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A note on zero-sets in the

Stone-Cech compactification

D. Rudd

The ring C(X) is the ring of all continuous real-valued

functions on a completely regular Hausdorff space X , and $X

is the Stone-Cech compactification of X .

The author proves a theorem which leads to a characterization of

those zero-sets in X whose closures (in &X ) are zero-sets in

$X , and relates this characterization to the ideals in the ring

C(X) .

Introducti on

If X i s a space in which C{X) only has bounded members, t h a t i s ,

X is pseudoaompaot, then

(1) the uniform closure of any ideal in C{X) is the same as

i ts m-closure, and

(2) for any function / 6 C(X) ,

cl^ix € X \ f(x) = 0} = {p <E &X \ f*(p) = 0} ,

where /* denotes the extension of / t o g j . (See [/,

TQ].)

Indeed, both (l) and (2) are each equivalent to pseudocompactness of X .

In this note we consider the case in which X is not pseudocompact.

We then characterize those functions for which (2) does not hold and show

that these are precisely the functions which "cause" (l) not to hold. We
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a l s o o t i t a i n n e c e s s a r y and s u f f i c i e n t c o n d i t i o n s f o r t h e c l o s u r e ( i n &X )

of a z e r o - s e t i n X t o b e a z e r o - s e t i n $X . (See [ 7 , 6 E . 2 ] . )

Prelimi nari es

The reader is referred to [/] and [Z, §2] for background information

and notations.

We shall let X denote an arbitrary completely regular Hausdorff

space. (Of course, if X is pseudocompact, the assertions in this paper

are vacuous.)

We point out that for / € C(X) , Z(f) denotes {x € X \ fix) = 0} ,

and Z(f*) denotes {p € g,X | /*(p) = 0} . If f € C*{X) , that is, if /

is bounded, then /* is denoted by / .

For a subset S of &X , we denote cl (S) by 56 .

For an ideal I of C{X) , l denotes the uniform closure of I ,

and I denotes the m-closure. (See [2, 2.1*].)

DEFINITION 1.1. Let / € C(X) . Then a subset A of X is said

to be a near-zero set for f , if for any 6 > 0 , there is an a € A with

\f(a)\ < 6 .

THEOREM 1.2. Let f € C{X) . Then the following are equivalent:

(i) Z(f*) * Z(/) B ;

(ii) there is a near-zero set for f which is completely

separated from Z{f) ;

(iii) there is a maximal ideal M in C(X) so that f € M\M ;

(iv) there is an ideal I in C(X) so that f i l " \ / " .

Proof. (i) •> (ii) . Since Z{f*) 3 Z ( / ) e ([/, 7.11]), the hypothesis

o
implies that there is a p € Z(f*)\Z{f) . Hence there is a neighborhood

W of p so that KT n Z(f) = 0 • Let A = W n X , and consider <S > 0 .

Since {p € &X \ -6 < f*(p) < 6} n W is an open (in &X ) neighborhood of

p , it follows that (/*)" (-6, 6) n (WnX) t 0 , and hence A is a near-
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zero set for f . Also, since W and Z(f) are completely separated in

$X , A and Z(f) are completely separated in X .

(ii) •* (Hi) . Let A be a near-zero set for f which i s completely

separated from Z{f) . Then the closures A and Z(/) are d is jo int in

e>X . (See [/ , 6.5 I I I ] . ) For each 6 > 0 , l e t

F& = 4B n {p d U | -5 5 f*(p) 5 6} .

By the compactness of B̂ " , there is a p € n{F,. | 6 > o} , and th i s p

has the property that f*(p) = 0 . Since p € A , p ( Z(/) , and we

have, using [2 , 2. i t ] , that / e [hP)U\t-P .

(Hi) + (i). If / € ( / ) V , then 'p € Z (/* )\Z ( f ) 6 . The

equivalence of (Hi) and (iv) follows from [2, 5.2] and [7, TQ.2].

COROLLARY 1.3. Let f i C{X) . Then Z{f)® is a zero-set in BX

if and only if there is a g £ C*{X) so that Z(f) = Z{g) , and no near-

zero set for g is completely separated from Z(g) . In this case,

Z(f) = Z(g) . Furthermore, given the zero-set Z{g) in $X , it is of

the form Z{f) for some f d C{x) if and only if no near-zero set for a

is completely separated from Z{g) .

o • n ^

Proof. Suppose Z(/) is a zero-set in $X , say Z(/) = Z{g) .

Then, intersecting with X , we have that Z(f) = Z{g) , from which it

follows that Z(g) = Z(g) . By Theorem 1.2, no near-zero set for g can

be completely separated from Z(g) .

Conversely, if g d C*{X) which satisfies the hypotheses of the

corollary, then it follows by Theorem 1.2 that Z{g) = Z(g) , and hence

z(g) =

The res t of the corollary follows eas i ly .

EXAMPLE 1.4. Let X denote the non-negative reals and define

fix) = x on 0 5 x 5 1 and f{x) = l/x for x 2 1 . Then [ l , °°) i s

a near—zero set for f which i s completely separated from Z{f) , and
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hence Z(f) + z(f) . However Z(f) = {0} , a zero-set in B* . Thus
o

Z(/) can "be a zero-set in $X , even if it is not the zero-set of /* .

EXAMPLE 1.5. Consider the sine function on the non-negative reals.

Since Z(sine) is countable and discrete, it follows that there is a near-

zero set for sine which is completely separated from Z(sine) , and hence

sine £ M\M for some maximal ideal M . Also Z(sine) can not be a

zero-set in 6X , because if Z(sine) = Z(g) for any g i C*{X) , then

there would be a near-zero set for g which is completely separated from

z(g) .

REMARK I.6. It is believed that the equivalence of condition (2) in

the introduction with pseudocompactness of X is well known, but the

author could find no direct reference. A proof could easily be written

based on Theorem 1.2.
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