MULTIPLE SOLUTIONS FOR SOME NEUMANN PROBLEMS IN EXTERIOR DOMAINS

TSING-SAN HSU AND HUEI-LI LIN

In this paper, we show that if q(x) satisfies suitable conditions, then the Neumann problem $-\Delta u + u = q(x)|u|^{p-2}u$ in Ω has at least two solutions of which one is positive and the other changes sign.

1. INTRODUCTION

Throughout this article, let N = m + n, where m and n are nonnegative integers with $m \ge 3$. For $x = (x_1, \ldots, x_N) = (x_1, \ldots, x_m, x_{m+1}, \ldots, x_N) \in \mathbb{R}^N$, let $Px = (x_1, \ldots, x_m) \in \mathbb{R}^m$ and $Qx = (x_{m+1}, \ldots, x_N) \in \mathbb{R}^n$. Consider the Neumann boundary value problem

(1)
$$\begin{cases} -\Delta u + u = q(x) |u|^{p-2} u & \text{in } \Omega; \\ \frac{\partial u}{\partial \eta} = 0 & \text{on } \partial \Omega, \end{cases}$$

where $\Omega = (\mathbb{R}^m \setminus (\overline{\Omega^m})) \times \mathbb{R}^n$, Ω^m is a smooth bounded domain in \mathbb{R}^m , $2 , <math>\eta$ is the outward unit normal to $\partial\Omega$ and q(x) is a bounded continuous function in Ω . Moreover, q(x) satisfies the following hypotheses:

- (q1) q(x) is a positive function in Ω , $\inf\{q(x)|x \in \Omega\} > 0$ and q(x) = q(y) for any Px = Py;
- (q2) there exists a positive number q_{∞} such that $\lim_{|Px|\to\infty} q(x) = q_{\infty}$ and $q(x) \neq q_{\infty}$ in Ω .

If Ω^c is bounded (n = 0 in our case), Esteban [5, 6] proved the existence of the "ground state solution" of Equation (1) provided that $q(x) \equiv 1$. In the case q is not a constant function, Cao [3] and Hsu and Lin [9] proved the multiplicity of the solutions of Equation (1). In this article, we assert that Equation (1) still has the same results of Hsu and Lin [9] even if Ω^c is unbounded. First, we use the concentration-compactness argument of Lions [11, 12, 13, 14] to obtain the "ground state solution", and then combine it with some ideas of Zhu [16] to show the existence of another solution which changes sign.

Received 10th January, 2006

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.

2. PRELIMINARIES

Associated with Equation (1), we consider the energy functionals a, b and J, for $u \in H^1(\Omega)$

$$\begin{aligned} a(u) &= \int_{\Omega} \left(|\nabla u|^2 + u^2 \right) dx; \\ b(u) &= \int_{\Omega} q(z) |u|^p dx; \\ J(u) &= \frac{1}{2} a(u) - \frac{1}{p} b(u). \end{aligned}$$

Define

$$\alpha = \inf_{u \in \mathcal{M}(\Omega)} J(u),$$

where

$$\mathbf{M}(\Omega) = \left\{ u \in H^1(\Omega) \setminus \{0\} \mid a(u) = b(u) \right\}.$$

It is well known that there is a positive radially symmetric smooth solution w of Equation (2)

(2)
$$\begin{cases} -\bigtriangleup u + u = q_{\infty} |u|^{p-2} u \quad \text{in } \mathbb{R}^{N}; \\ u \in H^{1}(\mathbb{R}^{N}). \end{cases}$$

We also define

$$a^{\infty}(u) = \int_{\mathbb{R}^{N}} (|\nabla u|^{2} + u^{2}) dx;$$

$$b^{\infty}(u) = \int_{\mathbb{R}^{N}} q_{\infty} |u|^{p} dx;$$

$$J^{\infty}(u) = \frac{1}{2} a^{\infty}(u) - \frac{1}{p} b^{\infty}(u);$$

$$\alpha^{\infty} = \inf_{u \in \mathbf{M}^{\infty}(\mathbb{R}^{N})} J^{\infty}(u),$$

where

$$\mathbf{M}^{\infty}(\mathbf{\mathbb{R}}^{N}) = \left\{ u \in H^{1}(\mathbf{\mathbb{R}}^{N}) \setminus \{0\} \mid a^{\infty}(u) = b^{\infty}(u) \right\}.$$

Recall the fact that

$$w(|x|)|x|^{(N-1)/2}\exp(|x|) \rightarrow \overline{c} > 0 \text{ as } |x| \rightarrow \infty,$$

where \overline{c} is some constant. (See Bahri and Li [1], Bahri and Lions [2], Gidas, Ni and Nirenberg [7, 8] and Kwong [10].) In particular, we have

(i) there exists a constant $C_0 > 0$ such that

$$w(x) \leq C_0 \exp(-|x|)$$
 for all $x \in \mathbb{R}^N$;

(ii) for any $\varepsilon > 0$, there exists a constant $C_{\varepsilon} > 0$ such that

$$w(x) \ge C_{\varepsilon} \exp(-(1+\varepsilon)|x|)$$
 for all $x \in \mathbb{R}^{N}$.

We need the following definition and lemmas to prove the main theorems.

DEFINITION 1: For $\beta \in \mathbb{R}$, a sequence $\{u_k\}$ is a $(PS)_{\beta}$ -sequence in $H^1(\Omega)$ for J if $J(u_k) = \beta + o(1)$ and $J'(u_k) = o(1)$ strongly in $H^1(\Omega)$ as $k \to \infty$.

LEMMA 2. Let $\beta \in \mathbb{R}$ and let $\{u_k\}$ be a $(PS)_{\beta}$ -sequence in $H^1(\Omega)$ for J, then $\{u_k\}$ is a bounded sequence in $H^1(\Omega)$. Moreover,

$$a(u_k) = b(u_k) + o(1) = \frac{2p}{p-2}\beta + o(1)$$

and $\beta \ge 0$.

PROOF: For n sufficiently large, we have

$$|\beta|+1+\sqrt{a(u_k)} \ge J(u_k)-\frac{1}{p}\langle J'(u_k),u_k\rangle = \left(\frac{1}{2}-\frac{1}{p}\right)a(u_k).$$

It follows that $\{u_k\}$ is bounded in $H^1(\Omega)$. Since $\{u_k\}$ is a bounded sequence in $H^1(\Omega)$, then $\langle J'(u_k), u_k \rangle = o(1)$ as $k \to \infty$. Thus,

$$\beta + o(1) = J(u_k) = \left(\frac{1}{2} - \frac{1}{p}\right)a(u_k) + o(1) = \left(\frac{1}{2} - \frac{1}{p}\right)b(u_k) + o(1),$$

that is, $a(u_k) = b(u_k) + o(1) = (2p/p - 2)\beta + o(1)$ and $\beta \ge 0$.

LEMMA 3.

- (i) For each $u \in H^1(\Omega) \setminus \{0\}$, there exists an $s_u > 0$ such that $s_u u \in \mathbf{M}(\Omega)$;
- (ii) Let $\{u_k\}$ be a $(PS)_{\beta}$ -sequence in $H^1(\Omega)$ for J with $\beta > 0$. Then there is a sequence $\{s_k\}$ in \mathbb{R}^+ such that $\{s_k u_k\} \subset \mathbf{M}(\Omega), s_k = 1 + o(1)$ and $J(s_k u_k) = \beta + o(1)$. In particular, the statement holds for J^{∞} .

PROOF: See Chen, Lee and Wang [4].

There exists a c > 0 such that $||u||_{H^1(\Omega)} \ge c > 0$ for each $u \in \mathbf{M}(\Omega)$. Lemma 4. 0

PROOF: See Chen, Lee and Wang [4].

LEMMA 5. Let $u \in \mathbf{M}(\Omega)$ satisfy $J(u) = \min_{v \in \mathbf{M}(\Omega)} J(v) = \alpha$. Then u is a nonzero solution of Equation (1).

PROOF: We define g(v) = a(v) - b(v) for $v \in H^1(\Omega) \setminus \{0\}$. Note that $\langle g'(u), u \rangle$ $= (2-p)a(u) \neq 0$. Since the minimum of J is achieved at u and is constrained on $\mathbf{M}(\Omega)$, by the Lagrange multiplier theorem, there exists a $\lambda \in \mathbb{R}$ such that $J'(u) = \lambda g'(u)$ in $H^1(\Omega)$. Then we have

$$0 = \langle J'(u), u \rangle = \lambda \langle g'(u), u \rangle,$$

that is, $\lambda = 0$. Hence, J'(u) = 0 and u is a nonzero solution of Equation (1) in Ω such that $J(u) = \alpha$.

Define $u^+ = \max\{u, 0\}$ and $u^- = \max\{-u, 0\}$.

LEMMA 6. Let u be a solution of Equation (1) that changes sign. Then $J(u) \ge 2\alpha$. In particular, the result holds for J^{∞} .

PROOF: Since u is a solution of Equation (1) that changes sign, then u^- is nonnegative and nonzero. Multiply Equation (1) by u^- and integrate to obtain

$$\int_{\Omega} \nabla u \nabla u^{-} + u u^{-} = \int_{\Omega} q(x) |u|^{p-2} u u^{-},$$

that is, $u^- \in \mathbf{M}(\Omega)$ and $J(u^-) \ge \alpha$. Similarly, $J(u^+) \ge \alpha$. Hence,

$$J(u) = J(u^+) + J(u^-) \ge 2\alpha.$$

LEMMA 7. (Improved Decomposition Lemma) Let $\{u_k\}$ be a $(PS)_\beta$ -sequence in $H^1(\Omega)$ for J. Then there are a subsequence $\{u_k\}$, an integer $l \ge 0$, sequences $\{x_k^i\}_{k=1}^{\infty}$ in \mathbb{R}^N , functions $v \in H^1(\Omega)$ and $w_i \ne 0$ in $H^1(\mathbb{R}^N)$ for $1 \le i \le l$ such that

$$\begin{aligned} - \bigtriangleup v + v &= q(x)|v|^{p-2}v \text{ in } \Omega; \\ - \bigtriangleup w_i + w_i &= q_{\infty}|w_i|^{p-2}w_i \text{ in } \mathbb{R}^N; \\ |Px_k^i| \longrightarrow \infty \text{ for } 1 \leqslant i \leqslant l; \\ |x_k^i| \longrightarrow \infty \text{ for } 1 \leqslant i \leqslant l; \\ u_k &= v + \sum_{i=1}^l w_i(\cdot - x_k^i) + o(1) \text{ strongly in } H^1(\mathbb{R}^N); \\ J(u_k) &= J(v) + \sum_{i=1}^l J^{\infty}(w_i) + o(1). \end{aligned}$$

In addition, if $u_k \ge 0$, then $v \ge 0$ and $w_i \ge 0$ for $1 \le i \le l$.

PROOF: The proof can be obtained by using the arguments in Bahri and Lions [2] or see Tzeng and Wang [15].

3. EXISTENCE OF THE GROUND STATE SOLUTION

LEMMA 8. If $\alpha < \alpha^{\infty}$, then α attains a minimiser v_1 , that is, there exists a ground state solution v_1 of Equation (1).

PROOF: See Cao [3].

Let $w_k(x) = w(x + e_k) \mid_{\Omega}$, where $e_k = (k, 0, ..., 0)$. Then we have the following lemmas.

LEMMA 9. Let Θ be a domain in \mathbb{R}^m . If $f: \Theta \to \mathbb{R}$ satisfies

$$\int_{\Theta} \left| f(x) \exp(\sigma |x|) \right| dx < \infty \text{ for some } \sigma > 0,$$

then

$$\left(\int_{\Theta} f(x) \exp(-\sigma |x+e_k|) dx\right) \exp(\sigma k) = \int_{\Theta} f(x) \exp(-\sigma x_1) dx + o(1) \text{ as } k \to \infty,$$

or

$$\left(\int_{\Theta} f(x) \exp\left(-\sigma |x-e_k|\right) dx\right) \exp(\sigma k) = \int_{\Theta} f(x) \exp(\sigma x_1) dx + o(1) \text{ as } k \to \infty.$$

PROOF: We know $\sigma|e_k| \leq \sigma |x| + \sigma |x + e_k|$, then

$$\left|f(x)\exp\left(-\sigma|x+e_{k}|\right)\exp\left(\sigma|e_{k}|\right)\right| \leq \left|f(x)\exp\left(\sigma|x|\right)\right|.$$

Since

$$-\sigma|x+e_k|+\sigma|e_k|=-\sigma\frac{\langle x,e_k\rangle}{|e_k|}+o(1)=-\sigma x_1+o(1)$$

as $k \to \infty$, the lemma follows from the Lebesgue dominated convergence theorem.

LEMMA 10. Assume that there are positive numbers δ , R_0 and C such that

(Q)
$$q(x) \ge q_{\infty} - C \exp\left(-(2+\delta)|Px|\right) \text{ for } |Px| \ge R_0.$$

Then there exists a $k_0 \in \mathbb{N}$ such that for $k \ge k_0$, we have

$$\sup_{s\geq 0}J(sw_k)<\alpha^{\infty}.$$

PROOF: Take a $k_1 \in \mathbb{N}$ such that the N-ball $B(-e_k; 1) \subset \Omega$ for $k \ge k_1$. Then we have

$$J(sw_k) \leq \frac{s^2}{2} \int_{\mathbb{R}^N} \left[|\nabla w|^2 + w^2 \right] - c \frac{s^p}{p} \int_{B(-e_k;1)} w^p (x + e_k) \, dx$$
$$= \frac{s^2}{2} \int_{\mathbb{R}^N} \left[|\nabla w|^2 + w^2 \right] - c \frac{s^p}{p} \int_{B(0;1)} w^p \, dx.$$

Therefore, there exists an $s_1 > 0$ such that

$$J(sw_k) < 0$$
 for $s \ge s_1$ and $k \ge k_1$.

Since J is continuous in $H^1(\Omega)$ and

$$\int_{\Omega} \left[|\nabla w_k|^2 + w_k^2 \right] \leqslant \int_{\mathbb{R}^N} |\nabla w|^2 + w^2 < \infty \text{ for any } k \in \mathbb{N},$$

there exists an $s_0 > 0$ such that

$$J(sw_k) < \alpha^{\infty}$$
 for $s < s_0$ and any $k \in \mathbb{N}$.

Then we only need to prove

$$\sup_{s_0 \leqslant s \leqslant s_1} J(sw_k) < \alpha^{\infty} \text{ for } k \text{ sufficiently large.}$$

For $k \ge k_1$ and $s_0 \le s \le s_1$, since

$$\sup_{s \ge 0} J^{\infty}(sw) = J^{\infty}(w) = \alpha^{\infty},$$

$$J(sw_{k}) = \frac{s^{2}}{2} \int_{\Omega} \left[\left| \nabla w(x+e_{k}) \right|^{2} + \left| w(x+e_{k}) \right|^{2} \right] - \frac{s^{p}}{p} \int_{\Omega} q(x) \left| w(x+e_{k}) \right|^{p}$$

$$= J^{\infty}(sw) - \frac{s^{2}}{2} \int_{\Omega^{m} \times \mathbb{R}^{n}} \left[\left| \nabla w(x+e_{k}) \right|^{2} + \left| w(x+e_{k}) \right|^{2} \right]$$

$$+ \frac{s^{p}}{p} \left[\int_{\Omega^{m} \times \mathbb{R}^{n}} q_{\infty} \left| w(x+e_{k}) \right|^{p} + \int_{\Omega} (q_{\infty} - q(x)) \left| w(x+e_{k}) \right|^{p} \right]$$

$$\leq \alpha^{\infty} - \frac{s_{0}^{2}}{2} \int_{\Omega^{m} \times \mathbb{R}^{n}} \left[\left| \nabla w(x+e_{k}) \right|^{2} + \left| w(x+e_{k}) \right|^{2} \right]$$

$$+ \frac{s_{1}^{p}}{p} \left[\int_{\Omega^{m} \times \mathbb{R}^{n}} q_{\infty} \left| w(x+e_{k}) \right|^{p} + \int_{\Omega} (q_{\infty} - q(x)) \left| w(x+e_{k}) \right|^{p} \right].$$

(i) Let $B(0;1) \subset \mathbb{R}^n$ be the unit *n*-ball, then

$$\int_{\Omega^m \times \mathbb{R}^n} |w(x+e_k)|^2 dx \ge \int_{\Omega^m \times B(0;1)} C_{\varepsilon}^2 \exp\left(-2(1+\varepsilon)|x+e_k|\right) dx$$
$$\ge C_{\varepsilon}' \exp\left(-2(1+\varepsilon)k\right).$$

(ii) It is easy to see that the following inequality

$$\sqrt{(a^2+b^2)} \geqslant \vartheta a + \sqrt{1-\vartheta^2} b$$

holds for any a, b > 0 and $0 \leq \vartheta \leq 1$. Take $\vartheta = 1$, and since $\Omega^m \times \mathbb{R}^n$ is unbounded, then for a small $\varepsilon > 0$, we have

$$\begin{split} \int_{\Omega^m \times \mathbb{R}^n} q_{\infty} |w(x+e_k)|^p \, dx &\leq \int_{\Omega^m \times \mathbb{R}^n} q_{\infty} C_0^p \exp\left(-p|x+e_k|\right) \, dx \\ &\leq \int_{\Omega^m \times \mathbb{R}^n} q_{\infty} C_0^p \exp\left(-p\vartheta |(Px+Pe_k)|\right) \, dx \\ &\leq C_0' \exp\left(-(p-\varepsilon)k\right). \end{split}$$

(iii) It is similar to (ii) we have

$$\int_{\Omega \cap \{|Px| \leq R_0\}} (q_{\infty} - q(x)) |w(x + e_k)|^p dx \leq M \exp(-(p - \varepsilon)k)$$

0

Since q satisfies the condition (Q), then by Lemma 9, there exists a $k_2 \ge k_1$ such that for $k \ge k_2$

$$\int_{\Omega \cap \{|Px| \ge R_0\}} (q_{\infty} - q(x)) |w(x + e_k)|^p dx$$

$$\leq \int_{\Omega \cap \{|Px| \ge R_0\}} C \exp(-(2 + \delta) |Px|) C_0^p \exp(-p|x + e_k t|) dx$$

$$\leq \int_{\Omega \cap \{|Px| \ge R_0\}} C_1 \exp(-(2 + \delta) |Px|) \exp(-p\vartheta |(Px + Pe_k)|) dx$$

$$\leq C' \exp\left(-\min\left\{2 + \frac{\delta}{2}, p\right\}k\right).$$

By (i)-(iii) and $2 , choosing <math>\varepsilon > 0$, such that $2 + 2\varepsilon and <math>2\varepsilon < \delta/2$, we can find a $k_0 \ge k_2$ such that for $k \ge k_0$

$$\frac{s_1^p}{p} \left[\int_{\Omega^m \times \mathbb{R}^n} q_\infty \left| w(x+e_k) \right|^p + \int_{\Omega} (q_\infty - q(x)) \left| w(x+e_k) \right|^p \right] \\ - \frac{s_0^2}{2} \int_{\Omega^m \times \mathbb{R}^n} \left| \nabla w(x+e_k) \right|^2 + \left| w(x+e_k) \right|^2 < 0.$$

Hence, we have

[7]

$$\sup_{s \ge 0} J(sw_k) < \alpha^{\infty} \text{ for } k \ge k_0.$$

THEOREM 11. Assume that q satisfies (q_1) , (q_2) and the condition (Q), then Equation (1) has a positive solution v_1 .

PROOF: By Lemma 3 (i), there exists an $s_k > 0$ such that $s_k w_k \in \mathbf{M}(\Omega)$, that is, $\alpha \leq J(s_k w_k)$. Applying Lemma 10, we have $\alpha < \alpha^{\infty}$. Thus, there exists a ground state solution v_1 of Equation (1). By the standard arguments and the maximum principle, $v_1 > 0$ in Ω .

REMARK 1. $v_1(x) \leq C_1 \exp(-|x|)$ for $|x| \geq R_1$, where C_1 and R_1 are some positive constants.

PROOF: See Cao [3].

4. EXISTENCE OF THE SECOND SOLUTION

In this section, q satisfies (q_1) , (q_2) and the condition (\overline{Q})

$$(\overline{Q}) \qquad \qquad q(x) \ge q_{\infty} + \overline{C} \exp(-\delta |Px|) \text{ for } |Px| \ge \overline{R_0}$$

where $\delta < 1$, \overline{C} and $\overline{R_0}$ are some positive constants. Let h(u) be a functional in $H^1(\Omega)$ defined by

$$h(u) = \begin{cases} \frac{b(u)}{a(u)} & \text{for } u \neq 0; \\ 0 & \text{for } u = 0. \end{cases}$$

Denote by

$$\mathbf{M}_{0} = \left\{ u \in H^{1}(\Omega) \mid h(u^{+}) = h(u^{-}) = 1 \right\};$$
$$\mathcal{N} = \left\{ u \in H^{1}(\Omega) \mid \left| h(u^{\pm}) - 1 \right| < \frac{1}{2} \right\},$$

where $u^+ = \max\{u, 0\}$ and $u^- = \max\{-u, 0\}$.

LEMMA 12.

- (i) If u ∈ H¹(Ω) changes sign, then there are positive numbers s[±](u) = s[±] such that s⁺u⁺ ± s⁻u⁻ ∈ M(Ω);
- (ii) There exists a c' > 0 such that $||u^{\pm}||_{H^1} \ge c' > 0$ for each $u \in \mathcal{N}$.

PROOF: (i) Since u^+ and u^- are nonzero, by Lemma 3 (i), it is easy to obtain the result.

(ii) For each $u \in \mathcal{N}$, by Lemma 3 (i), there exist $s^{\pm}(u) = s^{\pm} > 0$ such that $s^{\pm}u^{\pm} \in \mathbf{M}(\Omega)$. Then we have

(3)
$$\frac{1}{2} < (s^{\pm})^{2-p} = \frac{b(u^{\pm})}{a(u^{\pm})} < \frac{3}{2}$$
 for each $u \in \mathcal{N}$.

By Lemma 4, we have

$$||s^{\pm}u^{\pm}||_{H^1} \ge c$$
 for some $c > 0$ and each $u \in \mathcal{N}$.

Thus, by (3), we have $||u^{\pm}||_{H^1} \ge c/s^{\pm} \ge c' > 0$ for each $u \in \mathcal{N}$.

Define

$$\gamma = \inf_{u \in \mathbf{M}_0} J(u)$$

By Lemma 12, $\gamma > 0$.

LEMMA 13. There exists a sequence $\{u_k\} \subset \mathcal{N}$ such that $J(u_k) = \gamma + o(1)$ and $J'(u_k) = o(1)$ strongly in $H^{-1}(\Omega)$.

PROOF: It is similar to the proof of Zhu [16].

LEMMA 14. Let f and g are real-valued functions in Ω . If g(x) > 0 in Ω , then we have the following inequalities.

(i)
$$(f+g)^+ \ge f^+;$$

(ii) $(f+g)^- \le f^-;$

$$(II) \quad (J \neq g) \leq J ,$$
$$(III) \quad (f = g)^+ \leq f^+.$$

(iii)
$$(f-g)^{+} \leq f^{+};$$

(iv)
$$(f-g)^- \ge f^-$$
.

LEMMA 15. Let $\{u_k\} \subset \mathcal{N}$ be a $(PS)_{\gamma}$ -sequence in $H^1(\Omega)$ for J satisfying

 $\alpha < \gamma < \alpha + \alpha^{\infty} (< 2\alpha^{\infty}).$

Then there exists a $v_2 \in \mathbf{M}_0$ such that u_k converges to v_2 strongly in $H^1(\Omega)$. Moreover, v_2 is a higher energy solution of Equation (1) such that $J(v_2) = \gamma$.

[8]

0

PROOF: By the definition of the $(PS)_{\gamma}$ -sequence in $H^1(\Omega)$ for J, it is easy to see that $\{u_k\}$ is a bounded sequence in $H^1(\Omega)$ and satisfies

$$\int_{\Omega} \left[|\nabla u_k^{\pm}|^2 + |u_k^{\pm}|^2 \right] = \int_{\Omega} q(x) |u_k^{\pm}|^p + o(1).$$

By Lemma 12 (ii), there exists a C > 0 such that

$$C \leq \int_{\Omega} \left[|\nabla u_k^{\pm}|^2 + |u_k^{\pm}|^2 \right] = \int_{\Omega} q(x) |u_k^{\pm}|^p + o(1).$$

By the Decomposition Lemma 7, we have $\gamma = J(v_2) + \sum_{i=1}^{l} J^{\infty}(w_i)$, where v_2 is a solution of Equation (1) in Ω and w_i is a solution of Equation (2) in \mathbb{R}^N . Since $J^{\infty}(w_i) \ge \alpha^{\infty}$ for each $i \in \mathbb{N}$ and $\alpha < \alpha^{\infty}$, we have $l \le 1$. Now we want to show that l = 0. On the contrary, suppose l = 1.

- (i) w_1 is a changed sign solution of Equation (2): by Lemma 6, we have $\gamma \ge 2\alpha^{\infty}$, which is a contradiction.
- (ii) w_1 is a constant sign solution of Equation (2): we may assume $w_1 > 0$. By the Decomposition Lemma 7, there exists a sequence $\{x_k^1\}$ in \mathbb{R}^N such that $|x_k^1| \to \infty$, and

$$\|u_k - v_2 - w_1(\cdot - x_k^1)\|_{H^1(\Omega)} = o(1) \text{ as } k \to \infty.$$

By the Sobolev continuous embedding inequality, we obtain

$$\left\|u_k-v_2-w_1(\cdot-x_k^1)\right\|_{L^p(\Omega)}=o(1) \text{ as } k\to\infty.$$

Since $w_1 > 0$, by Lemma 14, then

$$\left\| (u_k - v_2)^- \right\|_{L^p(\Omega)} = o(1) \text{ as } k \to \infty.$$

Suppose $v_2 \equiv 0$, we obtain $||u_k^-||_{L^p(\Omega)} = o(1)$ as $k \to \infty$. Then

$$0 < C \leq \int_{\Omega} q(x) |u_k^-|^p = o(1),$$

which is a contradiction. Hence, $v_2 \neq 0$. So we have $\gamma = J(v_2) + J^{\infty}(w_1) \geq \alpha + \alpha^{\infty}$, which a contradiction.

By (i) and (ii), then l = 0. Thus, $||u_k - v_2||_{H^1(\Omega)} = o(1)$ as $k \to \infty$ and $J(v_2) = \gamma$. Similarly, by Lemma 14, we obtain that v_2 is a changed sign solution of Equation (1) in Ω . By Lemma 6, $2\alpha \leq \gamma$.

Recall that $w_k(x) = w(x+e_k) |_{\Omega}$, where $e_k = (k, 0, ..., 0)$ and w is a positive ground state solution of Equation (2) in \mathbb{R}^N . Then we have the following results.

LEMMA 16. There are $k_0 \in \mathbb{N}$, real numbers t_1^* and t_2^* such that for $k \ge k_0$

$$t_1^*v_1 - t_2^*w_k \in \mathbf{M_0} \text{ and } \gamma \leq J(t_1^*v_1 - t_2^*w_k),$$

where $1/2 \leq t_1^*, t_2^* \leq 2$.

PROOF: The proof is similar to Zhu [16] or see Cao [3].

LEMMA 17. There exists a $k_0^* \in \mathbb{N}$ such that for $k \ge k_0^* \ge k_0$

$$\gamma \leq \sup_{1/2 \leq t_1, t_2 \leq 2} J(t_1 v_1 - t_2 w_k) < \alpha + \alpha^{\infty},$$

where v_1 is a gound state solution of Equation (1) in Ω .

PROOF: Since v_1 is a positive solution of Equation (1) in Ω and $w_k > 0$ for each $k \in \mathbb{N}$, we have

$$J(t_1v_1 - t_2w_k) = \frac{1}{2}a(t_1v_1) + \frac{1}{2}a(t_2w_k) - t_1t_2\left(\int_{\Omega} \nabla v_1 \nabla w_k + v_1w_k\right) - \frac{1}{p}b(t_1v_1 - t_2w_k)$$

$$\leq J(t_1v_1) + J^{\infty}(t_2w) - \frac{1}{p}b(t_1v_1 - t_2w_k) + \frac{1}{p}b(t_1v_1) + \frac{1}{p}b^{\infty}(t_2w_k)$$

We use the inequality

$$(c_1 - c_2)^p > c_1^p + c_2^p - K(c_1^{p-1}c_2 + c_1c_2^{p-1}),$$

for any c_1 , $c_2 > 0$ and some positive constant K, then

$$\sup_{1/2 \leqslant t_1, t_2 \leqslant 2} J(t_1 v_1 - t_2 w_k) \leqslant \sup_{t_1 \ge 0} J(t_1 v_1) + \sup_{t_2 \ge 0} J^{\infty}(t_2 w) - \frac{1}{2^p p} \int_{\Omega} (q(x) - q_{\infty}) w_k^p + K' \left(\int_{\Omega} v_1^{p-1} w_k + w_k^{p-1} v_1 \right) + \frac{2^p}{p} \int_{\Omega^m \times \mathbb{R}^n} q_{\infty} w_k^p.$$

The following estimates is similar to Lemma 10.

(i)
$$\int_{\Omega^m \times \mathbb{R}^n} q_\infty w_k^p = \int_{\Omega^m \times \mathbb{R}^n} q_\infty |w(x+e_k)|^p dx \leq C_0' \exp\left(-(p-\varepsilon)k\right).$$

(ii) By the Hőlder inequality,

$$\int_{\Omega \cap \{|x| \leq R_1\}} v_1^{p-1} w_k \leq \left(\int_{\Omega \cap \{|x| \leq R_1\}} v_1^p \right)^{(p-1)/p} \left(\int_{\Omega \cap \{|x| \leq R_1\}} w_k^p \right)^{1/p} \leq M \exp(-k).$$

Applying Lemma 9, there exists a $k_1 \ge k_0$ such that for $k \ge k_1$

$$\int_{\Omega \cap \{|x| \ge R_1\}} v_1^{p-1} w_k \leqslant C_1' \int_{\Omega \cap \{|x| \ge R_1\}} \exp(-(p-1)|x|) \exp(-|x+e_k|) dx$$
$$\leqslant C_1'' \exp(-k).$$

362

Similarly, we also obtain

$$\begin{split} &\int_{\Omega \cap \{|x| \leq R_1\}} w_k^{p-1} v_1 \leq M' \exp(-(p-1)k), \\ &\int_{\Omega \cap \{|Px| \leq \overline{R_0}\}} |q(x) - q_{\infty}| w_k^p \leq M'' \exp(-(p-\varepsilon)k), \end{split}$$

and there exists a $k_2 \ge k_1$ such that for $k \ge k_2$

$$\int_{\Omega \cap \{|x| \ge R_1\}} w_k^{p-1} v_1 \leqslant C' \exp(-k).$$

(iii) Since q satisfies the condition (\overline{Q}) and $0 < \delta < 1$, by Lemma 9, there exists a $k_3 \ge k_2$ such that for $k \ge k_3$

$$\int_{\Omega \cap \{|Px| \ge \overline{R_0}\}} (q(x) - q_{\infty}) w_k^p \ge C'' \exp(-\delta k).$$

By (i)-(iii) and $2 , for small <math>\varepsilon < 1$ we can find a $k_0^* \ge k_3 \ge k_0$ such that for $k \ge k_0^*$

$$K'\left(\int_{\Omega} v_1^{p-1} w_k + w_k^{p-1} v_1\right) + \frac{2^p}{p} \int_{\Omega^m \times \mathbb{R}^n} q_\infty w_k^p - \frac{1}{2^p p} \int_{\Omega} (q(x) - q_\infty) w_k^p \, dx < 0.$$

Since $J(v_1) = \sup_{t \ge 0} J(tv_1)$ and $J^{\infty}(w) = \sup_{t \ge 0} J^{\infty}(tw)$, we have for $k \ge k_0^*$

$$\sup_{1/2 \leq t_1, t_2 \leq 2} J(t_1 v_1 - t_2 w_k) < J(v_1) + J^{\infty}(w) = \alpha + \alpha^{\infty}.$$

THEOREM 18. Assume that q satisfies (q_1) , (q_2) and the condition (\overline{Q}) , then Equation (1) has a positive solution v_1 and a solution v_2 which changes sign.

PROOF: By Lemmas 13, 15 16 17 and Theorem 11.

۵

References

- A. Bahri and Y.Y. Li, 'On the min-max procedure for the existence of a positive solution for certain scalar field equations in R^N', Rev. Mat. Iberoamericana 6 (1990), 1-15.
- [2] A. Bahri and P.L. Lions, 'On the existence of a positive solution of semilinear elliptic equations in unbounded domains', Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 365-413.
- [3] D.M. Cao, 'Multiple solutions for a Neumann problem in an exterior domain', Commun. Partial Differential Equations 18 (1993), 687-700.
- [4] K.J. Chen, C.S. Lee and H.C. Wang, 'Semilinear elliptic problems in interior and exterior flask domains', Comm. Appl. Nonlinear Anal. 5 (1998), 81-105.
- [5] M.J. Esteban, 'Rupture de symétrie pour des problemes de Neumann surlinéaires dans des extérieurs', Note C.R.A.S. 308 (1989), 281-286.

[12]

- [6] M.J. Esteban, 'Nonsymmetric ground states of symmetric variational problems', Comm. Pure Appl. Math. 44 (1991), 259-274.
- [7] B. Gidas, W.M. Ni and L. Nirenberg, 'Symmetry and related properties via the maximum principle', Comm. Math. Phys. 68 (1979), 209-243.
- [8] B. Gidas, W.M. Ni and L. Nirenberg, 'Symmetry of positive solutions of nonlinear elliptic equations in R^N, in Math. Anal. Appl. part A, Advances in Math. Suppl. Studies 7A (Academic Press, New York, London, 1981), pp. 369-402.
- [9] T.S. Hsu and H.L. Lin, 'Multiple solutions of semilinear elliptic equations with Neumann boundary conditions', (preprint).
- [10] M.K. Kwong, 'Uniqueness of positive solutions of $\Delta u u + u^p = 0$ in \mathbb{R}^N ', Arch. Rational Mech. Anal. 105 (1989), 234-266.
- [11] P.L. Lions, 'The concentration-compactness principle in the calculus of variations. The locally compact case. I and II', Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-145 and 223-283.
- [12] P.L. Lions, 'Solutions of Hartree-Fock equations for Coulomb systems', Math. Phys. 109 (1987), 33-97.
- [13] P.L. Lions, On positive solutions of semilinear elliptic equations in unbounded domains, Math. Sci. Res. Inst. Publ. 13 (Springer-Verlarg, Berlin, 1988).
- [14] P.L. Lions, Lagrange multipliers, Morse indices and compactness, Progr. Nonlinear Differential Equations Appl. (Birkhaüser Boston, Boston, 1990).
- [15] S.Y. Tzeng and H.C. Wang, 'On semilinear elliptic problems in exterior domains', Dynam. Contin. Discrete Impuls. Systems 5 (1999), 237-250.
- [16] X.P. Zhu, 'Multiple entire solutions of a semilinear elliptic equation', Nonlinear Anal. 12 (1988), 1297-1316.

Center for General Education Chang Gung University Kwei-San, Tao-Yuan 333, Taiwan e-mail: hlin@mail.cgu.edu.tw