward the centre of the
chamber to create a stationary HIT field. Although 2-D-PIV and droplet suspension
studies have been performed extensively in the chamber, this was the first attempt to
merge the two techniques. The fans were operated up to 5465 RPM and were checked
with a stroboscope before and after each set of tests, ensuring that no fan deviated from
the nominal target speed by more than 0.5 %. The helium or nitrogen environment was
created by first evacuating the sealed chamber with a vacuum pump and then adding
the desired gas from a commercial cylinder. The most comprehensive summary of the
chamber characteristics may be found in Verwey (2022). Key details are presented in
figure 1.

Droplets were suspended at the intersection of two 14 μm silicon carbide fibres with
a retractable injector. The fibres were mounted in a spring-tensioned frame that placed
their intersection at the geometric centre of the chamber. The fibre orientation – typically
consisting of a vertical and horizontal fibre crossing at 90◦ – was switched to an ‘X’ pattern
such that the vertical laser sheet struck only the droplet hanging at the intersection. A small
node of epoxy (∼180 μm in diameter) was placed at the fibre intersection to increase the
maximum supported droplet diameter.
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2.3. Particle image velocimetry
The PIV system consists of a Litron Nano L 135-15 Nd:YAG dual-head laser synchronized
to a 12-bit, 2048 × 2048 px camera with a pixel pitch, dr, of 7.4 μm and a repetition rate of
10 Hz. A 60 mm lens was coupled with a 3× teleconverter and provided a magnification,
M, of 0.65 and a field of view (FOV) of 23 × 23 mm. The pulse separation, �t, was set
by first examining the particle displacement probability density functions of sample cases
and determining the value of �t that ensured 99 % of particle displacements would be
less than �X/4 (the ‘one-quarter’ rule), where �X is the interrogation area (IA) width.
The alignment and calibration were carefully achieved using symmetrical features of
the chamber and a professionally machined calibration target. The true magnification of
any imaged tracer particle was estimated to be within 1 % of the global value. Before
acquiring images, the flow was densely seeded with olive oil tracers/drops that were
primarily atomized in the sub-micron range. A tracer particle of 1 μm diameter had a
maximum Stokes number of ∼0.01, where Sk < 0.1 is the typical criterion for assuming
negligible tracer slip (Tropea, Yarin & Foss 2007). DynamicStudio software was used
to cross-correlate the images using 32 × 32 px IAs (�X = 364 μm) with 50 % overlap
(�x = 182 μm). All other processing and analysis tasks were performed using in-house
MATLAB scripts.

2.3.1. Preliminary considerations
The goal of this study was to determine how an isotropic turbulent flow reacts to the
introduction of a small liquid droplet at a spatially fixed location. We were primarily
concerned with the modification of turbulence statistics – in particular, k and ε – close
to the droplet surface. To retrieve this information via 2-D-PIV, the droplet must be
located within the laser sheet. This configuration yielded two experimental problems:
reflections that obscured tracer particle imaging in the interface region and the blockage
of laser light on one side of the droplet. The greater context of this experiment –
namely, the interaction between turbulence and droplet vaporization – meant that interface
characterization was critical. Fortunately, liquid droplets can be dyed with a fluorophore
to mitigate reflectivity issues. The fluorophoric powder rhodamine B is readily soluble
in many common liquids, including water and ethanol. Data collected by Kristoffersen
et al. (2014) indicated absorption peaks at 554 and 550 nm in water and ethanol
solvents, respectively. Approximately 80 % of incoming 532 nm radiation (typical for
frequency-doubled Nd:YAG lasers, including the one used presently) will be absorbed
and re-emitted in a relatively narrow band surrounding the peak emission wavelengths of
576 and 569 nm for water and ethanol, respectively. This fluorescence was filtered out by
a 532 nm laser line filter – a standard optical component often used by default in a PIV
experiment to reduce stray light impingement (e.g. ambient room lighting) on the camera
sensor. Deionized water mixed with rhodamine B at a concentration of 1 g l−1 was used
for the non-volatile investigation. Ethanol mixed with trace amounts of rhodamine B was
implemented for the volatile case.

The second issue – that of laser sheet blockage – resulted in a rectangular region
on one side of the droplet being devoid of illuminated tracer particles. The spherical
symmetry of both flow field and obstruction (the droplet itself) made the resultant data
loss relatively unimpactful, as statistics are theoretically independent of azimuthal and
polar angles. Furthermore, the sharp cutoff in image intensity imposed by the blockage
was used to solve another problem – calculating the droplet diameter. Suspended droplets
are typically imaged using high-magnification optics illuminated with a backlight. The
sequence of silhouettes is readily analysed using standard image processing techniques
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such as thresholding and opening, and the diameter extracted by counting the remaining
object pixels, Np, and assuming sphericity if reasonable, where

d = dr

M

√
4
π

Np. (2.1)

However, diameter information cannot be obtained in this manner concurrently with PIV
– a complimentary strategy was devised. If the ratio of droplet diameter to laser sheet
thickness, d/�z0, is large enough, the extent of the blockage region should conform almost
perfectly to d. The utility of this strategy is verified in the following section.

2.3.2. Feasibility investigation
The general capability of correlating blockage region to object size was evaluated by
inserting needles of known diameter (300, 462, 902 and 1273 μm, each measured with
a micrometer to within ±3 μm) perpendicular to the laser sheet. A steep transition from
high to low average row intensity occurred near the edges of the blockage region. The
needles were used to determine the weight, w, such that the number of rows falling below
the cutoff intensity, Icut, was equal to the true object size, where

Icut = min(Irow) + w
(
Irec − min(Irow)

)
. (2.2)

In (2.2), Irow is the row-averaged image intensity and Irec is the overall area-averaged
intensity in the near-droplet region – both are limited in calculation to the right-hand side
of the droplet where the blockage region exists. Consider the example calibration image in
figure 2(a). A 300 μm needle – its presence visible as a bright white dot at (x, y) ≈ (0, 0)

mm – blocks the laser sheet. With a pixel pitch of 7.4 μm and a magnification of 0.65, each
pixel represents 11.38 μm in the object plane. Hence, a height of 26 pixels most closely
approximates the needle diameter. The value of w in (2.2) is incremented – beginning
at zero and in steps of 0.01 – until 26 rows have average intensity values less than
Icut. For the example provided in figure 2, the best weight was 0.26 and the resultant
(normalized) cutoff intensity is depicted by the blue dashed line in figure 2(b). The results
were averaged over 100 images which, in the case of the 300 μm needle, yielded an average
optimal weight, wo, of 0.30. Fortunately, the average optimal weight was rather insensitive
to seeding density – wo did not change by more than 0.01 when comparing minimally
(∼0.005 particles per pixel) and maximally (∼0.02 particles per pixel) seeded fields. When
sizing droplets, (2.2) was used to establish Icut by letting w = w0 = 0.30 for all images.

2.3.3. Set-up and calibration for droplets
For a typical PIV experiment in the spherical chamber, where all three velocity
components feature nearly equivalent distributions, �z0 could be set equal to �X and,
provided �t is chosen using the strategy outlined in § 2.3, the one-quarter rule would be
simultaneously satisfied for in- and out-of-plane tracer displacement as desired (Adrian &
Westerweel 2011). The uniqueness of the present experiment, where complete obstruction
of the light is requisite for sizing assessment, dictated that the sheet should be as thin
as possible to accommodate smaller drops. The achievable light sheet thickness varies
inversely with stand-off distance, where the minimum stand-off distance of 270 mm
corresponds to a theoretical sheet thickness of ∼260 μm as measured by the e−2 criterion.
The beam waist was placed at the fibre intersection by adjusting the manual focusing
module, recording 200 images with a relatively high �t, and observing which column
of vectors featured the most substitutions (excessive substitutions being the result of
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Figure 2. (a) A PIV calibration image with the 300 μm needle inserted perpendicular to the laser sheet. The
average row intensities Irow are calculated within the green bordered area. These averages are normalized by
the overall region intensity Irec (the region demarcated with the light green overlay) and plotted in (b). The
normalized cutoff intensity for this image is depicted by the blue dashed line; 26 rows have intensities less than
this cutoff value, as discussed above.

out-of-plane pair loss, an effect which should be most dramatic at the beam waist). The
optimal �t value was re-assessed based on �z0 = 260 μm, which was smaller than �X
(364 μm) and, therefore, drove the selection of �t.

A spherical droplet does not present an identical blockage profile as compared with
the cylindrical needles used for calibration. Even droplets satisfying d > �z0 will allow
‘leakage’ of the laser light around the upper and lower periphery, since droplets present
a circular, rather than rectangular, frontal area. A 182 μm droplet blocks only 55 %
of the light intercepted by a 182 μm cylinder (assuming �z0 = 260 μm, discussed
above). However, at d = 364 μm, this ratio has increased to over 90 %. This analysis
is purely geometric and does not consider that the majority of leaked light belongs to
the weaker-intensity tail regions of the sheet profile. The example diameters of 182 and
364 μm were not picked at random; rather, they represent the edges of the smallest
diameter bin, to be discussed shortly. It is reasonable to expect greater diameter uncertainty
for such small droplets. We note, however, that this uncertainty is only capable of
underpredicting the diameter. While a droplet reported as 182 μm is quite likely to be
larger, its placement in the 182–346 μm bin remains justified.

2.3.4. Data processing and analysis
Whereas most modulation studies utilize particles of specific size, droplets of water and
ethanol evaporate and, therefore, produce a continuous range of diameters. The droplet
diameter at the end of a PIV run may be much smaller than d0, depending on the liquid and
turbulence level. To facilitate statistical convergence, droplet images were binned based
on diameter. Seven bins of 182 μm width covered the diameter range of 182–1456 μm.
The selection of bin width was somewhat arbitrary; however, 182 μm corresponds to
the vector spacing of the PIV grid and in a sense represents the minimum resolvable
resolution. In doing so, we suggest that a group of droplets with diameters differing by not
more than 182 μm may be reasonably allocated to the same ensemble. The convergence
criteria discussed below confirmed this assumption. Each diameter range is denoted by
its mean value, d̄, for notational convenience (e.g. the 182–364 μm bin is equivalent to
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d̄ = 273 μm). When discussing results, a particular case is typically identified by the ratio
of the mean diameter to the unladen Kolmogorov scale, d̄/η0.

The PIV system is limited to ∼3000 image pairs per acquisition cycle. The need for
statistical convergence across seven diameter bins, combined with the above limitation,
resulted in the repetition of each condition (where the term ‘condition’ defines the unique
combination of liquid, TKE, and background gas) at least seven times. In the case of
volatile ethanol at elevated TKE, the condition was repeated up to 50 times due to the
rapid evaporation of the droplet. Each PIV test contains a continuous range of diameters
beginning at d0 and ending at either d ≤ 182 μm or some intermediate diameter value that
is reached when 3000 pairs have been acquired. Once the images were saved, they were
transferred to MATLAB for analysis. The in-house code extracted the droplet diameter
through the intensity weighting strategy discussed in previous sections. The midpoint
between the cut off rows defined the droplet centroid in the y direction, yc. The laser
flash was used to locate the front of the droplet which, since the diameter is known,
leads to the x centroid value, xc. In the case of very small droplets, the flash was large
compared with the droplet itself, which biased the droplet placement towards the left.
In these instances, the value of xc was set to zero, which was justified since the fibre
intersection corresponds to (x, y) ≈ (0, 0), and also because small droplets did not move
significantly with the flow field. Pixels at radial locations satisfying r ≤ d/2, where r = 0
corresponds to (xc, yc), were considered part of the droplet while pixels to the right of
the droplet were considered part of the blockage region. The MATLAB script applied
masks to the droplet and blockage regions of both frames, removed any large reflections
(the front of the drop or the fibre intersection) by comparing the size of connected regions
with the average tracer particle size, and returned the masked images to DynamicStudio. A
raw and masked image example is presented in figure 3. The processed images were then
cross-correlated in the typical fashion using the standard 32 × 32 px interrogation areas
with 50 % overlap. A second MATLAB script compiled an index of the location and file
names for the vector and mask data that fell into each size bin. The final main processing
step involved reading the vector data files randomly – along with the diameter and centroid
information – and building an independent ensemble for each bin size. The information
was selected at random to avoid biasing the results toward any particular PIV test. This
process was continued until both the TKE and dissipation rates converged.

To better accommodate the geometry of the experiment, the fluctuating Cartesian
velocities, u and v, are transformed to a spherical basis, ur and uφ

ur = u(x − xc) + v( y − yc)

((x − xc)2 + ( y − yc)2)1/2 , (2.3)

uφ = −u( y − yc) + v(x − xc)

((x − xc)2 + ( y − yc)2)1/2 , (2.4)

where (x, y) refers to the fixed PIV coordinate system and (xc, yc) is the mean centroid
of the droplet ensemble (the construction of the droplet ensemble, including convergence
considerations, is discussed shortly). To calculate the TKE, we assumed that the azimuthal
and polar Reynolds shear stresses are equivalent

k = 1
2
〈urur + uφuφ + uθuθ 〉 ≈ 1

2
〈urur〉 + 〈uφuφ〉, (2.5)

where angled brackets signify a temporal average.
To calculate the dissipation rate from 2-D data, HIT approximations must be applied.

Three formulations utilized by Hoque et al. (2016), Tanaka & Eaton (2010) and Verwey &
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Figure 3. (a) Example of a (cropped) raw PIV image and (b) the masked sample ready for cross-correlation.
The droplet diameter and centroid are extracted during the masking operation so that the resultant velocity
vector field can be properly binned. In this example, the blockage region height is 123 px, or 1400 μm. Hence,
this droplet/vector field would be placed in the 1274–1456 μm (or d̄ = 1365 μm) bin associated with the given
experimental condition.

Birouk (2022) are provided in (2.6)–(2.8), respectively,

ε = 3ν

〈
2
3

(
∂u
∂x

)2

+
(

∂v

∂x

)2

+
(

∂u
∂y

)2

+ 2
3

(
∂v

∂y

)2

+ 2
3

(
∂u
∂y

∂v

∂x

)〉
, (2.6)

ε = 3ν

〈(
∂u
∂x

)2

+
(

∂v

∂x

)2

+
(

∂u
∂y

)2

+
(

∂v

∂y

)2

+ 2
(

∂u
∂y

∂v

∂x

)〉
, (2.7)

ε = 3ν

〈
5
6

(
∂u
∂x

)2

+ 7
12

(
∂v

∂x

)2

+ 7
12

(
∂u
∂y

)2

+ 5
6

(
∂v

∂y

)2

− ∂u
∂x

∂v

∂y
− ∂v

∂x
∂u
∂y

〉
. (2.8)

As they must, all three equations return identical results when the isotropic relations
governing mean-square relationships hold perfectly, but their application to a real
experimental dataset will inevitably lead to disagreements. In PIV measurements of
single-phase HIT, with proper resolution and applying the correction suggested by Tanaka
& Eaton (2007), the deviation is small. For instance, in Verwey & Birouk (2022) the
average per cent difference in ε values returned by (2.6) vs (2.8) across 42 independent
tests was 0.6 %. However, the flow near the droplet interface is far from isotropic, even
in the small-scale sense, which means the form of the dissipation equation will have a
significant impact on the value of ε. Regardless of isotropy, the true dissipation field
surrounding a fixed, spherical droplet in a zero-mean HIT field should be a function of
only the radial coordinate. By this logic, the three methods may be contrasted based on
the angular variation of dissipation by evaluating the normalized standard deviation of
ε in a thin region surrounding the droplet. Unfortunately (or perhaps fortunately), there
was not enough discrepancy between methods to definitively select one over the other on
that basis. That ε varies only modestly with φ is confirmed by looking at the spatial heat
maps of dissipation (§ 3.2.2) and suggests that the errors induced by assuming isotropy
are mitigated to some extent. Nevertheless, the approximate nature of the near-interface
dissipation values reported in this study must be acknowledged. Since the Tanaka & Eaton
(2010) study is the only modulation experiment that utilized PIV with sub-Kolmogorov
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resolution to resolve the near-particle k and ε fields, we elected to use their formula for
ε, (2.7). Their study, while different from the present one in many ways, shares enough
similarities to facilitate direct comparisons in the data – such comparisons will be most
accurate if the dissipation formula is consistent. Of the three formulas, (2.7) returns the
largest ε values near the droplet. Finally, since all dissipation fields – including the unladen
ones – were calculated using a consistent formula, it is hoped that dissipation data are
insightful in a relative sense, even if their closeness to the true value is questionable.

To recover the dissipation rate in the interface vicinity, the spatial gradients in (2.7)
were universally calculated using forward (in the radial sense) difference schemes instead
of central differences. The flow field was divided into four quadrants with the origin at the
droplet centroid. Gradients in the upper-right quadrant were forward in x and y, gradients in
the upper-left quadrant were backward in x and forward in y, etc. The forward differences
were calculated for two different grid spacings, 2�x and 3�x. These distinct spacings were
necessary to implement the correction developed by Tanaka & Eaton (2010),

ε( p,q) ≈ 9ε
( p,q)
m |3�x − 4ε

( p,q)
m |2�x

5
, (2.9)

where ( p, q) is the PIV grid index and εm is the raw measured dissipation rate from
(2.7). Equation (2.9) is a weighted average derived to suppress the extreme noise
that prevails in sub-Kolmogorov-resolution PIV and propagates into the dissipation
calculation. The individual mean-square gradients which comprise the dissipation rate can
also be corrected in this manner.

The primary data analysis outputs are k and ε averaged in thin radial shells, designated
k�r and ε�r, respectively. The shells begin at the ensemble droplet surface and extend
out to the bounds of the field of view. Shell thickness, �r, was set equal to �x, or
182 μm. A shell-averaged statistic at radius r incorporates all data between (r − �r/2)

and (r + �r/2) – in other words, r is the radial coordinate of the shell centreline. The
convergence criteria were based on how these radial shell averages change as additional
vector fields were added to the ensemble. In any given image, a pixel can belong to
the droplet, the blockage region or the unobstructed background. Pixel associations are
constantly changing due to evaporation (longer term effect) and drag-induced droplet
motion, the latter of which can significantly affect the drop position even in sequential
image pairs. The ensemble droplet representation was built by adding up the droplet
masks from the individual image pairs and subsequently removing outliers. Pixel locations
associated with the droplet at a rate of 20 % or less were rejected as outliers for the purpose
of calculating the overall ensemble droplet radius, R, and centroid (xc, yc). Ensemble
statistics were updated after every 100 images. After each ensemble calculation, the newest
values of k�r and ε�r were compared with the previous ones. Convergence was achieved
once the deviation in both statistics – and in every shell – was less than 0.02 for five
consecutive calculations. An example of the convergence of k�r and ε�r is illustrated in
figure 4.

2.3.5. Unladen flow base cases
Droplet modulation of the flow field is assessed by comparing the results with unladen base
cases. Unladen PIV tests were performed under identical circumstances, with the single
exception of the frame being installed without the 14 μm fibres. Three fan speeds were
tested with helium (1085, 3195 and 5465 RPM) and three with nitrogen (1000, 3000 and
5000 RPM). The offset in RPM values between helium and nitrogen represents an effort
to equalize the turbulent kinetic energy (e.g. k in helium at 1085 RPM is approximately
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Modulation of isotropic turbulence by an anchored droplet
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Figure 4. Illustration of convergence in radial shells for (a) the TKE and (b) the dissipation rate. Statistics
are presented for shells at the minimum, an intermediate and the maximum radial values. The example case
corresponds to a large water droplet (d̄ = 1365 μm) in mildly turbulent helium. In this instance, only 1400 pairs
were necessary to converge k�r and ε�r in each shell.

equal to k in nitrogen at 1000 RPM, etc.), as the kinetic energy gain with respect to fan
speed is slightly higher in nitrogen (Verwey & Birouk 2022). The dissipation was not
directly calculated in nitrogen due to the small Kolmogorov scales; however, comparisons
involving k are still valid and insightful. It was challenging to anchor droplets above
∼500 μm at the 5000 RPM nitrogen test point – modulation results are not presented for
this condition.

3. Results

3.1. Base case results
Table 1 summarizes the key base case turbulent statistics, averaged across a central circular
region of 5 mm radius. The spatial average of an arbitrary statistic, α, is denoted ᾱ. The
dissipation (and related quantities) could not be calculated directly in nitrogen and were
evaluated via the dimensional analysis approach

ε = Cε

k3/2

L
, (3.1)

λf =
(

30ν〈u2〉
ε

)1/2

, (3.2)

where ν is the kinematic viscosity of the gas, Cε = 0.5, and L = 27 mm (Verwey & Birouk
2022). For the resolved helium fields, the longitudinal Taylor microscale, λf , was evaluated
in a similar fashion but with ε determined directly from the corrected spatial gradients, as
discussed in § 2.3.4, instead of (3.1). The Taylor Reynolds number, Reλ, always refers to
the unladen field and is calculated as

Reλ = k1/2
0 λf ,0

ν
, (3.3)

where subscripts of 0 unambiguously specify an unladen quantity; Reλ is used to identify
the flow field for the remainder of the paper. Large-scale isotropy is quantified by the ratio
of root-mean-square (r.m.s.) velocities, Ir = 〈u2〉1/2/〈v2〉1/2 or 〈u2

r 〉1/2/〈u2
φ〉1/2, where Ir
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Figure 5. Radial profiles of (a) TKE and (b) dissipation for unladen flows. In the absence of a droplet (whose
ensemble centroid defines the origin of the spherical coordinate system), r = 0 mm is the centre of the FOV.

is introduced as a notational convenience. Table 1 indicates that the average deviation from
isotropy in the 5 mm radius region, |1 − Ir|, is no greater than 0.03 in any case. Similar
studies often report an average of the r.m.s. ratio, Ir, although the method applied here is
more conservative since over- and under-unity values of the ratio cannot compensate for
one another in the averaging process. As an extreme example, if half of the vector locations
in a region of interest report Ir = 0.5 and the other half return Ir = 1.5, then Ir = 1.0 –
an obviously misleading result. The homogeneity of the flows is evident in figure 5, which
plots k0,�r and ε0,�r vs r. There is little radial variation in either quantity, as desired.

3.2. Non-volatile droplets

3.2.1. Anisotropy and the TKE
The presence of a droplet introduced a significant disruption to the unladen isotropic field.
The resultant anisotropy for an example case is visualized in Cartesian and spherical
coordinates in figure 6. The spherical presentation in figure 6(b) is logical given the
geometry, but the Cartesian approach in figure 6(a) is included to facilitate a comparison
with Hoque et al. (2016). Based on their planar PIV data, Hoque et al. (2016) suggested
that the presence of a large fixed sphere in a quasi-HIT field improves the flow isotropy,
and that the improvement continues as the sphere diameter increases (10 � d/η � 77).
In Hoque et al. (2016), the unladen flow has an average isotropy ratio (defined therein as
I−1
r ) of ∼0.82 which eventually improves to ∼0.96 for the largest sphere (d = 8 mm). The

unladen flow, along with each sphere size, was tested at six levels of turbulence (quantified
by the Reynolds number of the oscillating grids, Reg) and in no instance did Reg have
any noticeable effect on the isotropy. The conclusion that the sphere improved isotropy
is clearly contrary to our results in figure 6, and two possibilities are now suggested.
First, the PIV FOV in Hoque et al. (2016) does not include the region below the sphere,
which removes a large swath of low I−1

r data points. Second, the sphere may reorient
the r.m.s. components in an existing anisotropic field toward a more isotropic structure.
Neither possibility is observable in the present dataset since the unladen flow has excellent
isotropy (table 1) and the FOV does not discard any near-droplet information. Figure 7
plots the r.m.s. components featured in figure 6(b). While both components decrease near
the droplet surface, the radial extent of the damping of 〈u2

r 〉1/2 is far greater than 〈u2
φ〉1/2.

This conclusion agrees with the PR-DNS findings of Vreman (2016).
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Figure 6. Isotropy field for an example case (Reλ = 50, d̄/η0 = 1.5) in (a) Cartesian and (b) spherical
coordinates. Note that (a) plots I−1

r for consistency with Hoque et al. (2016).
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Figure 7. (a) Radial and (b) azimuthal r.m.s. velocities for the example case in figure 6 (Reλ = 50,
d̄/η0 = 1.5).

Gas N (RPM) k0 (m2 s−2) ε0 (m2 s−3) η0 (μm) λf ,0 (mm) |1 − Ir| |〈U〉|/k1/2
0 Reλ

He 1085 0.20 2.6 910 13 0.01 0.06 50
3195 1.96 64 410 8.7 0.01 0.07 100
5465 6.45 340 270 6.8 0.02 0.09 140

N2 1000 0.22 (1.9) (210) (6.1) 0.03 0.10 (180)
3000 2.13 (58) (90) (3.4) 0.02 0.04 (310)
5000 6.25 (290) (60) (2.6) 0.01 0.03 (410)

Table 1. Key turbulent properties of the unladen flows. To report single representative values, a spatial
average is calculated for r ≤ 5 mm, where r = 0 mm is the centre of the FOV. The Kolmogorov scale is
η0 = (ν3/ε0)

1/4. The residual mean-flow influence is gauged by calculating the planar mean-flow magnitude
over the square root of the TKE, where |〈U〉| = (〈U〉2 + 〈V2〉)1/2. Bracketed quantities indicate an estimate
via the dimensional analysis approach.
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Figure 8. The TKE field surrounding the (a) minimum, (b) median and (c) maximum droplet diameters at
Reλ = 50.
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Figure 9. The TKE field surrounding the (a) minimum, (b) median and (c) maximum droplet diameters at
Reλ = 100.

Figures 8–10 illustrate the kinetic energy fields – centrally cropped about the droplet to
±5 mm – for the minimum, median and maximum droplet diameters at the three major
Reλ levels (50, 100, and 140). For consistency, the maximum colour level is set to the
95th percentile value of the corresponding unladen TKE field. The attenuated region
surrounding the droplet is highly symmetric, as expected in a zero-mean HIT environment.
It is not surprising that k is universally damped near the droplet, as (d/L)max ≈ 0.05 and
Rep,max ≈ 28, both of which fall well shy of the classic demarcation points for kinetic
energy enhancement suggested by Gore & Crowe (1989) and Hetsroni (1989) (d/L � 0.1
and Rep � 400, respectively). Even if these thresholds were exceeded, it is not clear
if/when enhancement would be expected in the absence of a steady wake aligned with
a mean flow. However, Hoque et al. (2016) reported an increase in the kinetic energy
field when d/L � 0.41, which suggests that the demarcation point between attenuation and
augmentation – whatever the specific mechanism for a fixed sphere in zero-mean HIT – is
similar in magnitude to the Gore & Crowe (1989) limit. While the droplets in the present
study could move slightly, they were essentially fixed in place, hence the attenuation of k
was assuredly due to the mere presence of a surface and not the exchange of kinetic energy
from the turbulence to the droplet.

Preceding a detailed analysis of global attenuation and radial profiles of statistics,
Vreman (2016) presented snapshots of instantaneous flow field quantities surrounding
one sphere in the simulated array – these graphical depictions were then repeatedly
referenced to help link the findings back to fundamental flow physics. A key discussion
point was the demarcation of a front and rear face of the sphere, as determined by
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Figure 10. The TKE field surrounding the (a) minimum, (b) median and (c) maximum droplet diameters at
Reλ = 140.

the instantaneous flow direction in the sphere vicinity. We take this approach one step
further by ensemble averaging the PIV velocity fields based on the approximate approach
angle of the instantaneous velocity field. To illustrate, consider a set of vector fields
associated with a given condition and diameter. The near-droplet region of each field
is first analysed to yield the approach angle of the instantaneous flow, φa, and then
the entire field is rotated about the droplet centroid through φa such that the approach
velocity is horizontal and from the left. This is repeated for each vector field, and
the resultant ensemble may be temporally averaged in the usual fashion. A statistic
(e.g. mean or r.m.s. velocity) at a given point is no longer the temporal average at
a fixed spatial location (x, y) but rather the expected value at location (r, φ̃), where
φ̃ = 0 is the axis extending into the incoming flow. Statistics calculated with respect to
the angle-adjusted coordinate system are designated with the subscript φ̃ (e.g. 〈Ur〉φ̃ ,
〈Uφ〉φ̃). The purpose of this manipulation is to analyse the modulation problem from
the perspective of upstream/downstream/cross-stream regions which, by virtue of their
constantly changing locations in a quasi-zero-mean flow, are difficult to elucidate without
resorting to the adjustment described above. The instantaneous fields provide useful
qualitative information (there is no obvious recirculation behind any droplet in this study,
for instance), but building an ensemble sheds quantitative light on the expected/average
behaviour.

The above procedure can be executed on unladen fields as well to provide points of
comparison. Figure 11(a) depicts the Reλ = 100 unladen field, first subjected to the angle
adjustment procedure and then ensemble averaged to yield 〈Ur〉φ̃ . The spatial distribution
of 〈Ur〉φ̃ is easily explained by recalling that the flow is, on average, approaching from
the left – hence the negative, positive and negligible values of 〈Ur〉φ̃ along φ̃ = 0, π and
±π/2, respectively. The distribution of 〈Uφ〉φ̃ is omitted for brevity since it is analogous
to the 〈Ur〉φ̃ field rotated by −π/2. The droplet in figure 11(b) enforces a wake region,
characterized by low 〈Ur〉φ̃ along the downstream axis, with a smaller extent of attenuation
observed in the upstream region as well. On the other hand, figure 11(c) suggests that
the spatial extent of 〈Uφ〉φ̃ attenuation is slight. In general, figure 11 helps explain the
dramatic difference in the attenuation profiles of figure 7 – the wake structure ensures
that a protracted region of low radial velocity always exists and, although the orientation
and magnitude will vary with time, the wake attenuation effect penetrates further into the
field than the reduction in azimuthal velocity, which is driven by shear in the cross-stream
directions.
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Figure 11. Angle-adjusted mean velocity fields, 〈Ui〉φ̃ . The median values of Reλ and d̄ (100 and 819 μm,
respectively) are selected for this representative example. (a) Mean radial velocity in the unladen field. The
mean azimuthal velocity field is qualitatively similar if the field in (a) is rotated through an angle of −π/2.
The (b) radial mean velocity field and (c) azimuthal mean velocity field in the presence of a droplet. The FOV
is cropped to the same extent as figures 8–10, but the tilde notation (x̃, ỹ) emphasizes the adjustment aspect.
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Figure 12. Radial profiles of angle-adjusted mean velocity magnitudes for Reλ = 50. Profiles are provided for
the unladen flow, the smallest droplet (d̄ = 273 μm) and the largest droplet (d̄ = 1365 μm). (a) Radial mean
velocity in the upstream direction. (b) Azimuthal mean velocity in the π/2 cross-stream direction. (c) Radial
mean velocity in the downstream direction with the wake width (less than 90 % recovery) depicted by the light
fill. (d) Azimuthal mean velocity in the 3π/2 cross-stream direction.

The analysis leading to figure 11 was repeated for all Reλ and droplet sizes, and select
mean velocity profiles along the angle-adjusted axes are plotted in figures 12–14. By
definition, 〈Ur〉φ̃ is negligible along φ̃ = π/2 and 3π/2, and 〈Uφ〉φ̃ is negligible along
φ̃ = 0 and π – hence, no profiles are provided for those combinations. These figures
help validate the initial observations surrounding figure 11, the most important being the
extended spatial region of recovery for 〈Ur〉φ̃ in the upstream and, to a much greater
extent, downstream directions (figures 12–14(a,c), respectively). In contrast, the rapid
convergence of the 〈Uφ〉φ̃ laden profiles to the unladen base case (figures 12–14(b,d))
is also significant. In every case, the larger drop lags the smaller one in recovery distance,
although the discrepancy may not be as large as expected, given the large droplet is five
times larger than the small one. Furthermore, if the laden cases in figures 12–14 were
plotted against radial distance from the droplet surface, r − R, instead of r, the profiles
would be brought closer together by ∼0.5 mm (the difference between the maximum and
minimum values of droplet radius).

Perhaps the most striking feature in figures 12–14 is the overall size of the 〈Ur〉φ̃ wake
region, depicted in figures 12–14(c) with a light fill. At any radial location, the vertical
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Figure 13. Radial profiles of angle-adjusted mean velocity magnitudes for Reλ = 100. See figure 12 caption
for details.
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Figure 14. Radial profiles of angle-adjusted mean velocity magnitudes for Reλ = 140. See figure 12 caption
for details.

extent of the fill (which is kept dimensionally consistent across all three figures to facilitate
comparisons) depicts the penetration distance of the wake into the cross-stream direction,
where the wake is said to exist until 〈Ur〉φ̃ > 0.9〈Ur〉φ̃,0 (this 90 % recovery criterion
is revisited shortly). Judging from these figures, one might assume that droplet diameter
plays a major role in determining the overall attenuation shell thickness, since the radial
wake increases significantly with d̄, as expected. It is important to note that the azimuthal
component, by virtue of its equivalence to the polar component, carries twice the weight
into the TKE equation (2.5), and figures 12–14(b,d) indicate that not only does 〈Uφ〉φ̃
recover quickly in the cross-stream direction (as previously noted), but there is also far
less diameter dependence than what is witnessed in the upstream and downstream radial
component. In figure 13, where the large droplet wake dramatically eclipses that of the
small droplet in both width and depth, the actual thicknesses of the attenuation regions are
nearly equivalent. Indeed, the thickness of an attenuation shell is relatively constant with
diameter at a given background turbulence level. This is why smaller droplets affect larger
normalized regions – the attenuation shell does not scale with diameter.

The radial extent of attenuation for all droplet diameters in helium flow fields is
quantified in figure 15, which plots the shell-averaged normalized TKE, (k/k0)�r, vs the
normalized radius r/R. These plots make clear that faster recovery, in the normalized
spatial sense, is expected for larger droplets in highly turbulent fields. As Reλ increases,
the kinetic energy value in the surface shell, k�r,s, also increases. This observation is
attributable to both the averaging effect of the finite-sized IAs and the absence of a
no-slip boundary condition at the liquid–gas interface. Since the TKE at the surface is
not identically zero (as it would be for a rigid, solid surface), it is possible that it varies
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Figure 15. Radial profiles of k in normalized units for all droplet sizes in (a) Reλ = 50, (b) Reλ = 100 and
(c) Reλ = 140. The DNS data of Vreman (2016, figure 6(a)), Reλ ≈ 55, are included in (a), where Reλ was
updated from the stated value of 32 to reflect the present calculation method, and d/η = 2. Profiles in nitrogen
(Reλ = 180 and 310) are qualitatively similar.

between conditions. We note, however, that the impermeability/kinematic constraint is still
valid, and that the overall surface kinetic energy is likely to be very small.

To assess the spatial extent of kinetic energy recovery, the r/R values corresponding to
the first occurrence of (k/k0)�r ≥ 0.9 are extracted from figure 15 and plotted in figure 16.
Notationally, we introduce r∗

k to designate this radial location, where

r∗
k = min

{
r/R

(
(k/k0)�r ≥ 0.9

)}
. (3.4)

At r∗
k , the kinetic energy field has recovered to within 10 % of the unladen value. The value

of 10 % was selected arbitrarily, but it represents a reasonable combination of a nearly
recovered field while avoiding some of the run-to-run variation that exists as (k/k0)�r →
1. Although (k/k0)�r should equal unity at high r/R, we note that the far-field value, taken
as the average in the ten outermost radial shells, varies between 0.92 and 1.08 across the
21 helium test cases in figure 15, although the average far-field value of the 21 cases is
indeed 1.00. The deviation from unity is more severe for nitrogen tests, with an average
far-field TKE recovery value of 1.06 (or 6 % greater than the unladen base case). It is
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Figure 16. Normalized radius required for k to return to within 10 % of the unladen value vs (a) d̄/η0 (C1 =
6.6, C2 = 0.46, R2 = 0.76) and (b) d̄/λf ,0 (C1 = 1.0, C2 = 0.62, R2 = 0.87). The dataset covers Reλ from 50
to 310 (table 1). The lines of best fit include all plotted data.

not expected that the far-field kinetic energy is physically increased by the presence of a
droplet, which is what (k/k0)�r > 1 suggests. Both Tanaka & Eaton (2010) and Vreman
(2016) depict (k/k0)�r asymptotically approaching a sub-unity value, although the fields
of view do not extend beyond r/R ≈ 7. Hence, the present deviation is best explained by
experimental variation, despite every effort to maintain equivalent forcing and ambient
conditions between the laden and unladen cases.

To help mitigate the effect of this variation, the curves in figure 15 were first normalized
by their individual far-field values before extracting and plotting the 90 % recovery radius
in figure 16. This approach artificially forces each profile to unity in the far field, but it is
justified if the far-field value is assumed free from any droplet effect. If this condition is
met (and figure 15 suggests that the profiles have recovered), then the adjustment procedure
is equivalent to normalizing by the theoretical k0,�r profile of the particular case at hand,
rather than the reference unladen case. Some increased scatter in the nitrogen TKE data
notwithstanding, the adjustment generally improved the collapse of data but does not affect
the interpretation of overall trends.

3.2.2. Dissipation rate
Figures 17–19 illustrate the dissipation rate field – centrally cropped about the droplet
to ±5 mm – for the minimum, median and maximum droplet diameters at the three
major Reλ levels (50, 100, and 140). For consistency, the minimum and maximum colour
levels are set to the approximate unladen value and the maximum expected dissipation,
respectively. Many of the observations detailed in the previous section are applicable
here, including the overall radial symmetry of the field. There is a minor ‘cloverleaf’
effect visible in figure 17(c) which indicates some angular dependence in the dissipation
calculation. This observation is not physical but rather results from the application of
Cartesian finite differences and isotropic assumptions in the spatial gradient calculation
(§ 2.3.4). The cloverleaf pattern is either reduced or non-existent for the other presented
cases. The dissipation rate increases dramatically near the droplet surface – this finding
could be inferred from the kinetic energy profiles in the previous section along with
the dissipation results in the most relevant studies (Tanaka & Eaton 2010; Hoque et al.
2016; Vreman 2016). The reader is reminded that the surface shell, despite being relatively
thin, is still much coarser than what would be required to resolve the gradients at the
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Figure 17. Dissipation rate field surrounding the (a) minimum, (b) median and (c) maximum droplet
diameters at Reλ = 50.
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Figure 18. Dissipation rate field surrounding the (a) minimum, (b) median and (c) maximum droplet
diameters at Reλ = 100.
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Figure 19. Dissipation rate field surrounding the (a) minimum, (b) median and (c) maximum droplet
diameters at Reλ = 140.

droplet surface. Therefore, the surface-shell dissipation, ε�r,s, is properly conceptualized
as the very-near-field dissipation average (the surface shell is located at 1.1 ≤ r/R ≤ 1.5,
depending on d̄) as opposed to the true surface dissipation, εs. Accurate experimental
predictions of εs, in conditions similar to those presently developed, have not been
achieved, due in part to the extremely fine resolution required.

Figure 20 plots the variation of the shell-averaged normalized dissipation rate, (ε/ε0)�r,
against r/R. Each panel includes an inset to provide enhanced detail in the near-droplet
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region (r/R ≤ 10). In all three turbulent fields, there is a clear separation between d̄/η0
groups, where the larger droplets recover quicker. In the Reλ = 50 field, ε�r,s is 20 to
22 times greater than the unladen value. As Reλ increases, the normalized surface-shell
dissipation falls – first to ∼10 at Reλ = 100 and then to ∼6 at Reλ = 140. These
surface-shell dissipation spikes are not as extreme as the hundredfold increase reported by
Vreman (2016), but are still far larger than the values reported in any relevant experimental
studies. The inability to resolve the boundary layer gradients is one possible reason for
the discrepancy. Furthermore, Vreman (2016) used rigid, solid spheres. Nevertheless, the
degree of overlap in dissipation profiles between Vreman (2016) and our conditionally
closest case (figure 20a) is excellent (keeping in mind that d/η0 = 2 for Vreman (2016),
hence justifying the leftward offset from our d̄/η0 = 1.5 case), which indicates that the
dissipation profile leading up to the surface is being correctly captured. This agreement
suggests that dissipation differences near solid vs liquid surfaces may only appear in
the immediate vicinity of the surface itself. Furthermore, we should not automatically
assume that the surface-shell dissipations are dramatically underpredicted, since the
magnitudes are in general agreement with the decaying DNS simulations of Dodd &
Ferrante (2016), which clearly depicted near-droplet regions of normalized dissipation
rates above 8 at Reλ ≈ 80. A follow-up article (Dodd & Jofre 2019) presented average
values of the dissipation rate conditioned upon distance from the droplet interface, and
surface dissipation spikes between 5 and 40 are noted at early simulation times, depending
on the Weber number, the density ratio and the viscosity ratio.

The recovery of dissipation is quantified using the 10 % criterion once again, where
figure 21(a,b) plot the first r/R coordinate that satisfies (ε/ε0)�r ≤ 1.1 against d̄/η0
and d̄/λf ,0, respectively. The far-field correction discussed in § 3.2.1 is once again
implemented. Adopting the same notation style as (3.4),

r∗
ε = min

{
r/R

(
(ε/ε0)�r ≤ 1.1

)}
. (3.5)

At r∗
ε , the dissipation field has recovered to within 10 % of the unladen value. The recovery

trends for dissipation are clearly similar to those for kinetic energy, although r∗
ε ≥ r∗

k in all
21 combinations of Reλ and d̄ presented thus far (excluding the nitrogen cases, where r∗

ε

cannot be computed).
Returning briefly to the surface-shell dissipation, figure 21(c) indicates that ε�r,s is

primarily a function of Reλ as opposed to d̄/η0. As Reλ increases, (ε/ε0)�r,s appears
to peak at larger values of d̄/η0, but the overall separation into distinct groups based on
Reλ stands in stark contrast to the recovery plots in figure 21(a,b). According to Vreman
(2016), the dissipation should increase as the particle diameter decreases – this behaviour
is not witnessed presently. The maximum dissipation in a surface shell is approximately
2200 m2 s−3. The Kolmogorov scale in this shell is ∼170 μm which results in a PIV spatial
resolution, �x/η, of ∼1.1. Data from a recent study (Verwey & Birouk 2022) suggest a
dissipation underprediction of up to 20 % at that resolution – this is not nearly sufficient to
explain the surface dissipation discrepancy. The observation is, therefore, believed to be a
physical phenomenon.

Figures 16 and 21 plotted recovery radii vs d̄/η0 and d̄/λf ,0. In both figures, the data
collapse is superior for d̄/λf ,0 based on the R2 values. Manipulation of the d/η and d/λ

ratios using (3.1) and (3.2) along with the definitions of η and Ret, where η = (ν3/ε)1/4
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Figure 20. Radial profiles of ε in normalized units for all droplet sizes in (a) Reλ = 50, (b) Reλ = 100 and
(c) Reλ = 140. The DNS data of Vreman (2016, figure 6(d)), Reλ ≈ 55, are included in (a), where Reλ was
updated from the stated value of 32 to reflect the present calculation method, and d/η = 2. The near interface
region (r/R ≤ 10) is expanded in an inset for each case to better illustrate the trend separation of the various
droplet diameters. Plot legends denote only the minimum and maximum diameters – see the analogous figure 15
for a full listing.

and Ret = dk1/2/ν, leads to

d
η

∼
(

d
L

)1/4

Re3/4
t , (3.6)

d
λ

∼
(

d
L

)1/2

Re1/2
t . (3.7)

The superior scaling of r∗ vs d̄/λf ,0 implies that the d/L ratio and Ret play roughly
equivalent roles in determining the extent of attenuation, as both are raised to the same
power of 1/2. Interestingly, these are the two parameters suggested by Gore & Crowe
(1989) and Hetsroni (1989) as being most influential in the question of augmentation vs
attenuation in particle-laden pipe and jet flows (it should be noted that Hetsroni (1989)
used an unusual Reynolds number formulation based on the density difference between
phases). Furthermore, as disclosed in the captions of figures 16 and 21, the scaling factor
C1 in both r∗ vs d̄/λf ,0 trend lines is close to unity, hence

r∗ ≈ (d̄/λf ,0)
−C2 . (3.8)
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(C1 = 7.7, C2 = 0.53, R2 = 0.93) and (b) d̄/λf ,0 (C1 = 1.2, C2 = 0.65, R2 = 0.99). Dissipation is not
calculated for nitrogen. (c) Normalized dissipation rate in the surface shell vs d̄/η0. There is no qualitative
difference when plotting surface-shell dissipation against d̄/λf ,0 instead of d̄/η0.

Equation (3.8) suggests that as d̄/λf ,0 → 1 from smaller values, r∗ → 1. In other words, as
the droplet diameter becomes comparable to the unladen Taylor length scale, the region of
attenuation shrinks to a potentially negligible value. Additionally, the d̄/λf ,0 ∼ 1 regime
may signify a transition between attenuation and augmentation behaviour. Consider the
experimental results of Hoque et al. (2016), who used a ZMF/fixed sphere configuration
– they found a negligible TKE modulation effect for a 1 mm sphere, which corresponded
to (0.4 < d̄/λf ,0 < 1.0). The three larger spheres (d = 3, 5 and 8 mm, 1.3 < d̄/λf ,0 <

7.8) augmented the TKE. Adhering to the classic interpretation of the Taylor scale
as the demarcation between viscous and inviscid regimes, the data suggest that the
relative strength of viscous phenomena is responsible for attenuating the turbulent field
surrounding a sub-Taylor-scale droplet. On the other hand, when d > λ, the viscosity
effect is insufficient to prevent wake formation/shedding, which ultimately enhances the
turbulent energy of the flow.

3.3. Volatile droplets
The helium tests were repeated using ethanol in place of water with all other parameters
held constant. Tests in nitrogen were not repeated.
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Figure 22. (a) Extracting the evaporation rate from an example case (Reλ = 50). One out of every 40 data
points are shown for clarity. (b) Average K values (5 runs).

3.3.1. Evaporation rates
For context, the evaporation rates of ethanol droplets were collected and are presented
in figure 22. The droplets were imaged using a standard backlight approach with
a Fastec IL5Q camera and a Questar QM-100 long distance microscope. Once the
desired turbulence level was set, a large droplet of ethanol was deposited on the
cross-fibres and recorded at 24 fps until the evaporation process was completed. The same
diameter-binning scheme was used to extract the evaporation rate constant, K, where
K = −d(d2)/dt and is determined via a linear least squares fit as depicted in figure 22(a).
For instance, all images with diameters between 1274 and 1456 μm were used to construct
the linear fit that defines K for the d̄ = 1365 μm bin. The evaporation test was repeated
five times per turbulent field and the average K value associated with each diameter bin,
K̄, is presented in figure 22(b). The evaporation progression was observed to slow down in
a non-physical way when the droplet diameter had fallen into the smallest bin – this was
likely due to nodal interference or a build up of rhodamine B powder, and data are not
presented for d̄ = 273 μm. Although exceeding the scope of the present investigation, it is
interesting to note the apparent collapse of K̄ in figure 22(b) in the d̄/η0 ≈ 1 region. This
suggests that the energy of the unladen field becomes less impactful (or perhaps altogether
irrelevant) as the droplet diameter approaches and falls below the Kolmogorov scale. The
limited d̄/η0 range in figure 22(b) would need to be expanded in both directions to better
analyse this possibility.

3.3.2. Comparisons with non-volatile droplets
The 90 % recovery radii of the turbulent fields surrounding an ethanol drop are presented,
along with all available previous data, in figure 23(a,b). As per the discussion at the end
of § 3.2.2, d̄/λf ,0 is the superior scaling parameter – this remains true for ethanol and,
as a result, plots of r∗ vs d̄/η0 are omitted for brevity. The rapidly evaporating ethanol
drop has no effect on the far-field recovery. This is not surprising for small length-scale
ratios, but verifying the collapse of water and ethanol data for large ratios – where the
ethanol vaporization rate, ṁv , is high (ṁv ∝ d in classic Maxwell/Stefan formulations,
with increasing diameter dependence in turbulence) and the recovery radius low – is
useful.

On the other hand, figure 23(c) indicates that the dissipation in the ethanol surface shell
is reduced by a factor of ∼1.4–3 as compared with the slowly evaporating water droplets.
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Figure 23. Normalized radius required for (a) the TKE (C1 = 1.0, C2 = 0.61, R2 = 0.83) and (b) the
dissipation (C1 = 1.4, C2 = 0.55, R2 = 0.89) to return to within 10 % of their unladen values. Trend lines
are fitted using all presented data. (c) Ratio of dissipation rate in the surface shell of water over ethanol.

Evidently, the disparity in ε�r,s is lessened as the length-scale ratio increases. While the
vapour mass flux, ṁ′′

v , is proportional to d−1 in convection-free environments, there is
a strong diameter effect in turbulent droplet vaporization. However, unless the turbulent
evaporation rate increases in a nonlinear fashion with diameter (and experimental evidence
indicates a linear relationship is indeed most reasonable Verwey & Birouk 2017), the
mass flux will still increase as the diameter decreases, which seemingly helps damp the
near-surface dissipation spike. Indeed, the mass-average radial gas velocity at the surface,
Vr, is a monotonically decreasing function of diameter, with Vr estimates falling between
20 and 70 mm s−1 across the ethanol tests. It will be shown that these velocities are
two to four orders of magnitude larger than the velocities associated with drop motion
and surface regression. It is generally understood that turbulence is more effective for
low-volatility liquids – hence, as d̄/η0 increases, the relative increase in water vapour mass
flux likely outpaces that of ethanol, leading to a surface dissipation ratio that decreases
with d̄/η0 as witnessed in figure 23(c). The reduction of dissipation due to evaporation is
consistent with the limited available literature (Mashayek 1998; Wang & Rutland 2006),
although the near-interface region, as opposed to global trends (which could be affected by
phenomena such as droplet disappearance), has not been the focus of any studies to date.
Shao et al. (2022) mentioned that the Stefan flow (bulk outward mass flux) at the surface of
an evaporating droplet reduces the velocity gradients/dissipation which, although evident
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Liquid Ts (K) ρl (kg m−3) ρm (kg m−3) μl × 103 (N s m−2) μm × 106 (N s m−2) σ (N m−1) Wemax

Water 285 1000 0.17 1.2 17.4 0.074 0.02
Ethanol 280 802 0.22 1.6 17.5 0.023 0.07

Table 2. Estimated properties at the liquid–helium interface. All properties evaluated at Ts. The turbulent
gas-phase Weber number, We = ρkd/σ , is calculated using the density of helium at T∞ = 300 K
(ρ = 0.16 kg m−3), the maximum unladen value of TKE (k = 6.45 m2 s−2) and the maximum diameter of
1456 μm. Liquid density and viscosity for water are from Bergman et al. (2011); water surface tension is from
Vargaftik, Volkov & Voljak (1983). The issue of air vs helium as the ambient gas seemingly has little effect
on σ , at least for water (Claussen 1967). Liquid density, viscosity and surface tension for ethanol are from
Gonçalves et al. (2010). The gas mixture density was calculated assuming saturation and applying the Wagner
formula for vapour pressure (Poling, Prausnitz & O’Connell 2001). The gas mixture viscosity was estimated
using the Lucas method (Poling et al. 2001).

in the gas phase, was far more prevalent in the liquid phase. The present finding that
evaporation significantly reduces the surface-shell dissipation in the gas phase is, therefore,
expected to be useful for benchmarking future droplet-resolved simulations that focus on
the interface region.

The differences in surface-shell dissipation between water and ethanol could also be
attributable to the retracting surface, as ṁ′′

v ∝ dR/dt. It is not difficult to envision a
set of experiments that discriminate between the effects of surface regression and mass
addition/flux due to evaporation. Yet, as is often the case, the design and execution of such
a campaign would most certainly be challenging. A non-volatile liquid slowly withdrawn
into a capillary tube would simulate regression in the absence of evaporation, just as a
porous sphere – once a very popular test configuration – would help gauge the effect of
mass transfer without boundary movement. Aside from the tubing needed to retract or
supply liquid, the primary difficulty would likely be thoroughly populating the important
sub-Kolmogorov regime. For example, porous spheres typically had diameters of the order
of 1–10 mm. Realistically, both effects are almost always guaranteed to occur in tandem,
so the data presented here are expected to be useful, even if the specific mechanism cannot
be elucidated without additional studies. We note that the surface regression associated
with ethanol droplets is of order 0.01 mm s−1, which is two orders of magnitude smaller
than the characteristic velocities associated with droplet movement on the fibres (discussed
below), and three to four orders of magnitude smaller than the characteristic radial velocity
associated with evaporation (discussed above).

Discrepancies in various properties including liquid density, ρl, and viscosity, μl, the
near-interface gas mixture density, ρm, and viscosity, μm, and the liquid surface tension,
σ , may also influence the interface results. All properties require a reasonable estimate
of surface temperature, Ts. The surface temperatures of water and ethanol droplets are
estimated to be ∼285 K and ∼280 K, respectively, using the iterative technique outlined in
Verwey & Birouk (2021). These Ts values are only strictly applicable in convection-free
environments, however, the present cursory analysis assumes that Ts does not change
dramatically in turbulence. Table 2 summarizes the aforementioned properties. The source
of the properties are disclosed in the table caption.

The liquid density affects the inertial response of the droplet to aerodynamic drag. To
gauge how gas-phase velocities are translated to the droplet, the shift in droplet centroid
between sequential images is divided by the inter-frame time (0.1 s), thus providing average
planar velocities, Uc and Vc, between successive PIV images. The out-of-plane velocity,
Wc, is assumed equal to the horizontal in-plane velocity Uc, and the overall velocity
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magnitude is calculated from the three components as |Uc| = √
U2

c + V2
c + W2

c . |Uc|
is then conditionally averaged based on fan speed and diameter, and these averages are
found to be of the order of 1 mm s−1 (approximately three orders of magnitude smaller
than the characteristic turbulent velocity k1/2). Average ethanol velocities are generally
higher than water, but in no instance does this difference exceed 0.8 mm s−1. The small
velocities associated with the droplet indicate that liquid density (and, by extension, the
modulation of TKE by kinetic energy exchange from the carrier phase to the bulk motion
of the droplet) can likely be discarded as a factor.

Likewise, the liquid viscosity cannot be responsible for the decreased dissipation near
the ethanol droplet surface, since μl is actually higher for ethanol. In their numerical study
of droplet-laden decaying HIT, Dodd & Ferrante (2016) suggested that the carrier-phase
surface velocity gradient increases with viscosity ratio, γ , where γ = μl/μm. From this
perspective, ethanol maintains a 30 % advantage in γ over water, which reiterates that
the reduction in surface-shell dissipation is not due to viscosity effects. The maximum
Weber number is less than 0.1 for both liquids, hence surface deformations and distortions
(which are pathways of TKE exchange as per Dodd & Ferrante (2016)) are minimal. This
is further verified by checking the circularity values, C, of the high-magnification images
used to produce figure 22, where C = 1 for a perfect circle. Circularity values rarely fall
below 0.98, and if they do, it is generally due to the fibres being removed imperfectly from
the image as the droplet becomes small (in other words, not due to flow-induced surface
distortions). In both water and ethanol cases, the presence of the vapour increases the gas
mixture density while decreasing the viscosity. Ultimately, the kinematic viscosity of the
gas mixture near the surface, νm = μm/ρm, is 22 % smaller for the helium–ethanol system
– this decrease is primary driven by ρm as evident in table 2. Because a constant kinematic
viscosity has been assumed thus far in all dissipation calculations (that of pure helium at
T∞ = 300 K), the smaller surface kinematic viscosity associated with the helium–ethanol
system suggests that the surface-shell dissipation ratios presented in figure 23 are probably
underpredicted. In summary, all evidence points to the mass ejection phenomenon as the
primary driver in surface-shell dissipation reduction for an ethanol droplet.

Extensive spatial heat maps and individual radial profiles of k and ε are not presented
for the ethanol fields, as they qualitatively mirror those for water and the important
similarities/differences are compactly quantified in figure 23. There is, however, one final
perspective that deserves mention, as it further distinguishes the ethanol case from water.
Figure 24(a) presents a spatial heat map of the isotropy ratio for an example ethanol test.
A noticeable characteristic is the narrow band surrounding the drop where Ir reaches a
minimum before rising to the final surface-shell value. Although the scale is different
and the present figure cropped to a greater extent, it is apparent that this behaviour does
not exist for the water droplet in figure 6(b). In fact, no water droplet is associated with
a protracted minimum region. The universality of this phenomenon for the ethanol drop
is confirmed in figure 24(b–d), which plot the isotropy ratio in the familiar radial-shell
format. The near-surface increase in Ir indicates that the evaporation process mitigates
the strong damping of 〈u2

r 〉1/2 which was established in § 3.2.1. Radial profiles of k are
still monotonically decreasing functions as r → R from the far field, but the attenuation
is certainly lessened when compared with water. Once again, the individual contributions
of surface regression vs mass addition is unknown, but it is interesting to note that Ur is
no longer universally zero at the receding droplet surface in the fixed lab frame. The faster
return to isotropy at elevated Reλ helps explain why high Reynolds number studies such as
Petersen et al. (2019) (200 ≤ Reλ ≤ 500) report a more isotropic field than low Reynolds
experiments (e.g. Poelma et al. (2007), Reλ ≈ 27).
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Figure 24. (a) Large-scale isotropy ratio field for an example ethanol droplet (Reλ = 100, d̄/η0 = 2.0). Panels
(b–d) plot the radial profiles of the isotropy ratio for all ethanol tests. The dashed green line in (c) corresponds
to the example image in (a). Legend entries in (b–d) identify the minimum and maximum d̄/η0 trends – see
figure 15 for a full listing.

4. Conclusions

The modulation of turbulence by a dispersed particulate phase has been extensively
studied for decades from almost every conceivable perspective. However, a review of the
literature revealed that liquid droplets – particularly when phase change is present – are
under-represented as the distributed phase when compared with solid particles. We seized
the opportunity to help rectify this absence by performing basic yet fundamentally sound
experiments on a variably sized droplet that was fixed in place and centred in a stationary
homogeneous and isotropic flow with no mean component. The near-droplet turbulent field
was captured via 2-D-PIV with sub-Kolmogorov (unladen) resolution, thus facilitating the
direct calculation of the dissipation rate. The key findings are summarized below.

Both the large- and small-scale anisotropy, along with the attenuation of TKE, can
penetrate far into the field surrounding a non-volatile droplet. The TKE attenuation
is analysed from a standard ensemble-averaged viewpoint, along with fields that are
conditionally averaged based on the instantaneous velocity approach angle. From either
perspective, the damping of the radial r.m.s. component is extensive due to the
instantaneous wake structure, whereas the azimuthal r.m.s. component, whose damping
is driven by shear, recovers much quicker and with far less diameter dependence.
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The normalized radius required for 90 % recovery of k correlates well with C1(d̄/λf ,0)
−C2 ,

where C1 and C2 are positive empirical fitting parameters. A return to the pre-existing
isotropic state may require upwards of 14 droplet radii when the droplet is smaller than
the unladen Kolmogorov scale. This finding may have interesting consequences in the
development and validation of point-particle DNS approaches, which rely on droplet data
in the sub-Kolmogorov regime. The TKE approaches a small value at the surface, although
the instantaneous velocities Uφ and Uθ are not forced to zero at the gas–liquid interface.

Dissipation, like k, is strongly altered near the droplet. However, ε is increased in the
surface shell by a factor of 3–22 over the unladen value. The near-surface dissipation
appears to be primarily a function of the background turbulent field, as increasing Reλ
results in smaller relative dissipation rate spikes in the surface shell. On the other hand,
the 90 % dissipation recovery trend is very similar to the recovery of k – that is, it scales
with d̄/λf ,0. An increase in ε near the droplet was expected, but the magnitude may come
as a surprise, especially for a non-rigid surface. Trend line extrapolation of the recovery
radii suggests that the modulation region may become insignificant in size as d → λ.

The effect of mass transfer was assessed by replacing the water droplet with ethanol
while holding all other test conditions constant. The attenuation is lessened in this case, as
the near-surface k does not drop as far. The apparent cause is an uptick in the radial r.m.s.
component, which is witnessed as an increase in the large-scale isotropy ratio, albeit slight,
near the surface. The less-dramatic attenuation is accompanied by surface-shell dissipation
values that are 1.4–3 times smaller than those corresponding to water. The mass transfer
effect does not extend into the far field, as the 90 % recovery radius of both k and ε for
fields surrounding ethanol collapse with high confidence to the established water droplet
trends.
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