BULL. AUSTRAL. MATH. SOC. VOL. 17 (1977), 247-255.

On product-preserving Kan extensions

Francis Borceux and B.J. Day

In this article we examine the problem of when a left Kan extension of a finite-product-preserving functor is finiteproduct preserving. This extension property is of significance in the development of finitary universal algebra in a closed category, details of which will appear elsewhere. We give a list of closed categories with the required extension property.

Introduction

The aim of this article is to introduce and discuss a colimit-limit commutativity property called axiom π . If V is a symmetric monoidal closed category, then a V-category C is said to satisfy axiom π (relative to V) if the left Kan V-extension of any finite-V-productpreserving functor into C again preserves finite V-products. One basic use of this extension property is in the construction of free-algebra functors and, more generally, left adjoints to algebraic functors in finitary universal algebra; details of this will appear elsewhere (see Borceux and Day [1]).

In Section 1 we discuss various equivalent forms of axiom π with a view to using it in finitary universal algebra. In Section 2 we describe some basic constructions which inherit axiom π . In Section 3 we show that cartesian closed categories satisfy axiom π , as do closed categories which are finitarily algebraic over a cartesian closed category. We also see that certain closed functor categories satisfy axiom π .

Throughout the article the symbol V stands for a symmetric monoidal closed category $V = (V, I, \otimes, ...)$. Most of the other notations are

Received 5 May 1977.

standard (see Mac Lane [8], and Eilenberg and Kelly [5]), or are explained in the text.

1. V-cartesian products and Kan extensions

A V-category is said to have finite V-products if it has finite products and they are preserved by the V-representable functors (see Day and Kelly [4], 2).

Let A and B be two V-categories. Their product in the category of V-categories is denoted $A \times B$. It is defined by:

(1)
$$obj(A \times B) = obj(A) \times obj(B)$$
;

- (2) $(A \times B)((A, B), (A', B')) = A(A, A') \times B(B, B');$
- (3) $j_{(A,B)} = (j_A, j_B)$;
- (4) $M_{(A,B)(A'',B')}^{(A'',B'')} = \left(M_{BB''}^{B'} \times M_{AA''}^{A'}\right) \cdot \left(p_2 \otimes p_2, p_1 \otimes p_1\right)$, where p_i denotes the *i*-th projection of a product.

PROPOSITION 1.1. Let A be a V-category. The diagonal functor $\Delta : A \rightarrow A \times A$ is a V-functor.

PROPOSITION 1.2. Let A be a V-category with finite V-products. The cartesian product $\times : A \times A \rightarrow A$ is a V-functor.

The verifications are straightforward. //

We now have the following result dealing with mean tensor products in the sense of Borceux and Kelly [2]; we frequently use the contraction notation $HA \circ GA$ in place of H * G.

THEOREM 1.3. Let A be a V-category with finite V-products, H, H' : $A^{OP} \rightarrow V$ be two V-functors, and G : $A \rightarrow C$ be a V-functor. Then the following isomorphism holds as soon as mean tensor products exist:

$$(H(-) \times H'(-)) * G(-) \cong (H(-) \times H'(-)) * G(- \times -)$$
.

In alternative notation:

$$(HA \times H'A) \circ GA \cong (HA' \times H'A'') \circ G(A' \times A'')$$
.

Proof. We have the following situation:

248

$$H(-) \times H'(-) : A^{\operatorname{op}} \times A^{\operatorname{op}} \xrightarrow{H \times H'} V \times V \xrightarrow{\times} V ,$$

$$H(-) \times H'(-) : A^{\operatorname{op}} \xrightarrow{(H,H')} V \times V \xrightarrow{\times} V ,$$

$$G(- \times =) : A \times A \xrightarrow{\times} A \xrightarrow{G} C .$$

For brevity we write $T_1 = (HA \times H'A) \circ GA$ and $T_2 = (HA' \times H'A'') \circ G(A' \times A'')$. Now T_1 and T_2 are defined by the fact that there exist V-natural transformations:

$$\begin{split} \lambda_{A} &: HA \times H'A \rightarrow C\left(GA, T_{1}\right) , \\ \rho_{A'A''} &: HA' \times H'A'' \rightarrow C\left(G(A' \times A''), T_{2}\right) \end{split}$$

generating V-natural isomorphisms:

$$\begin{bmatrix} X, C(T_1, C) \end{bmatrix} \cong \int_A \begin{bmatrix} HA \times H'A, [X, C(GA, C)] \end{bmatrix},$$
$$\begin{bmatrix} X, C(T_2, C) \end{bmatrix} \cong \int_{A'A''} \begin{bmatrix} HA' \times HA'', [X, C(G(A' \times A''), C)] \end{bmatrix},$$

for all $X \in V$ and $C \in C$. But T_1 and T_2 are isomorphic as soon as the two *sets* of V-natural transformations are isomorphic. This last correspondence between

$$\alpha_A : HA \times H'A \rightarrow [X, C(GA, C)]$$

and

$$\beta_{A'A''} : HA' \times H'A'' \rightarrow [X, C(G(A \times A'), C)]$$

is given by $\beta_{A'A''} = \alpha_{A' \times A''} \cdot (\mu_1 \times \mu_2)$ and $\alpha_A = [1, C(G.\Delta, 1)] \cdot \beta_{AA}$ where p_i denotes projection from a product. //

DEFINITION 1.4. Let C be a V-category with finite V-products. Consider the following situation in V-cat : functors $H, H' : A^{OP} \rightarrow V$ and $G : A \rightarrow C$ where A is small and has finite V-products preserved by G. The category C is said to satisfy *axiom* π , or to be $\pi(V)$, if, in any such situation, $HA \circ GA$ and $H'A' \circ GA'$ exist and the canonical transformation:

$$(HA \times H'A') \circ (GA \times GA') \rightarrow (HA \circ GA) \times (H'A' \circ GA')$$

is an isomorphism.

We note that this canonical transformation is obtained in the following way. Consider the V-natural transformation

 $HA \times H'A' \xrightarrow{P_{1}} HA \xrightarrow{\alpha_{A}} C(GA, HA \circ GA) \xrightarrow{C(P_{1}, 1)} C(GA \times GA', HA \circ GA),$

where α_A is the canonical transformation defining HA \circ GA . This V-natural transformation gives rise to the factorisation

 $(HA \times H'A') \circ (GA \times GA') \rightarrow HA \circ GA$,

which is the first component in the transformation we are looking for.

THEOREM 1.5. Let C be a V-category with finite V-products and small V-colimits. The following conditions are equivalent:

- (i) C is $\pi(V)$;
- (ii) in the situation of Definition 1.4 the canonical transformation

 $(HA \times H'A) \circ GA \rightarrow (HA' \circ GA') \times (H'A'' \circ GA'')$

is an isomorphism;

(iii) for any V-category B, any small V-category A with finite V-products, any V-functor $M : A \rightarrow B$, and any finite-V-product preserving V-functor $G : A \rightarrow C$, the left Kan V-extension of G along M exists pointwise and preserves finite V-products.

Proof. The equivalence of (i) and (ii) follows from Theorem 1.3. Also (i) implies (iii) because, by Theorem 1.3, if $B \times B'$ is a V-product in **B** then

 $\begin{aligned} & \text{lan } G(B \times B') \cong \mathcal{B}(MA, B \times B') \circ GA \\ & \cong (\mathcal{B}(MA, B) \times \mathcal{B}(MA, B')) \circ GA \\ & \cong (\mathcal{B}(MA', B) \times \mathcal{B}(MA'', B')) \circ G(A' \times A'') \\ & \cong (\mathcal{B}(MA', B) \times \mathcal{B}(MA'', B')) \circ (GA' \times GA'') , \end{aligned}$

while

$$\operatorname{lan} G(B) \times \operatorname{lan} G(B') \cong (\mathcal{B}(MA', B) \circ GA') \times (\mathcal{B}(MA'', B') \circ GA'') .$$

250

Finally (*iii*) implies (*ii*) on taking $M : A \rightarrow B$ to be the Yoneda embedding $Y : A \rightarrow [A^{\text{op}}, V]$. //

2. Hereditary properties of axiom π

PROPOSITION 2.1. If C is a V-category with finite V-products and small V-colimits then, for any small V-category A , [A, C] is $\pi(V)$ if C is $\pi(V)$. //

Similarly, any product of $\pi(V)$ categories is $\pi(V)$.

PROPOSITION 2.2. If C is a V-category with finite V-products and small V-colimits and $T = (T, \mu, \eta)$ is a V-monad on C which preserves V-coequalisers of reflective pairs of morphisms and finite V-products, then C^{T} is $\pi(V)$ if C is $\pi(V)$.

Proof. By a computation analogous to that for ordinary colimits (see Linton [7]), the mean tensor product $HA \circ GA$ in C^{T} is computed as the *V*-coequaliser in C^{T} of the reflective pair

where $\kappa : HA \circ TGA \rightarrow T(HA \circ GA)$ is the canonical comparison transformation for mean tensor products in C; we omit the underlyingobject functor $C^{\top} \rightarrow C$ from the notation. The result now follows from examination of the diagram:

3. Examples

EXAMPLE 3.1. If V is a cartesian closed category, then it is $\pi(V)$ because the cartesian product preserves mean tensor products:

$$(HA \circ GA) \times (H'A' \circ GA') \cong HA \circ (GA \times (H'A' \circ GA'))$$
$$\cong HA \circ (H'A' \circ (GA \times GA'))$$
$$\cong (HA \times H'A') \circ (GA \times GA')$$

EXAMPLE 3.2. If V is cartesian closed and has small limits and colimits, and if T is a finitary commutative V-theory (see Day [3], Example 4.3), then the monoidal closed category $W = T^{b}$ of T-algebras in V is $\pi(W)$. In fact we shall establish a stronger result.

We first suppose that V is a given symmetric monoidal closed "base" category and that all categorical algebra is *relative* to this V. Let W and W' be symmetric monoidal closed categories and let $U: W \rightarrow W'$ be a symmetric monoidal closed functor such that $\hat{U}: U_*W \rightarrow W'$ has a left W'-adjoint F; thus U_*W is W'-tensored by Kelly [6], 5.1. Consider W-functors $H: A^{OP} \rightarrow W$ and $G: A \rightarrow W$. These give W'-functors $U_*H: U_*A^{OP} \rightarrow U_*W$ and $U_*G: U_*A \rightarrow U_*W$. We then have

$$UGA \circ HA = \int_{U}^{U_{*}A} UGA \circ HA = \int_{U}^{U_{*}A} FUGA \otimes HA$$

in $U_* W$.

LEMMA 3.2.1. Suppose $U: W \rightarrow W'$ is a faithful symmetric monoidal closed functor. Let

$$S' : U_* A^{\mathrm{op}} \otimes U_* A \xrightarrow{\overline{U}_*} U_* (A^{\mathrm{op}} \otimes A) \xrightarrow{U_* S} U_* W .$$

Then $\int_{-\infty}^{A} S(AA) \cong \int_{-\infty}^{U_{*}A} S'(AA)$, one coend existing if and only if the other does. //

Now consider the composite

$$\int_{-\infty}^{U_*A} HA \otimes FUGA \xrightarrow{\int_{-\infty}^{1} I\otimes \varepsilon} \int_{-\infty}^{U_*A} HA \otimes GA \xrightarrow{\kappa} \int_{-\infty}^{A} HA \otimes GA$$

in the original situation.

PROPOSITION 3.2.2. If U preserves $\int_{u_*}^{U_*A} UGA \circ HA$ and U reflects isomorphisms, then $1 \otimes \varepsilon$ and κ are isomorphisms.

Proof. The map κ is an isomorphism by Lemma 3.2.1 and faithfulness of U. Moreover $HA \cong \int^{A} A(AB) \otimes HB \cong \int^{U_{\star}A} A(AB) \otimes HB$ by the W-representation theorem. So it suffices to consider H representable. But $U\left(\int^{U_{\star}A} GUA \circ A(AB)\right) \cong \int^{U_{\star}A} UGA \otimes UA(AB) \cong UGB$ by the W'-representation theorem, as required. //

COROLLARY 3.2.3. If W' is $\pi(W')$ and U reflects isomorphisms and preserves $\int_{-}^{U_*A} UGA \circ HA$ whenever G preserves finite V-products, then W is $\pi(W)$. //

In order to establish our original assertion regarding $\mathcal{W} = T^{b}$ we let V be $\pi(V)$ and let P be a small V-category together with a selected set Λ of finite V-products. Suppose $\mathcal{W} = [P, V]_{\Lambda}$ has a symmetric monoidal closed structure, denoting the basic functor by $U: \mathcal{W} \rightarrow V$.

Consider W-functors $H: A^{op} \to W$ and $G: A \to W$ where A has finite W-products and they are preserved by G. We form $\int^{U_*A} HA(B) \otimes UGA$ in Vfor each B P and obtain a functor of B; because V is $\pi(V)$, this functor lies in W, by Theorem 1.5 (*ii*). It is clearly

 $UGA \circ HA = \int^{U_{\star}A} UGA \circ HA$ in $U_{\star}W$. It is also $\int^{U_{\star}A} HA \otimes FUGA$ in $U_{\star}W$. But, by construction, it is $UGA \circ HA$ in [P, V] and so is preserved by U if U has a right V-adjoint. Thus, if U restricted to W reflects isomorphisms then W is $\pi(W)$ by the preceding corollary.

EXAMPLE 3.3. The preceding example raises the problem of when a closed functor category of the form W = [P, V] is $\pi(W)$. The authors have not yet obtained a general solution to this problem although there are simple cases of interest.

PROPOSITION 3.3.1. If V is $\pi(V)$ and X is a discrete set then $W = V^X$ is $\pi(W)$.

Proof. Each W-category A gives rise to a family $\{A_x; x \in X\}$ of V-categories with obj $A_x = obj A$ and $A_x(AA') = A(AA')_x$. Similarly, each W-functor $H : A \rightarrow B$ yields a family of V-functors $H_x : A_x \rightarrow B_x$. Moreover,

$$\int_{-\infty}^{A} HA \otimes GA = \left(\int_{-\infty}^{A} H_{x}A \otimes G_{x}A\right)_{x \in X},$$

from which it follows that W is $\pi(W)$ if V is $\pi(V)$. //

Another case which admits a simple solution is that in which P is comonoidal (see Day [3]) and $J \cong P(I, -)$. If the ground functor $U : [P, V] \rightarrow V$ is V-faithful, then W = [P, V] is $\pi(W)$ if V is $\pi(V)$.

EXAMPLE 3.4. The closed category W of Banach spaces with the greatest cross-norm tensor product is $\pi(W)$. The proof of this fact will appear elsewhere.

References

- [1] Francis Borceux and Brian Day, "Universal algebra in a closed category", J. Pure Appl. Algebra (to appear).
- [2] Francis Borceux and G.M. Kelly, "A notion of limit for enriched categories", Bull. Austral. Math. Soc. 12 (1975), 49-72.
- [3] Brian Day, "On closed categories of functors", Reports of the Midwest Category Seminar IV, 1-38 (Lecture Notes in Mathematics, 137. Springer-Verlag, Berlin, Heidelberg, New York, 1970).
- [4] B.J. Day and G.M. Kelly, "Enriched functor categories", Reports of the Midwest Category Seminar III, 178-191 (Lecture Notes in Mathematics, 106. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
- [5] Samuel Eilenberg and G. Max Kelly, "Closed categories", Proc. Conf. Categorical Algebra, La Jolla, California, 1965, 421-562 (Springer-Verlag, Berlin, Heidelberg, New York, 1966).
- [6] G.M. Kelly, "Adjunction for enriched categories", Reports of the Midusest Category Seminar III, 166-177 (Lecture Notes in Mathematics, 106. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
- [7] F.E.J. Linton, "Coequalisers in categories of algebras", Seminar on triples and categorical homology theory, 75-90 (Lecture Notes in Mathematics, 80. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
- [8] S. Mac Lane, Categories for the working mathematician (Graduate Texts in Mathematics, 5. Springer-Verlag, New York, Heidelberg, Berlin, 1971).

Institut de Mathématique pure et appliquée, Université Catholique de Louvain, Belgium; Department of Pure Mathematics, University of Sydney, Sydney, New South Wales.