MULTIPLE SOLUTIONS FOR SOME NEUMANN PROBLEMS IN EXTERIOR DOMAINS

Tsing-San Hsu and Huei-Li Lin

Abstract

In this paper, we show that if $q(x)$ satisfies suitable conditions, then the Neumann problem $-\Delta u+u=q(x)|u|^{p-2} u$ in Ω has at least two solutions of which one is positive and the other changes sign.

1. Introduction

Throughout this article, let $N=m+n$, where m and n are nonnegative integers with $m \geqslant 3$. For $x=\left(x_{1}, \ldots, x_{N}\right)=\left(x_{1}, \ldots, x_{m}, x_{m+1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$, let $P x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$ and $Q x=\left(x_{m+1}, \ldots, x_{N}\right) \in \mathbb{R}^{n}$. Consider the Neumann boundary value problem

$$
\left\{\begin{array}{cl}
-\Delta u+u=q(x)|u|^{p-2} u & \text { in } \Omega \tag{1}\\
\frac{\partial u}{\partial \eta}=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where $\Omega=\left(\mathbb{R}^{m} \backslash\left(\overline{\Omega^{m}}\right)\right) \times \mathbb{R}^{n}, \Omega^{m}$ is a smooth bounded domain in $\mathbb{R}^{m}, 2<p<2^{*}$ $=(2 N) /(N-2), \eta$ is the outward unit normal to $\partial \Omega$ and $q(x)$ is a bounded continuous function in Ω. Moreover, $q(x)$ satisfies the following hypotheses:
($q 1$) $q(x)$ is a positive function in $\Omega, \inf \{q(x) \mid x \in \Omega\}>0$ and $q(x)=q(y)$ for any $P x=P y$;
(q2) there exists a positive number q_{∞} such that $\lim _{|P x| \rightarrow \infty} q(x)=q_{\infty}$ and $q(x)$ $\not \equiv q_{\infty}$ in Ω.
If Ω^{c} is bounded ($n=0$ in our case), Esteban [5, 6] proved the existence of the "ground state solution" of Equation (1) provided that $q(x) \equiv 1$. In the case q is not a constant function, Cao [3] and Hsu and Lin [9] proved the multiplicity of the solutions of Equation (1). In this article, we assert that Equation (1) still has the same results of Hsu and Lin [9] even if Ω^{c} is unbounded. First, we use the concentration-compactness argument of Lions $[11,12,13,14]$ to obtain the "ground state solution", and then combine it with some ideas of Zhu [16] to show the existence of another solution which changes sign.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.

2. Preliminaries

Associated with Equation (1), we consider the energy functionals a, b and J, for $u \in H^{1}(\Omega)$

$$
\begin{aligned}
& a(u)=\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x \\
& b(u)=\int_{\Omega} q(z)|u|^{p} d x \\
& J(u)=\frac{1}{2} a(u)-\frac{1}{p} b(u)
\end{aligned}
$$

Define

$$
\alpha=\inf _{u \in M(\Omega)} J(u)
$$

where

$$
\mathbf{M}(\Omega)=\left\{u \in H^{1}(\Omega) \backslash\{0\} \mid a(u)=b(u)\right\}
$$

It is well known that there is a positive radially symmetric smooth solution w of Equation (2)

$$
\left\{\begin{array}{c}
-\Delta u+u=q_{\infty}|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} \tag{2}\\
u \in H^{1}\left(\mathbb{R}^{N}\right)
\end{array}\right.
$$

We also define

$$
\begin{aligned}
a^{\infty}(u) & =\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x \\
b^{\infty}(u) & =\int_{\mathbb{R}^{N}} q_{\infty}|u|^{p} d x \\
J^{\infty}(u) & =\frac{1}{2} a^{\infty}(u)-\frac{1}{p} b^{\infty}(u) ; \\
\alpha^{\infty} & =\inf _{u \in \mathbf{M}^{\infty}\left(\mathbb{R}^{N}\right)} J^{\infty}(u),
\end{aligned}
$$

where

$$
\mathbf{M}^{\infty}\left(\mathbb{R}^{N}\right)=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\} \mid a^{\infty}(u)=b^{\infty}(u)\right\}
$$

Recall the fact that

$$
w(|x|)|x|^{(N-1) / 2} \exp (|x|) \rightarrow \bar{c}>0 \text { as }|x| \rightarrow \infty
$$

where \bar{c} is some constant. (See Bahri and Li [1], Bahri and Lions [2], Gidas, Ni and Nirenberg [7, 8] and Kwong [10].) In particular, we have
(i) there exists a constant $C_{0}>0$ such that

$$
w(x) \leqslant C_{0} \exp (-|x|) \text { for all } x \in \mathbb{R}^{N}
$$

(ii) for any $\varepsilon>0$, there exists a constant $C_{\varepsilon}>0$ such that

$$
w(x) \geqslant C_{\varepsilon} \exp (-(1+\varepsilon)|x|) \text { for all } x \in \mathbb{R}^{N}
$$

We need the following definition and lemmas to prove the main theorems.
Definition 1: For $\beta \in \mathbb{R}$, a sequence $\left\{u_{k}\right\}$ is a (PS) $)_{\beta}$-sequence in $H^{1}(\Omega)$ for J if $J\left(u_{k}\right)=\beta+o(1)$ and $J^{\prime}\left(u_{k}\right)=o(1)$ strongly in $H^{1}(\Omega)$ as $k \rightarrow \infty$.

Lemma 2. Let $\beta \in \mathbb{R}$ and let $\left\{u_{k}\right\}$ be a $(P S)_{\beta}$-sequence in $H^{1}(\Omega)$ for J, then $\left\{u_{k}\right\}$ is a bounded sequence in $H^{1}(\Omega)$. Moreover,

$$
a\left(u_{k}\right)=b\left(u_{k}\right)+o(1)=\frac{2 p}{p-2} \beta+o(1)
$$

and $\beta \geqslant 0$.
Proof: For n sufficiently large, we have

$$
|\beta|+1+\sqrt{a\left(u_{k}\right)} \geqslant J\left(u_{k}\right)-\frac{1}{p}\left\langle J^{\prime}\left(u_{k}\right), u_{k}\right\rangle=\left(\frac{1}{2}-\frac{1}{p}\right) a\left(u_{k}\right) .
$$

It follows that $\left\{u_{k}\right\}$ is bounded in $H^{1}(\Omega)$. Since $\left\{u_{k}\right\}$ is a bounded sequence in $H^{1}(\Omega)$, then $\left\langle J^{\prime}\left(u_{k}\right), u_{k}\right\rangle=o(1)$ as $k \rightarrow \infty$. Thus,

$$
\beta+o(1)=J\left(u_{k}\right)=\left(\frac{1}{2}-\frac{1}{p}\right) a\left(u_{k}\right)+o(1)=\left(\frac{1}{2}-\frac{1}{p}\right) b\left(u_{k}\right)+o(1)
$$

that is, $a\left(u_{k}\right)=b\left(u_{k}\right)+o(1)=(2 p / p-2) \beta+o(1)$ and $\beta \geqslant 0$.
Lemma 3.
(i) For each $u \in H^{1}(\Omega) \backslash\{0\}$, there exists an $s_{u}>0$ such that $s_{u} u \in \mathbf{M}(\Omega)$;
(ii) Let $\left\{u_{k}\right\}$ be a $(P S)_{\beta}$-sequence in $H^{1}(\Omega)$ for J with $\beta>0$. Then there is a sequence $\left\{s_{k}\right\}$ in \mathbb{R}^{+}such that $\left\{s_{k} u_{k}\right\} \subset \mathbf{M}(\Omega), s_{k}=1+o(1)$ and $J\left(s_{k} u_{k}\right)=\beta+o(1)$. In particular, the statement holds for J^{∞}.

Proof: See Chen, Lee and Wang [4].
Lemma 4. There exists a $c>0$ such that $\|u\|_{H^{1}(\Omega)} \geqslant c>0$ for each $u \in \mathrm{M}(\Omega)$.
Proof: See Chen, Lee and Wang [4].
Lemma 5. Let $u \in \mathrm{M}(\Omega)$ satisfy $J(u)=\min _{v \in \mathrm{M}(\Omega)} J(v)=\alpha$. Then u is a nonzero solution of Equation (1).

Proof: We define $g(v)=a(v)-b(v)$ for $v \in H^{1}(\Omega) \backslash\{0\}$. Note that $\left\langle g^{\prime}(u), u\right\rangle$ $=(2-p) a(u) \neq 0$. Since the minimum of J is achieved at u and is constrained on $\mathbf{M}(\Omega)$, by the Lagrange multiplier theorem, there exists a $\lambda \in \mathbb{R}$ such that $J^{\prime}(u)=\lambda g^{\prime}(u)$ in $H^{1}(\Omega)$. Then we have

$$
0=\left\langle J^{\prime}(u), u\right\rangle=\lambda\left\langle g^{\prime}(u), u\right\rangle
$$

that is, $\lambda=0$. Hence, $J^{\prime}(u)=0$ and u is a nonzero solution of Equation (1) in Ω such that $J(u)=\alpha$.

Define $u^{+}=\max \{u, 0\}$ and $u^{-}=\max \{-u, 0\}$.
Lemma 6. Let u be a solution of Equation (1) that changes sign. Then $J(u) \geqslant 2 \alpha$. In particular, the result holds for J^{∞}.

Proof: Since u is a solution of Equation (1) that changes sign, then u^{-}is nonnegative and nonzero. Multiply Equation (1) by u^{-}and integrate to obtain

$$
\int_{\Omega} \nabla u \nabla u^{-}+u u^{-}=\int_{\Omega} q(x)|u|^{p-2} u u^{-}
$$

that is, $u^{-} \in \mathbf{M}(\Omega)$ and $J\left(u^{-}\right) \geqslant \alpha$. Similarly, $J\left(u^{+}\right) \geqslant \alpha$. Hence,

$$
J(u)=J\left(u^{+}\right)+J\left(u^{-}\right) \geqslant 2 \alpha .
$$

Lemma 7. (Improved Decomposition Lemma) Let $\left\{u_{k}\right\}$ be a $(P S)_{\beta}$-sequence in $H^{1}(\Omega)$ for J. Then there are a subsequence $\left\{u_{k}\right\}$, an integer $l \geqslant 0$, sequences $\left\{x_{k}^{i}\right\}_{k=1}^{\infty}$ in \mathbb{R}^{N}, functions $v \in H^{1}(\Omega)$ and $w_{i} \neq 0$ in $H^{1}\left(\mathbb{R}^{N}\right)$ for $1 \leqslant i \leqslant l$ such that

$$
\begin{aligned}
-\Delta v+v & =q(x)|v|^{p-2} v \text { in } \Omega \\
-\Delta w_{i}+w_{i} & =q_{\infty}\left|w_{i}\right|^{p-2} w_{i} \text { in } \mathbb{R}^{N} ; \\
\left|P x_{k}^{i}\right| & \longrightarrow \infty \text { for } 1 \leqslant i \leqslant l ; \\
\left|x_{k}^{i}\right| & \longrightarrow \infty \text { for } 1 \leqslant i \leqslant l ; \\
u_{k} & =v+\sum_{i=1}^{l} w_{i}\left(\cdot-x_{k}^{i}\right)+o(1) \text { strongly in } H^{1}\left(\mathbb{R}^{N}\right) ; \\
J\left(u_{k}\right) & =J(v)+\sum_{i=1}^{l} J^{\infty}\left(w_{i}\right)+o(1)
\end{aligned}
$$

In addition, if $u_{k} \geqslant 0$, then $v \geqslant 0$ and $w_{i} \geqslant 0$ for $1 \leqslant i \leqslant l$.
Proof: The proof can be obtained by using the arguments in Bahri and Lions [2] or see Tzeng and Wang [15].

3. Existence of the ground state solution

Lemma 8. If $\alpha<\alpha^{\infty}$, then α attains a minimiser v_{1}, that is, there exists a ground state solution v_{1} of Equation (1).

Proof: See Cao [3].
Let $w_{k}(x)=\left.w\left(x+e_{k}\right)\right|_{\Omega}$, where $e_{k}=(k, 0, \ldots, 0)$. Then we have the following lemmas.

Lemma 9. Let θ be a domain in $\mathbb{R}^{\boldsymbol{m}}$. If $f: \Theta \rightarrow \mathbb{R}$ satisfies

$$
\int_{\Theta}|f(x) \exp (\sigma|x|)| d x<\infty \text { for some } \sigma>0
$$

then

$$
\left(\int_{\Theta} f(x) \exp \left(-\sigma\left|x+e_{k}\right|\right) d x\right) \exp (\sigma k)=\int_{\Theta} f(x) \exp \left(-\sigma x_{1}\right) d x+o(1) \text { as } k \rightarrow \infty,
$$

or

$$
\left(\int_{\Theta} f(x) \exp \left(-\sigma\left|x-e_{k}\right|\right) d x\right) \exp (\sigma k)=\int_{\Theta} f(x) \exp \left(\sigma x_{1}\right) d x+o(1) \text { as } k \rightarrow \infty
$$

Proof: We know $\sigma\left|e_{k}\right| \leqslant \sigma|x|+\sigma\left|x+e_{k}\right|$, then

$$
\left|f(x) \exp \left(-\sigma\left|x+e_{k}\right|\right) \exp \left(\sigma\left|e_{k}\right|\right)\right| \leqslant|f(x) \exp (\sigma|x|)|
$$

Since

$$
-\sigma\left|x+e_{k}\right|+\sigma\left|e_{k}\right|=-\sigma \frac{\left\langle x, e_{k}\right\rangle}{\left|e_{k}\right|}+o(1)=-\sigma x_{1}+o(1)
$$

as $k \rightarrow \infty$, the lemma follows from the Lebesgue dominated convergence theorem.
Lemma 10. Assume that there are positive numbers δ, R_{0} and C such that

$$
\begin{equation*}
q(x) \geqslant q_{\infty}-C \exp (-(2+\delta)|P x|) \text { for }|P x| \geqslant R_{0} \tag{Q}
\end{equation*}
$$

Then there exists a $k_{0} \in \mathbb{N}$ such that for $k \geqslant k_{0}$, we have

$$
\sup _{s \geqslant 0} J\left(s w_{k}\right)<\alpha^{\infty} .
$$

Proof: Take a $k_{1} \in \mathbb{N}$ such that the N-ball $B\left(-e_{k} ; 1\right) \subset \Omega$ for $k \geqslant k_{1}$. Then we have

$$
\begin{aligned}
J\left(s w_{k}\right) & \leqslant \frac{s^{2}}{2} \int_{\mathbb{R}^{N}}\left[|\nabla w|^{2}+w^{2}\right]-c \frac{s^{p}}{p} \int_{B\left(-e_{k} ; 1\right)} w^{p}\left(x+e_{k}\right) d x \\
& =\frac{s^{2}}{2} \int_{\mathbb{R}^{N}}\left[|\nabla w|^{2}+w^{2}\right]-c \frac{s^{p}}{p} \int_{B(0 ; 1)} w^{p} d x
\end{aligned}
$$

Therefore, there exists an $s_{1}>0$ such that

$$
J\left(s w_{k}\right)<0 \text { for } s \geqslant s_{1} \text { and } k \geqslant k_{1}
$$

Since J is continuous in $H^{1}(\Omega)$ and

$$
\int_{\Omega}\left[\left|\nabla w_{k}\right|^{2}+w_{k}^{2}\right] \leqslant \int_{\mathbb{R}^{N}}|\nabla w|^{2}+w^{2}<\infty \text { for any } k \in \mathbb{N}
$$

there exists an $s_{0}>0$ such that

$$
J\left(s w_{k}\right)<\alpha^{\infty} \text { for } s<s_{0} \text { and any } k \in \mathbb{N} .
$$

Then we only need to prove

$$
\sup _{s_{0} \leqslant s \leqslant s_{1}} J\left(s w_{k}\right)<\alpha^{\infty} \text { for } k \text { sufficiently large. }
$$

For $k \geqslant k_{1}$ and $s_{0} \leqslant s \leqslant s_{1}$, since

$$
\begin{gathered}
\sup _{s \geqslant 0} J^{\infty}(s w)=J^{\infty}(w)=\alpha^{\infty}, \\
J\left(s w_{k}\right)=\frac{s^{2}}{2} \int_{\Omega}\left[\left|\nabla w\left(x+e_{k}\right)\right|^{2}+\left|w\left(x+e_{k}\right)\right|^{2}\right]-\frac{s^{p}}{p} \int_{\Omega} q(x)\left|w\left(x+e_{k}\right)\right|^{p} \\
=J^{\infty}(s w)-\frac{s^{2}}{2} \int_{\Omega^{m} \times \mathbb{R}^{n}}\left[\left|\nabla w\left(x+e_{k}\right)\right|^{2}+\left|w\left(x+e_{k}\right)\right|^{2}\right] \\
\\
\quad+\frac{s^{p}}{p}\left[\int_{\Omega^{m} \times \mathbb{R}^{n}} q_{\infty}\left|w\left(x+e_{k}\right)\right|^{p}+\int_{\Omega}\left(q_{\infty}-q(x)\right)\left|w\left(x+e_{k}\right)\right|^{p}\right] \\
\leqslant \alpha^{\infty}-\frac{s_{0}^{2}}{2} \int_{\Omega^{m} \times \mathbb{R}^{n}}\left[\left|\nabla w\left(x+e_{k}\right)\right|^{2}+\left|w\left(x+e_{k}\right)\right|^{2}\right] \\
\\
\quad+\frac{s_{1}^{p}}{p}\left[\int_{\Omega^{m} \times \mathbb{R}^{n}} q_{\infty}\left|w\left(x+e_{k}\right)\right|^{p}+\int_{\Omega}\left(q_{\infty}-q(x)\right)\left|w\left(x+e_{k}\right)\right|^{p}\right] .
\end{gathered}
$$

(i) Let $B(0 ; 1) \subset \mathbb{R}^{n}$ be the unit n-ball, then

$$
\begin{aligned}
\int_{\Omega^{m} \times \mathbb{R}^{n}}\left|w\left(x+e_{k}\right)\right|^{2} d x & \geqslant \int_{\Omega^{m} \times B(0 ; 1)} C_{\varepsilon}^{2} \exp \left(-2(1+\varepsilon)\left|x+e_{k}\right|\right) d x \\
& \geqslant C_{\varepsilon}^{\prime} \exp (-2(1+\varepsilon) k)
\end{aligned}
$$

(ii) It is easy to see that the following inequality

$$
\sqrt{\left(a^{2}+b^{2}\right)} \geqslant \vartheta a+\sqrt{1-\vartheta^{2}} b
$$

holds for any $a, b>0$ and $0 \leqslant \vartheta \leqslant 1$. Take $\vartheta=1$, and since $\Omega^{m} \times \mathbb{R}^{n}$ is unbounded, then for a small $\varepsilon>0$, we have

$$
\begin{aligned}
\int_{\Omega^{m} \times \mathbb{R}^{n}} q_{\infty}\left|w\left(x+e_{k}\right)\right|^{p} d x & \leqslant \int_{\Omega^{m} \times \mathbb{R}^{n}} q_{\infty} C_{0}^{p} \exp \left(-p\left|x+e_{k}\right|\right) d x \\
& \leqslant \int_{\Omega^{m} \times \mathbb{R}^{n}} q_{\infty} C_{0}^{p} \exp \left(-p \vartheta\left|\left(P x+P e_{k}\right)\right|\right) d x \\
& \leqslant C_{0}^{\prime} \exp (-(p-\varepsilon) k)
\end{aligned}
$$

(iii) It is similar to (ii) we have

$$
\int_{\Omega \cap\left\{|P x| \leqslant R_{0}\right\}}\left(q_{\infty}-q(x)\right)\left|w\left(x+e_{k}\right)\right|^{p} d x \leqslant M \exp (-(p-\varepsilon) k)
$$

Since q satisfies the condition (Q), then by Lemma 9, there exists a $k_{2} \geqslant k_{1}$ such that for $k \geqslant k_{2}$

$$
\begin{aligned}
& \int_{\Omega \cap\left\{|P x| \geqslant R_{0}\right\}}\left(q_{\infty}-q(x)\right)\left|w\left(x+e_{k}\right)\right|^{p} d x \\
& \leqslant \int_{\Omega \cap\left\{|P x| \geqslant R_{0}\right\}} C \exp (-(2+\delta)|P x|) C_{0}^{p} \exp \left(-p\left|x+e_{k} t\right|\right) d x \\
& \leqslant \int_{\Omega \cap\left\{|P x| \geqslant R_{0}\right\}} C_{1} \exp (-(2+\delta)|P x|) \exp \left(-p \vartheta\left|\left(P x+P e_{k}\right)\right|\right) d x \\
& \leqslant C^{\prime} \exp \left(-\min \left\{2+\frac{\delta}{2}, p\right\} k\right)
\end{aligned}
$$

By (i)-(iii) and $2<p<2^{*}$, choosing $\varepsilon>0$, such that $2+2 \varepsilon<p-\varepsilon$ and $2 \varepsilon<\delta / 2$, we can find a $k_{0} \geqslant k_{2}$ such that for $k \geqslant k_{0}$

$$
\begin{aligned}
& \frac{s_{1}^{p}}{p}\left[\int_{\Omega^{m} \times \mathbb{R}^{n}} q_{\infty}\left|w\left(x+e_{k}\right)\right|^{p}+\int_{\Omega}\left(q_{\infty}-q(x)\right)\left|w\left(x+e_{k}\right)\right|^{p}\right] \\
&-\frac{s_{0}^{2}}{2} \int_{\Omega^{m} \times \mathbb{R}^{n}}\left|\nabla w\left(x+e_{k}\right)\right|^{2}+\left|w\left(x+e_{k}\right)\right|^{2}<0
\end{aligned}
$$

Hence, we have

$$
\begin{equation*}
\sup _{s \geqslant 0} J\left(s w_{k}\right)<\alpha^{\infty} \text { for } k \geqslant k_{0} . \tag{0}
\end{equation*}
$$

Theorem 11. Assume that q satisfies $\left(q_{1}\right),\left(q_{2}\right)$ and the condition (Q), then Equation (1) has a positive solution v_{1}.

Proof: By Lemma 3 (i), there exists an $s_{k}>0$ such that $s_{k} w_{k} \in \mathrm{M}(\Omega)$, that is, $\alpha \leqslant J\left(s_{k} w_{k}\right)$. Applying Lemma 10 , we have $\alpha<\alpha^{\infty}$. Thus, there exists a ground state solution v_{1} of Equation (1). By the standard arguments and the maximum principle, $v_{1}>0$ in Ω.

Remark 1. $\quad v_{1}(x) \leqslant C_{1} \exp (-|x|)$ for $|x| \geqslant R_{1}$, where C_{1} and R_{1} are some positive constants.

Proof: See Cao [3].

4. Existence of the second solution

In this section, q satisfies $\left(q_{1}\right),\left(q_{2}\right)$ and the condition (\bar{Q})

$$
\begin{equation*}
q(x) \geqslant q_{\infty}+\bar{C} \exp (-\delta|P x|) \text { for }|P x| \geqslant \overline{R_{0}} \tag{Q}
\end{equation*}
$$

where $\delta<1, \bar{C}$ and $\overline{R_{0}}$ are some positive constants. Let $h(u)$ be a functional in $H^{1}(\Omega)$ defined by

$$
h(u)= \begin{cases}\frac{b(u)}{a(u)} & \text { for } u \neq 0 \\ 0 & \text { for } u=0\end{cases}
$$

Denote by

$$
\begin{aligned}
\mathbf{M}_{0} & =\left\{u \in H^{1}(\Omega) \mid h\left(u^{+}\right)=h\left(u^{-}\right)=1\right\} \\
\mathcal{N} & =\left\{u \in H^{1}(\Omega)| | h\left(u^{ \pm}\right)-1 \left\lvert\,<\frac{1}{2}\right.\right\}
\end{aligned}
$$

where $u^{+}=\max \{u, 0\}$ and $u^{-}=\max \{-u, 0\}$.
Lemma 12.
(i) If $u \in H^{1}(\Omega)$ changes sign, then there are positive numbers $s^{ \pm}(u)=s^{ \pm}$ such that $s^{+} u^{+} \pm s^{-} u^{-} \in \mathbf{M}(\Omega) ;$
(ii) There exists a $c^{\prime}>0$ such that $\left\|u^{ \pm}\right\|_{H^{1}} \geqslant c^{\prime}>0$ for each $u \in \mathcal{N}$.

Proof: (i) Since u^{+}and u^{-}are nonzero, by Lemma 3 (i), it is easy to obtain the result.
(ii) For each $u \in \mathcal{N}$, by Lemma 3 (i), there exist $s^{ \pm}(u)=s^{ \pm}>0$ such that $s^{ \pm} u^{ \pm} \in \mathbf{M}(\Omega)$. Then we have

$$
\begin{equation*}
\frac{1}{2}<\left(s^{ \pm}\right)^{2-p}=\frac{b\left(u^{ \pm}\right)}{a\left(u^{ \pm}\right)}<\frac{3}{2} \text { for each } u \in \mathcal{N} . \tag{3}
\end{equation*}
$$

By Lemma 4, we have

$$
\begin{equation*}
\left\|s^{ \pm} u^{ \pm}\right\|_{H^{1}} \geqslant c \text { for some } c>0 \text { and each } u \in \mathcal{N} \tag{0}
\end{equation*}
$$

Thus, by (3), we have $\left\|u^{ \pm}\right\|_{H^{1}} \geqslant c / s^{ \pm} \geqslant c^{\prime}>0$ for each $u \in \mathcal{N}$.
Define

$$
\gamma=\inf _{u \in \mathbf{M}_{\mathbf{0}}} J(u)
$$

By Lemma 12, $\gamma>0$.
Lemma 13. There exists a sequence $\left\{u_{k}\right\} \subset \mathcal{N}$ such that $J\left(u_{k}\right)=\gamma+o(1)$ and $J^{\prime}\left(u_{k}\right)=o(1)$ strongly in $H^{-1}(\Omega)$.

Proof: It is similar to the proof of Zhu [16].
Lemma 14. Let f and g are real-valued functions in Ω. If $g(x)>0$ in Ω, then we have the following inequalities.
(i) $(f+g)^{+} \geqslant f^{+}$;
(ii) $(f+g)^{-} \leqslant f^{-}$;
(iii) $(f-g)^{+} \leqslant f^{+}$;
(iv) $(f-g)^{-} \geqslant f^{-}$.

Lemma 15. Let $\left\{u_{k}\right\} \subset \mathcal{N}$ be a $(\mathrm{PS})_{\gamma}$-sequence in $H^{1}(\Omega)$ for J satisfying

$$
\alpha<\gamma<\alpha+\alpha^{\infty}\left(<2 \alpha^{\infty}\right) .
$$

Then there exists a $v_{2} \in \mathbf{M}_{0}$ such that u_{k} converges to v_{2} strongly in $H^{1}(\Omega)$. Moreover, v_{2} is a higher energy solution of Equation (1) such that $J\left(v_{2}\right)=\gamma$.

Proof: By the definition of the (PS) $)_{\gamma}$-sequence in $H^{1}(\Omega)$ for J, it is easy to see that $\left\{u_{k}\right\}$ is a bounded sequence in $H^{1}(\Omega)$ and satisfies

$$
\int_{\Omega}\left[\left|\nabla u_{k}^{ \pm}\right|^{2}+\left|u_{k}^{ \pm}\right|^{2}\right]=\int_{\Omega} q(x)\left|u_{k}^{ \pm}\right|^{p}+o(1)
$$

By Lemma 12 (ii), there exists a $C>0$ such that

$$
C \leqslant \int_{\Omega}\left[\left|\nabla u_{k}^{ \pm}\right|^{2}+\left|u_{k}^{ \pm}\right|^{2}\right]=\int_{\Omega} q(x)\left|u_{k}^{ \pm}\right|^{p}+o(1)
$$

By the Decomposition Lemma 7, we have $\gamma=J\left(v_{2}\right)+\sum_{i=1}^{1} J^{\infty}\left(w_{i}\right)$, where v_{2} is a solution of Equation (1) in Ω and w_{i} is a solution of Equation (2) in \mathbb{R}^{N}. Since $J^{\infty}\left(w_{i}\right) \geqslant \alpha^{\infty}$ for each $i \in \mathbb{N}$ and $\alpha<\alpha^{\infty}$, we have $l \leqslant 1$. Now we want to show that $l=0$. On the contrary, suppose $l=1$.
(i) w_{1} is a changed sign solution of Equation (2): by Lemma 6, we have $\gamma \geqslant 2 \alpha^{\infty}$, which is a contradiction.
(ii) w_{1} is a constant sign solution of Equation (2): we may assume $w_{1}>0$. By the Decomposition Lemma 7 , there exists a sequence $\left\{x_{k}^{1}\right\}$ in \mathbb{R}^{N} such that $\left|x_{k}^{1}\right| \rightarrow \infty$, and

$$
\left\|u_{k}-v_{2}-w_{1}\left(\cdot-x_{k}^{1}\right)\right\|_{H^{1}(\Omega)}=o(1) \text { as } k \rightarrow \infty .
$$

By the Sobolev continuous embedding inequality, we obtain

$$
\left\|u_{k}-v_{2}-w_{1}\left(\cdot-x_{k}^{1}\right)\right\|_{L^{p}(\Omega)}=o(1) \text { as } k \rightarrow \infty
$$

Since $w_{1}>0$, by Lemma 14 , then

$$
\left\|\left(u_{k}-v_{2}\right)^{-}\right\|_{L^{p}(\Omega)}=o(1) \text { as } k \rightarrow \infty
$$

Suppose $v_{2} \equiv 0$, we obtain $\left\|u_{k}^{-}\right\|_{L^{p}(\Omega)}=o(1)$ as $k \rightarrow \infty$. Then

$$
0<C \leqslant \int_{\Omega} q(x)\left|u_{k}^{-}\right|^{p}=o(1)
$$

which is a contradiction. Hence, $v_{2} \not \equiv 0$. So we have $\gamma=J\left(v_{2}\right)+J^{\infty}\left(w_{1}\right) \geqslant \alpha+\alpha^{\infty}$, which a contradiction.

By (i) and (ii), then $l=0$. Thus, $\left\|u_{k}-v_{2}\right\|_{H^{1}(\Omega)}=o(1)$ as $k \rightarrow \infty$ and $J\left(v_{2}\right)=\gamma$. Similarly, by Lemma 14, we obtain that v_{2} is a changed sign solution of Equation (1) in Ω. By Lemma $6,2 \alpha \leqslant \gamma$.

Recall that $w_{k}(x)=\left.w\left(x+e_{k}\right)\right|_{\Omega}$, where $e_{k}=(k, 0, \ldots, 0)$ and w is a positive ground state solution of Equation (2) in \mathbb{R}^{N}. Then we have the following results.

Lemma 16. There are $k_{0} \in \mathbb{N}$, real numbers t_{1}^{*} and t_{2}^{*} such that for $k \geqslant k_{0}$

$$
t_{1}^{*} v_{1}-t_{2}^{*} w_{k} \in \mathbf{M}_{0} \text { and } \gamma \leqslant J\left(t_{1}^{*} v_{1}-t_{2}^{*} w_{k}\right)
$$

where $1 / 2 \leqslant t_{1}^{*}, t_{2}^{*} \leqslant 2$.
Proof: The proof is similar to Zhu [16] or see Cao [3].
Lemma 17. There exists a $k_{0}^{*} \in \mathbb{N}$ such that for $k \geqslant k_{0}^{*} \geqslant k_{0}$

$$
\gamma \leqslant \sup _{1 / 2 \leqslant t_{1}, t_{2} \leqslant 2} J\left(t_{1} v_{1}-t_{2} w_{k}\right)<\alpha+\alpha^{\infty}
$$

where v_{1} is a gound state solution of Equation (1) in Ω.
Proof: Since v_{1} is a positive solution of Equation (1) in Ω and $w_{k}>0$ for each $k \in \mathbb{N}$, we have

$$
\begin{aligned}
J\left(t_{1} v_{1}-t_{2} w_{k}\right) & =\frac{1}{2} a\left(t_{1} v_{1}\right)+\frac{1}{2} a\left(t_{2} w_{k}\right)-t_{1} t_{2}\left(\int_{\Omega} \nabla v_{1} \nabla w_{k}+v_{1} w_{k}\right)-\frac{1}{p} b\left(t_{1} v_{1}-t_{2} w_{k}\right) \\
& \leqslant J\left(t_{1} v_{1}\right)+J^{\infty}\left(t_{2} w\right)-\frac{1}{p} b\left(t_{1} v_{1}-t_{2} w_{k}\right)+\frac{1}{p} b\left(t_{1} v_{1}\right)+\frac{1}{p} b^{\infty}\left(t_{2} w_{k}\right)
\end{aligned}
$$

We use the inequality

$$
\left(c_{1}-c_{2}\right)^{p}>c_{1}^{p}+c_{2}^{p}-K\left(c_{1}^{p-1} c_{2}+c_{1} c_{2}^{p-1}\right)
$$

for any $c_{1}, c_{2}>0$ and some positive constant K, then

$$
\begin{aligned}
\sup _{1 / 2 \leqslant t_{1}, t_{2} \leqslant 2} J\left(t_{1} v_{1}-t_{2} w_{k}\right) \leqslant \sup _{t_{1} \geqslant 0} J\left(t_{1} v_{1}\right) & +\sup _{t_{2} \geqslant 0} J^{\infty}\left(t_{2} w\right)-\frac{1}{2^{p} p} \int_{\Omega}\left(q(x)-q_{\infty}\right) w_{k}^{p} \\
& +K^{\prime}\left(\int_{\Omega} v_{1}^{p-1} w_{k}+w_{k}^{p-1} v_{1}\right)+\frac{2^{p}}{p} \int_{\Omega^{m} \times \mathbb{R}^{n}} q_{\infty} w_{k}^{p}
\end{aligned}
$$

The following estimates is similar to Lemma 10.
(i) $\int_{\Omega^{m} \times \mathbb{R}^{n}} q_{\infty} w_{k}^{p}=\int_{\Omega^{m} \times \mathbb{R}^{n}} q_{\infty}\left|w\left(x+e_{k}\right)\right|^{p} d x \leqslant C_{0}^{\prime} \exp (-(p-\varepsilon) k)$.
(ii) By the Hőlder inequality,

$$
\begin{aligned}
\int_{\Omega \cap\left\{|x| \leqslant R_{1}\right\}} v_{1}^{p-1} w_{k} & \leqslant\left(\int_{\Omega \cap\left\{|x| \leqslant R_{1}\right\}} v_{1}^{p}\right)^{(p-1) / p}\left(\int_{\Omega \cap\left\{|x| \leqslant R_{1}\right\}} w_{k}^{p}\right)^{1 / p} \\
& \leqslant M \exp (-k)
\end{aligned}
$$

Applying Lemma 9 , there exists a $k_{1} \geqslant k_{0}$ such that for $k \geqslant k_{1}$

$$
\begin{aligned}
\int_{\Omega \cap\left\{|x| \geqslant R_{1}\right\}} v_{1}^{p-1} w_{k} & \leqslant C_{1}^{\prime} \int_{\Omega \cap\left\{|x| \geqslant R_{1}\right\}} \exp (-(p-1)|x|) \exp \left(-\left|x+e_{k}\right|\right) d x \\
& \leqslant C_{1}^{\prime \prime} \exp (-k)
\end{aligned}
$$

Similarly, we also obtain

$$
\begin{array}{r}
\int_{\Omega \cap\left\{|x| \leqslant R_{1}\right\}} w_{k}^{p-1} v_{1} \leqslant M^{\prime} \exp (-(p-1) k), \\
\int_{\Omega \cap\left\{|P x| \leqslant \overline{R_{0}}\right\}}\left|q(x)-q_{\infty}\right| w_{k}^{p} \leqslant M^{\prime \prime} \exp (-(p-\varepsilon) k),
\end{array}
$$

and there exists a $k_{2} \geqslant k_{1}$ such that for $k \geqslant k_{2}$

$$
\int_{\Omega \cap\left\{|x| \geqslant R_{1}\right\}} w_{k}^{p-1} v_{1} \leqslant C^{\prime} \exp (-k)
$$

(iii) Since q satisfies the condition (\bar{Q}) and $0<\delta<1$, by Lemma 9 , there exists a $k_{3} \geqslant k_{2}$ such that for $k \geqslant k_{3}$

$$
\int_{\Omega \cap\left\{|P x| \geqslant \overline{\left.R_{0}\right\}}\right.}\left(q(x)-q_{\infty}\right) w_{k}^{p} \geqslant C^{\prime \prime} \exp (-\delta k) .
$$

By (i)-(iii) and $2<p<2^{*}$, for small $\varepsilon<1$ we can find a $k_{0}^{*} \geqslant k_{3} \geqslant k_{0}$ such that for $k \geqslant k_{0}^{*}$

$$
K^{\prime}\left(\int_{\Omega} v_{1}^{p-1} w_{k}+w_{k}^{p-1} v_{1}\right)+\frac{2^{p}}{p} \int_{\Omega^{m} \times \mathbb{R}^{n}} q_{\infty} w_{k}^{p}-\frac{1}{2^{p} p} \int_{\Omega}\left(q(x)-q_{\infty}\right) w_{k}^{p} d x<0 .
$$

Since $J\left(v_{1}\right)=\sup _{t \geqslant 0} J\left(t v_{1}\right)$ and $J^{\infty}(w)=\sup _{t \geqslant 0} J^{\infty}(t w)$, we have for $k \geqslant k_{0}^{*}$

$$
\sup _{1 / 2 \leqslant t_{1}, t_{2} \leqslant 2} J\left(t_{1} v_{1}-t_{2} w_{k}\right)<J\left(v_{1}\right)+J^{\infty}(w)=\alpha+\alpha^{\infty} .
$$

Theorem 18. Assume that q satisfies $\left(q_{1}\right),\left(q_{2}\right)$ and the condition (\bar{Q}), then Equation (1) has a positive solution v_{1} and a solution v_{2} which changes sign.

Proof: By Lemmas 13, 151617 and Theorem 11.

References

[1] A. Bahri and Y.Y. Li, 'On the min-max procedure for the existence of a positive solution for certain scalar field equations in \mathbb{R}^{N}, Rev. Mat. Iberoamericana 6 (1990), 1-15.
[2] A. Bahri and P.L. Lions, 'On the existence of a positive solution of semilinear elliptic equations in unbounded domains', Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 365-413.
[3] D.M. Cao, 'Multiple solutions for a Neumann problem in an exterior domain', Commun. Partial Differential Equations 18 (1993), 687-700.
[4] K.J. Chen, C.S. Lee and H.C. Wang, 'Semilinear elliptic problems in interior and exterior flask domains', Comm. Appl. Nonlinear Anal. 5 (1998), 81-105.
[5] M.J. Esteban, 'Rupture de symétrie pour des problemes de Neumann surlinéaires dans des extérieurs', Note C.R.A.S. 308 (1989), 281-286.
[6] M.J. Esteban, 'Nonsymmetric ground states of symmetric variational problems', Comm. Pure Appl. Math. 44 (1991), 259-274.
[7] B. Gidas, W.M. Ni and L. Nirenberg, 'Symmetry and related properties via the maximum principle', Comm. Math. Phys. 68 (1979), 209-243.
[8] B. Gidas, W.M. Ni and L. Nirenberg, 'Symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^{N}, in Math. Anal. Appl. part A, Advances in Math. Suppl. Studies 7A (Academic Press, New York, London, 1981), pp. 369-402.
[9] T.S. Hsu and H.L. Lin, 'Multiple solutions of semilinear elliptic equations with Neumann boundary conditions', (preprint).
[10] M.K. Kwong, 'Uniqueness of positive solutions of $\Delta u-u+u^{p}=0$ in \mathbb{R}^{N}, Arch. Rational Mech. Anal. 105 (1989), 234-266.
[11] P.L. Lions, 'The concentration-compactness principle in the calculus of variations. The locally compact case. I and II', Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-145 and 223-283.
[12] P.L. Lions, 'Solutions of Hartree-Fock equations for Coulomb systems', Math. Phys. 109 (1987), 33-97.
[13] P.L. Lions, On positive solutions of semilinear elliptic equations in unbounded domains, Math. Sci. Res. Inst. Publ. 13 (Springer-Verlarg, Berlin, 1988).
[14] P.L. Lions, Lagrange multipliers, Morse indices and compactness, Progr. Nonlinear Differential Equations Appl. (Birkhaüser Boston, Boston, 1990).
[15] S.Y. Tzeng and H.C. Wang, 'On semilinear elliptic problems in exterior domains', Dynam. Contin. Discrete Impuls. Systems 5 (1999), 237-250.
[16] X.P. Zhu, 'Multiple entire solutions of a semilinear elliptic equation', Nonlinear Anal. 12 (1988), 1297-1316.

Center for General Education
Chang Gung University
Kwei-San, Tao-Yuan 333, Taiwan
e-mail: hlin@mail.cgu.edu.tw

[^0]: Received 10th January, 2006

