On product-preserving Kan extensions

Francis Borceux and B.J. Day

Abstract

In this article we examine the problem of when a left Kan extension of a finite-product-preserving functor is finiteproduct preserving. This extension property is of significance in the development of finitary universal algebra in a closed category, details of which will appear elsewhere. We give a list of closed categories with the required extension property.

Introduction

The aim of this article is to introduce and discuss a colimit-limit commutativity property called axiom π. If V is a symmetric monoidal closed category, then a V-category \mathcal{C} is said to satisfy axiom π (relative to V) if the left Kan V-extension of any finite-V-productpreserving functor into C again preserves finite V-products. One basic use of this extension property is in the construction of free-algebra functors and, more generally, left adjoints to algebraic functors in finitary universal algebra; details of this will appear elsewhere (see Borceux and Day [1]).

In Section 1 we discuss various equivalent forms of axiom π with a view to using it in finitary universal algebra. In Section 2 we describe some basic constructions which inherit axiom π. In Section 3 we show that cartesian closed categories satisfy axiom π, as do closed categories which are finitarily algebraic over a cartesian closed category. We also see that certain closed functor categories satisfy axiom π.

Throughout the article the symbol V stands for a symmetric monoidal closed category $V=(U, I, \otimes, \ldots)$. Most of the other notations are
standard (see Mac Lane [8], and Eilenberg and Kelly [5]), or are explained in the text.

1. U-cartesian products and Kan extensions

A V-category is said to have finite V-products if it has finite products and they are preserved by the V-representable functors (see Day and Kelly [4], §2).

Let A and B be two V-categories. Their product in the category of V-categories is denoted $A \times B$. It is defined by:
(1) $\circ \mathrm{obj}(A \times B)=o b j(A) \times o b j(B)$;
(2) $(A \times B)\left((A, B),\left(A^{\prime}, B^{\prime}\right)\right)=A\left(A, A^{\prime}\right) \times B\left(B, B^{\prime}\right)$;
(3) $j_{(A, B)}=\left(j_{A}, j_{B}\right)$;
(4) $M_{(A, B)\left(A^{\prime \prime}, B^{\prime \prime}\right)}^{\left(A^{\prime}, B^{\prime}\right)}=\left\{M_{B B^{\prime \prime}}^{B^{\prime}} \times M_{A A^{\prime \prime}}^{A^{\prime}}\right) \cdot\left(p_{2} \otimes p_{2}, p_{1} \otimes p_{1}\right)$, where p_{i} denotes the i-th projection of a product.

PROPOSITION 1.1. Let A be a V-category. The diagonal functor $\Delta: A \rightarrow A \times A$ is a V-functor.

PROPOSITION 1.2. Let A be a V-category with finite V-products. The cartesian product $\times: A \times A \rightarrow A$ is a V-functor.

The verifications are straightforward. //
We now have the following result dealing with mean tensor products in the sense of Borceux and Kelly [2]; we frequently use the contraction notation $H A \circ G A$ in place of $H * G$.

THEOREM 1.3. Let A be a V-category with finite V-products, $H, H^{\prime}: A^{O P} \rightarrow V$ be two V-functors, and $G: A \rightarrow C$ be a V-functor. Then the following isomorphism holds as soon as mean tensor products exist:

$$
\left(H(-) \times H^{\prime}(-)\right) * G(-) \cong\left(H(-) \times H^{\prime}(=)\right) * G(-\times \Rightarrow) .
$$

In alternative notation:

$$
\left(H A \times H^{\prime} A\right) \circ G A \cong\left(H A^{\prime} \times H^{\prime} A^{\prime \prime}\right) \circ G\left(A^{\prime} \times A^{\prime \prime}\right) .
$$

Proof. We have the following situation:

$$
\begin{gathered}
H(-) \times H^{\prime}(=): A^{\mathrm{op}} \times A^{\mathrm{op} \xrightarrow{H \times H^{\prime}} v \times V \xrightarrow{\times} V} \begin{array}{c}
H(-) \times H^{\prime}(-): A^{\mathrm{op}} \xrightarrow{\left(H, H^{\prime}\right)} v \times V \xrightarrow{\times} V \\
G(-\times=): A \times A \xrightarrow{\times} A \xrightarrow{G} C .
\end{array}, .
\end{gathered}
$$

For brevity we write $T_{1}=\left(H A \times H^{\prime} A\right) \circ G A$ and
$T_{2}=\left(H A^{\prime} \times H^{\prime} A^{\prime \prime}\right) \circ G\left(A^{\prime} \times A^{\prime \prime}\right)$. Now T_{1} and T_{2} are defined by the fact that there exist V-natural transformations:

$$
\begin{gathered}
\lambda_{A}: H A \times H^{\prime} A \rightarrow \mathcal{C}\left(G A, T_{1}\right) \\
\rho_{A^{\prime} A^{\prime \prime}}: H A^{\prime} \times H^{\prime} A^{\prime \prime} \rightarrow \mathcal{C}\left(G\left(A^{\prime} \times A^{\prime \prime}\right), T_{2}\right)
\end{gathered}
$$

generating V-natural isomorphisms:

$$
\begin{aligned}
& {\left[X, C\left(T_{1}, C\right)\right] \cong \int_{A}\left[H A \times H^{\prime} A,[X, C(G A, C)]\right]} \\
& {\left[X, C\left(T_{2}, C\right)\right] \cong \int_{A^{\prime} A^{\prime \prime}}\left[H A^{\prime} \times H A^{\prime \prime},\left[X, C\left(G\left(A^{\prime} \times A^{\prime \prime}\right), C\right)\right]\right]}
\end{aligned}
$$

for all $X \in V$ and $C \in C$. But T_{1} and T_{2} are isomorphic as soon as the two sets of V-natural transformations are isomorphic. This last correspondence between

$$
\alpha_{A}: H A \times H^{\prime} A \rightarrow[X, \mathcal{C}(G A, C)]
$$

and

$$
B_{A^{\prime} A^{\prime \prime}}: H A^{\prime} \times H^{\prime} A^{\prime \prime} \rightarrow\left[X, C\left(G\left(A \times A^{\prime}\right), C\right)\right]
$$

is given by $B_{A^{\prime}} A^{\prime \prime}=\alpha_{A^{\prime} \times A^{\prime \prime}} \cdot\left(H p_{1} \times H^{\prime} P_{2}\right)$ and $\alpha_{A}=[1, C(G . \Delta, 1)] \cdot \beta_{A A}$ where P_{i} denotes projection from a product. //

DEFINITION 1.4. Let C be a V-category with finite U-products. Consider the following situation in U-cat : functors $H, H^{\prime}: A^{\circ p} \rightarrow V$ and $G: A \rightarrow C$ where A is small and has finite V-products preserved by G. The category C is said to satisfy axiom π, or to be $\pi(V)$, if, in any such situation, $H A \circ G A$ and $H^{\prime} A^{\prime} \circ G A^{\prime}$ exist and the canonical transformation:

$$
\left(H A \times H^{\prime} A^{\prime}\right) \circ\left(G A \times G A^{\prime}\right) \rightarrow(H A \circ G A) \times\left(H^{\prime} A^{\prime} \circ G A^{\prime}\right)
$$

is an isomorphism.
We note that this canonical transformation is obtained in the following way. Consider the V-natural transformation

$$
H A \times H^{\prime} A^{\prime} \xrightarrow{P_{1}} H A \xrightarrow{\alpha_{A}} C(G A, H A \circ G A) \xrightarrow{C\left(P_{1}, 1\right)} C(G A \times G A, H A \circ G A),
$$

where α_{A} is the canonical transformation defining $H A \circ G A$. This U-natural transformation gives rise to the factorisation

$$
\left(H A \times H^{\prime} A^{\prime}\right) \circ\left(G A \times G A^{\prime}\right) \rightarrow H A \circ G A,
$$

whic'i is the first component in the transformation we are looking for.
THEOREM 1.5. Let \mathcal{C} be a V-category with finite V-products and small V-colimits. The following conditions are equivalent:
(i) C is $\pi(V)$;
(ii) in the situation of Definition 1.4 the canonical transformation

$$
\left(H A \times H^{\prime} A\right) \circ G A \rightarrow\left(H A^{\prime} \circ G A^{\prime}\right) \times\left(H^{\prime} A^{\prime \prime} \circ G A^{\prime \prime}\right)
$$

is an isomorphism;
(iii) for any V-category B, any small V-category A with finite V-products, any V-functor $M: A \rightarrow B$, and any finite-V-product preserving V-functor $G: A \rightarrow C$, the left Kan V-extension of G along M exists pointwise and preserves finite V-products.

Proof. The equivalence of (i) and ($i i$) follows from Theorem 1.3. Also (i) implies (iii) because, by Theorem 1.3, if $B \times B^{\prime}$ is a V-product in B then

$$
\begin{aligned}
\operatorname{lan} G\left(B \times B^{\prime}\right) & \cong B\left(M A, B \times B^{\prime}\right) \circ G A \\
& \cong\left(B(M A, B) \times B\left(M A, B^{\prime}\right)\right) \circ G A \\
& \cong\left(B\left(M A^{\prime}, B\right) \times B\left(M A^{\prime \prime}, B^{\prime}\right)\right) \circ G\left(A^{\prime} \times A^{\prime \prime}\right) \\
& \cong\left(B\left(M A^{\prime}, B\right) \times B\left(M A^{\prime \prime}, B^{\prime}\right)\right) \circ\left(G A^{\prime} \times G A^{\prime \prime}\right),
\end{aligned}
$$

while

$$
\operatorname{lan} G(B) \times \operatorname{lan} G\left(B^{\prime}\right) \cong\left(B\left(M A^{\prime}, B\right) \circ G A^{\prime}\right) \times\left(B\left(M A^{\prime \prime}, B^{\prime}\right) \circ G A^{\prime \prime}\right)
$$

Finally ($\mathrm{i} i \mathrm{i}$) implies (i i) on taking $M: A \rightarrow B$ to be the Yoneda embedding $Y: A \rightarrow\left[A^{\circ p}, V\right]$. $/ /$
2. Hereditary properties of axiom π

PROPOSITION 2.1. If C is a V-category with finite V-products and small V-colimits then, for any small V-category $A,[A, C]$ is $\pi(V)$ if C is $\pi(V)$. //

Similarly, any product of $\pi(V)$ categories is $\pi(V)$.
PROPOSITION 2.2. If C is a V-category with finite V-products and small V-colimits and $T=(T, \mu, \eta$) is a U-monad on C which preserves U-coequalisers of reflective pairs of morphisms and finite U-products, then C^{\top} is $\pi(V)$ if C is $\pi(V)$.

Proof. By a computation analogous to that for ordinary colimits (see Linton [7]), the mean tensor product $H A \circ G A$ in \mathcal{C}^{\top} is computed as the V-coequaliser in C^{\top} of the reflective pair

where $\kappa: H A \circ T G A \rightarrow T(H A \circ G A)$ is the canonical comparison transformation for mean tensor products in C; we omit the underlyingobject functor $\mathcal{C}^{\top} \rightarrow \mathcal{C}$ from the notation. The result now follows from examination of the diagram:

3. Examples

EXAMPLE 3.1. If V is a cartesian closed category, then it is $\pi(V)$ because the cartesian product preserves mean tensor products:

$$
\begin{aligned}
(H A \circ G A) \times\left(H^{\prime} A^{\prime} \circ G A^{\prime}\right) & \cong H A \circ\left(G A \times\left(H^{\prime} A^{\prime} \circ G A^{\prime}\right)\right) \\
& \cong H A \circ\left(H^{\prime} A^{\prime} \circ\left(G A \times G A^{\prime}\right)\right) \\
& \cong\left(H A \times H^{\prime} A^{\prime}\right) \circ\left(G A \times G A^{\prime}\right) .
\end{aligned}
$$

EXAMPLE 3.2. If V is cartesian closed and has small limits and colimits, and if T is a finitary commutative U-theory (see Day [3], Example 4.3), then the monoidal closed category $\omega=T^{b}$ of T-algebras in v is $\pi(W)$. In fact we shall establish a stronger result.

We first suppose that V is a given symmetric monoidal closed "base" category and that all categorical algebra is relative to this V. Let W and W^{\prime} be symmetric monoidal closed categories and let $U: W \rightarrow W^{\prime}$ be a symmetric monoidal closed functor such that $\hat{U}: U_{\star} W \rightarrow W^{\prime}$ has a left W^{\prime}-adjoint F; thus $U_{*} W$ is W^{\prime}-tensored by Kelly [6], 5.l. Consider W-functors $H: A^{O p} \rightarrow W$ and $G: A \rightarrow W$. These give W^{\prime}-functors $U_{*} H: U_{*} A^{O P} \rightarrow U_{*} W$ and $U_{*} G: U_{*} A \rightarrow U_{*} W$. We then have

$$
U G A \circ H A=\int^{U_{*} A} U G A \circ H A=\int^{U_{*} A} F U G A \otimes H A
$$

in $U_{*} W$.
LEMMA 3.2.1. Suppose $U: W \rightarrow W^{\prime}$ is a faithful symmetric monoidal closed functor. Let

$$
S^{\prime}: U_{*} A^{\mathrm{op}} \otimes U_{*} A \xrightarrow{\tilde{U}_{*}} U_{*}\left(A^{\mathrm{op}} \otimes A\right) \xrightarrow{U_{*} S} U_{*} W .
$$

Then $\int^{A} S(A A) \cong \int^{U_{\star} A} S^{\prime}(A A)$, one coend existing if and only if the other does. //

Now consider the composite

$$
\int^{U_{\star} A} H A \otimes F U G A \xrightarrow{\stackrel{-}{l \otimes E}} \int^{U_{\star} A} H A \otimes G A \xrightarrow{\kappa} \int^{A} H A \otimes C A
$$

in the original situation.
PROPOSITION 3.2.2. If U preserves $\int^{U_{\star} A} U G A \circ H A$ and U reflects isomorphisms, then $1 \otimes \varepsilon$ and k are isomorphisms.

Proof. The map k is an isomorphism by Lemma 3.2.1 and faithfulness of U. Moreover $H A \cong \int^{A} \mathrm{~A}(A B) \otimes H B \cong \int^{U_{\star} A} \mathrm{~A}(A B) \otimes H B \quad$ by the ω-representation theorem. So it suffices to consider H representable. But $U\left\{\int^{U_{\star} A} G U A \circ A(A B)\right\} \cong \int^{U_{\star} A} U G A \otimes U A(A B) \cong U G B$ by the W'-representation theorem, as required. //

COROLLARY 3.2.3. If W^{\prime} is $\pi\left(W^{\prime}\right)$ and U reflects isomorphisms and preserves $\int^{U_{\star} A} U G A \circ H A$ whenever G preserves finite V-products, then W is $\pi(w)$. //

In order to establish our original assertion regarding $\omega=T^{b}$ we let V be $\pi(V)$ and let P be a small V-category together with a selected set Λ of finite V-products. Suppose $W=[P, V]_{\Lambda}$ has a symmetric monoidal closed structure, denoting the basic functor by $U: W \rightarrow V$.

Consider W-functors $H: A^{O p} \rightarrow W$ and $G: A \rightarrow W$ where A has finite W-products and they are preserved by G. We form $\int^{U_{\star} A} H A(B) \otimes U G A$ in V for each $B \quad P$ and obtain a functor of B; because V is $\pi(V)$, this functor lies in W, by Theorem 1.5 (ii). It is clearly $U G A \circ H A=\int^{U_{*}^{A}} U G A \circ H A$ in $U_{*} W$. It is also $\int^{U_{*}^{A}} H A \otimes F U G A$ in $U_{*} W$. But, by construction, it is $U G A \circ H A$ in $[P, V]$ and so is preserved by U if U has a right V-adjoint. Thus, if U restricted to W reflects isomorphisms then W is $\pi(W)$ by the preceding corollary.

EXAMPLE 3.3. The preceding example raises the problem of when a closed functor category of the form $W=[P, V]$ is $\pi(W)$. The authors have not yet obtained a general solution to this problem although there are simple cases of interest.

PROPOSITION 3.3.1. If V is $\pi(V)$ and X is a discrete set then $\omega=v^{X}$ is $\pi(w)$.

Proof. Each W-category A gives rise to a family $\left\{A_{x} ; x \in X\right\}$ of V-categories with obj $A_{x}=\operatorname{obj} A$ and $A_{x}\left(A A^{\prime}\right)=A\left(A A^{\prime}\right){ }_{x}$. Similarly, each W-functor $H: A \rightarrow B$ yields a family of V-functors $H_{x}: A_{x} \rightarrow B_{x}$. Moreover,

$$
\left.\int^{A} H A \otimes G A=\iint^{A} H_{x} A \otimes G_{x} A\right)_{x \in X}
$$

from which it follows that W is $\pi(W)$ if V is $\pi(V)$. //
Another case which admits a simple solution is that in which P is comonoidal (see Day [3]) and $J \cong P(I,-)$. If the ground functor $U:[P, V] \rightarrow V$ is V-faithful, then $W=[P, V]$ is $\pi(W)$ if V is $\pi(V)$.

EXAMPLE 3.4. The closed category W of Banach spaces with the greatest cross-norm tensor product is $\pi(W)$. The proof of this fact will appear elsewhere.

References

[1] Francis Borceux and Brian Day, "Universal algebra in a closed category", J. Pure Appl. Algebra (to appear).
[2] Francis Borceux and G.M. Kelly, "A notion of limit for enriched categories", BulZ. Austral. Math. Soc. 12 (1975), 49-72.
[3] Brian Day, "On closed categories of functors", Reports of the Midwest Category Seminar IV, 1-38 (Lecture Notes in Mathematics, 137. Springer-Verlag, Berlin, Heidelberg, New York, 1970).
[4] B.J. Day and G.M. Kelly, "Enriched functor categories", Reports of the Micwest Category Seminar III, 178-191 (Lecture Notes in Mathematics, 106. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
[5] Samuel Eilenberg and G. Max Kelly, "Closed categories", Proc. Conf. Categomical AZgebra, La Jolla, California, 1965, 421-562 (Springer-Verlag, Berlin, Heidelberg, New York, 1966).
[6] G.M. Kelly, "Adjunction for enriched categories", Reports of the Midwest Category Seminar III, 166-177 (Lecture Notes in Mathematics, 106. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
[7] F.E.J. Linton, "Coequalisers in categories of algebras", Seminar on triples and categomical homology theory, 75-90 (Lecture Notes in Mathematics, 80. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
[8] S. Mac Lane, Categories for the working mathematician (Graduate Texts in Mathematics, 5. Springer-Verlag, New York, Heidelberg, Berlin, 1971).

Institut de Mathématique pure et appliquée, Université Catholique de Louvain,

Belgium;
Department of Pure Mathematics,
University of Sydney,
Sydney, New South Wales.

