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A HOMOTOPICAL CONNER-RAYMOND THEOREM 
AND A QUESTION OF GOTTLIEB 

BY 

JOHN OPREA 

ABSTRACT. A homotopy theoretic version is given of the following 
result of Conner and Raymond: If the circle acts on a space so that the 
orbit map induces an injection in homology, then the space fibres over the 
circle with finite structure group. This homotopical analogue is related to 
recent results pertaining to the effect of the fundamental group's structure 
on the Euler characteristic. It is also used in the construction of a compact, 
simple 7-manifold with trivial Gottlieb group which, together with an 
infinite dimensional example of Ganea, answers a question of Gottlieb. 

Introduction. It was proved by D. Gottlieb [4] that, if the fundamental group 
of a finite aspherical polyhedron has nontrivial center, then the Euler characteristic 
of the polyhedron vanishes. The algebraic approach to Gottlieb's Theorem (due to 
Stallings [17]) in terms of finite projective complexes over group rings has led to 
recent generalizations by Rosset [16] and Eckmann [2]. In particular, Eckmann proves 
that, for a finite connected CW complex, if there exists a nontrivial torsionfree normal 
abelian subgroup of the fundamental group which acts nilpotently on the homology 
of the universal cover (by covering transformations), then the Euler characteristic 
vanishes. 

In this paper we shall try to view such a situation in a fashion more akin to 
Gottlieb's topological outlook. More specifically, Corollary 7 is a particular case of 
Eckmann's theorem where the torsionfree normal abelian subgroup is generated by a 
Gottlieb element (§1) and the vanishing of the Euler characteristic is a "geometric" 
consequence. The motivation for the approach of Theorem 6 is a result of Conner and 
Raymond on the effect of the orbit map on the structure of an Sl -space. Indeed, the 
Conner-Raymond theorem itself may be derived from Theorem 6. 

Finally, in [4], Gottlieb asked whether the Gottlieb group (see §1 for a definition) 
must necessarily be nontrivial in a simple space with nontrivial fundamental group. 
Ganea provided a negative answer to this question by constructing an infinite dimen
sional counterexample. The question remained of whether a finite counterexample 
could be found. In §4 such a space is constructed and, with the aid of Theorem 6, 
shown to be the desired counterexample. 
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220 JOHN OPREA [June 

Throughout this paper, spaces will be connected and of the homotopy type of CW 
complexes. Hence, weak equivalences are homotopy equivalences and basepoints are 
nondegenerate. 

After this paper was submitted, it was learned that Dan Gottlieb had independently 
discovered the torus splitting of Theorem 10 together with different and striking ap
plications. His paper will appear in the Israel Journal of Mathematics [7]. In addition, 
Wolfgang Luck has proved a splitting theorem equivalent to theorem 6 case 1 [11]. His 
condition involves a splitting at the fundamental group level, whereas ours involves a 
splitting at the homology level. 

1. Preliminaries on the Gottlieb group. In order to make this paper somewhat 
self-contained, in this section we recall basic definitions and properties of the Gottlieb 
group. We provide straightforward proofs of several properties essential to our main 
result, (also, see [4].) 

DEFINITION. The Gottlieb Group of a space X, denoted G(X), consists of all 
a G TT\(X) such that there is an associated map A : Sl x X —• X and a homo
topy commutative diagram, 

SlxX - i + X 

(*) Î S 
/ aVlx 

slvx 

REMARK. (1) The types of spaces we are considering allow us, when convenient, 
to take the diagram above to be strictly commutative. Note also that we have abused 
notation by writing a for both the element of the fundamental group and a representing 
map. 

(2) We have suppressed the basepoint because our spaces are connected and G(X) 
is then independent of basepoints. Note, however, that A(s0, *o) = *o. 

(3) The fact that G(X) is a subgroup of TT\(X) is immediate from the following 
(Part (1)): 

THEOREM 1. G(X) is equal to: (1) Im(ev# : 7T{(X
X, lx) —> 7Ti(X)) where ev : Xx —• X 

is the evaluation map, ev(f) = f(xo) for a chosen basepoint xo G X. (2) [Jlm(d# : 
TT\(QB) —> 7T\(X)), where the union is taken over all fibrations X —> E —> B and 
d : £IB —y X is the "transgression9 in the Barratt-Puppe sequence of the fibration. 

OUTLINE OF PROOF. (See [4] and [6]). (1) Given A as in (*), define À : S1 —> (Xx, lx) 
by A(s)(x) — A{s,x). then ev -A{s) — A(s)(xo) = A(s,xo) — a(s). Hence ev#[A] = a. 
Now suppose A : Sl —-> (Xx, lx) gives ev • À ~ a. Define A : S1 x X —> X by 
A(s,x) = A(s)(x) and note: (i) A(so,x) = x since A(SQ) = lx, (ii) A(s,xo) — Â(S)(XQ) = 
ev • A(s) ~ a(s). Hence a diagram (*) is obtained. (2) Every fibration with fibre 
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X is classified by a map B —» BautX, where autX denotes the monoid of self-

homotopy equivalences of X and BautX is its classifying space. We obtain a homotopy 

commutative diagram of Barratt-Puppe sequences. 

Baut.X —y BautX 

i i 
E — B 

where the top row arises from the universal fibration with fibre X, X —•> Baut.X —> 

BautX. Now, 7Ti(QBautX,*) = n^autX, \x) — Ki{Xx, 1*), so clearly 7m3# Ç Imev#. 

The universal fibration itself furnishes an example with Imd# — Imev#, so G(X) — 

\JImd#. 
Although we shall not use the following result, we shall refer to it later. Also, it is 

quite useful in computing G(X) for certain X. A proof may be found in [4]. 

THEOREM 2. Let X denote the universal cover of X endowed with the TT\X-space 

structure given by the identification ofnx\X with covering transformations. Then G(X) 

consists of all covering transformations which are equivariantly homotopic to the 

identity. 

The following two results, due to Gottlieb [4], are essential to the proof of our 

main result, Theorem 6. For the first, recall that the fundamental group acts on the 

higher homotopy groups as follows: given a G IÏ\X and £ G irnX, the nondegeneracy 

of the basepoint so € Sn (i.e. so ~~* Sn ls a cofibration) allows a solution F to the 
diagram 

s0 — • s0xl 

I * I 
Sn — > S n x l 

Then F\ : Sn —> X represents a • £. It can be shown that this process is well defined 

and that the action satisfies the formula a • £ = [«,£] + £, where [ ] denotes the 

Whitehead product. In particular, if n = 1, then a • £ = a £ a _ 1 . This discussion leads 

to the following equivalent definitions: 

/>(X) = {a G TTIX | a • £ = £ for a l l£ G TT*X} 

= {a G TTIX | [a, a = 0 for all £ G TT*X}. 

THEOREM 3. G(X) Ç />(X). 

PROOF. Let a £ G(X), £ E nn(X) and note that we may write (*) as 

/ x l - ^ X 

' a V I , 

/ vx 

QBautX 

QB 
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where A(0,x) = A(l,x) = x and A(t,xo) = a(t) (thought of as a map / 
a(0) = «(!) = JCO). We obtain 

X with 

so so xl 
\ : 

£ / 
X 

« / 

\ F 
S* S* x / 

with F = A(£ x 1). Commutativity is obvious. Hence, Fi represents a- £. But Fi(s) = 
F(5,1) = A(l, £(*)) = £(*), so a • £ = £. 

COROLLARY 4. G(X) Ç Zir\X, where Zir denotes the center of ir. 

REMARK. It is easy to see that if X — K(n, 1), then G(X) = ZTT [4]. For any a e Zir 
simply take the map xjj : 7r X Z -—> 7r defined by ipix^n) — xan. The map V7 is a 
homomorphism precisely because a G Z7r. NOW realize ip on the space level (where 
Sl=K(Z,l)\ 

K(ir,l)xSl - ^ AT(TT,1) 

1 V a 
K(TT,1)VS1 

and note that this is a diagram of type (*). 

THEOREM 5. [4] Let p : X -^ X be a covering map. Ifp#(a) G G(X), then a G G(X). 

PROOF. Let A : X x / —* X be a map associated to /? • a. That is, A provides 
a diagram (*), where again we assume A(x,0) = A(x, 1) = x. Because p is (in 
particular) a fibration and xo G X is nondegenerate, the homotopy lifting property 
provides a solution A to the diagram. 

l^Uc* 
X xOUxo xl 

X xl 
p x 1 

That is, Â(x, 0) == Je, Â(x0,0 = <*(0 and /?Â = A • (p x 1). Now, pA\ — A\p — p and 
Â(Jco, 1) = QT(1) = x0, so Ai : X —» X is a lifting of lx with Ai(Jt0) = Jco. But l j is 
also such a lifting and the uniqueness of liftings for covering maps implies A\ — 1^. 
Hence we obtain, 

X xl 

XVI 
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with Ao = A\ = ljf which shows a G G(X). 

EXAMPLES 

(1) If X is an //-space, then G(X) = TT\X. Given a G ir\X, an associated map 

A : X x Sl —> X is obtained via the multiplication: X x Sl - ^ X x X - ^ X. For 

example, an «-torus Tn has G(Tn) — ^f t Z. 
/=i 

(2) Applications of Theorem 2 give: G(KP2n) = {1}; G(RF2,7+1) *é Z/2; 
G(L(p,q)) = Z/p, where L(p,q) is the 3-dimensional lens space of type (/?,<?); 
G (Poincaré homology sphere) = Z/2. For details see [4] and [10]. 

(3) The author recently has proven the following result, the details of which are 
too long to present here: If H is a finite group which acts freely and orientation 
preservingly on a sphere S\ then G(Sn/H) = ZH. (Compare [10]). 

2. The Homopotical Conner-Raymond Theorem. In this section we give our 
main result Theorem 6 and some immediate consequences. Furthermore, although our 
later application to Gottlieb's question will only require Theorem 6, we also extend 
the result to torus-splitting in Theorem 10. 

THEOREM 6. Let X be a space with H\(X; Z) finitely generated. If there exists a £ 
GiX) with Hurewicz image h(a) of infinite order, then there is a finite cyclic cover X 
ofXwithX~Y xSl. 

LEMMA. Letf : TX —> Z be a group homomorphism and suppose there exists a G ZTT 

such that Im(f) = riL is generated by f(a) = n. Then n = Z x K, where Z = (a) 
and K = Ker f. 

PROOF. Define a : nt —» TC by letting a(n) = a and then extending freely. Then 
fcrin) = n, so we obtain a split short exact sequence of groups, 

K -* ix -^ nT 
G 

Hence, 7r has a semidirect product structure, IT = nT x K = a(nZ) x K, where the 
action of a(nZ) = (a) on K is given by conjugation in IT. However, a G ZTT, SO the 
action is trivial and the semidirect product reduces to a product TT = (a) x K. 

PROOF OF THEOREM 6. Let H\{X\ Z) = A 0 T, where the free part A has basis 
a\,..Mk and T is finite. Then h(a) has the form (not all A/ zero), 

h(a) — \\a\ + . . . + XkOk + t. 

CASE 1. Suppose some A/ = 1; without loss of generality let / = 1. Identify 
Hi(Sl; Z) with Z and define O : HX(X\ Z) -+ Z by &(ax) = 1, O(^) = 0 for 1 > 1 
and 0(T) = 0. The bijections Hom(Hx(X\ Z), Z) ^ //!(A:; Z) ^ [X,/iT(Z, 1)] ^ [X, Sl] 
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provide a map <j> : X —> S ' with </>* = O. Now, we again write a : Sl —• X to represent 
a G G(X) and /z to denote the Hurewicz map. We obtain 

1 = ®h(a) = Oa*(l) = <M*0) = ((/>a)*(l). 

Now, [S1,^1] ^ Hom(HxS\H\S{) ^ Hom(Z, Z), so </> • a ~ l s , . Therefore, there is 
a fibration </> with homotopy section a and homotopy fibre Y, 

a 

The splitting a provides isomorphisms /# : 717F = TT/X for / > 2 and 7TiX = n\Y XI Z 
(where xi denotes the semidirect product). However, by Corollary 4, a G ZTT\X, SO 

the action in the semidirect product is trivial. Hence, ix\Y x Z = 7riX via (a,/?) »—• 
/#(tf)a#(/?). 

By Theorem 1, since a G G(X) there exists a fibration X —» £ —> # and /3 G 7Ti (Q#) 
with 9#(/3) = a. We may now use the "action" of QB on X to "add up" Y and 5 l . 
Specifically, recall (see [8]) that the action c : X x £}/? —> X induces c#(x,^) = x9#(y) 
on 7Ti (and JC + 3#(v) on 7T/, / > 1). Hence the composition 

gives c#(/# x /?#) = /# • d#(3# — /# • <*#, since 3#(/3) = a. Thus, c(i x /?) induces 
isomorphisms on homotopy groups and so is a homotopy equivalence, Y x Sl ~X. 

CASE 2. Suppose A/ ^ 1 for all /. By hypothesis some \[ = n^ 0. Without loss of 
generality, assume / = 1. Define <$> and obtain <\> : X —> 5 l as in Case 1. Note that in 
this case we have, 

(<£<*)*( 1) = <*><** 0 ) = 0>/z(a) = w. 

Let/7 : Z —> Z/« be projection, // = Ker(p<&h) and X be the cover of X corresponding 
t o / / . 

Clearly a G H and, by Theorem 5, a G G(X) as well. By the definition of / / , 
O/z : H —• Z has Im(Q>h) = nl = (0/z(a)). By the Lemma, H = Z x K, where 
Z = (a) and /C = Ker(<&h). Because ir\X = / / , we have Z/i(X; Z) = Z x A^, where 
Z = (h(a)). That is, //i(X; Z) has a free factor generated by the Hurewicz image of 
a Gottlieb element. This is sufficient to apply Case 1. (Indeed, the assumption that 
H\{X\ Z) be finitely generated was made to ensure this!) Hence X ~ F x S{. 

REMARKS. (1) Note that the result of Case 1 is interesting in itself: If a G G(X) 
and h(a) is a generator in the free part of //i(X), then X ~ Y x S1. 

(2) A higher dimensional localized version of Theorem 6 is given in [12]: If a G 
Gn(X) (the nth Gottlieb group) and h(a) has infinite order, then X ~p Y x Sn for 
almost all primes p. 

(3) See [13] and [14] for rational splittings of this type. 
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COROLLARY l.IfXis a finite complex which satisfies the hypotheses of Theorem 6, 
then the Euler characteristic ofX vanishes. 

PROOF. First, note that, because X —• X is a finite covering, we have the formula: 

X(X) = nX(X). But X(X) = X(Y) • x(Sl) = x(Y) -0 = 0. Hence, X(X) = 0 as well. 

REMARK. An a as in Theorem 6 generates a torsionfree normal abelian subgroup 
which acts nilpotently (in fact, trivially by Theorem 2) on 7/*(X). Hence, Theorem 
6 and Corollary 7 together may be thought of as a special case of Eckmann's result 
(see the Introduction), where the underlying reason for the vanishing of the euler 
characteristic is geometrically evident. 

Theorem 6 also furnishes an amusing proof of, 

COROLLARY 8. IfX is an H-space and H\(X;Z) has a Z-summand, then X ~YxSl. 

PROOF. By example (1) following Theorem 5, we have G(X) = TT\X. Since the 
Hurewicz map is surjective in degree 1, the generator of the Z-summand is hit by a 
Gottlieb element. Remark (1) following Theorem 6 now applies. 

We also have the following group theoretic consequence of Theorem 6. 

COROLLARY 9. Let n be a group with finitely generated abelianization. If there is 
an element in the center of TT whose image under abelianization has infinite order, 
then 7T contains a subgroup of finite index fr with fr = Z x K. 

We now give an extension of Theorem 6 to torus splitting. Because the "covering 
argument" notation becomes unwieldy, we restrict ourselves to the following version: 

THEOREM 10. If h(G(X)) contains a free summand of H\(X\ Z) of rank n, then 
X ~ Y x Tn. 

n 

PROOF. Let c*i,... an G G(X) with (/*(ai),... h(otn)) = ^ ^ Z a direct summand of 
/=i 

H\{X). For each a7, define <L>7 as in the proof of Theorem 6 and obtain </>j : X —-> Sl 

with <j)j(Xj ^ l5i (where we think of a7 : Sl —»X). The product map is then, 

Y —>X -^ T = Sl x • • • x Sl («-times), 

where Y = homotopy fibre of </>. 
As before, we need a splitting Tn —• X. Consider a\W...Wan : 51 V. . . V51 —>X. 

Since each at G G(X), we may apply Theorem 1 to obtain àt G 7T\(QBautX) with 
d#(at) = a/. This allows the formation of a homotopy commutative diagram (with 
B = BautX), 

Tn = Sl x---xSl -^-> Û B x - x M - ^ QB 

s ' v - . - v s 1 • x 
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where A = â\ x ... x ân and m is the multiplication of QB. Hence, dmA = a is the 
required splitting, <\>a ~ lTn. (An equivalent formulation is to say that the higher order 
Whitehead product associated to a\ V . . . V an vanishes: compare [18].) 

As before, we may now use the holonomy of the universal fibration to "add up" 
the homotopy groups of Tn and Y : 

Tn xY > QBautX xX —> X 

induces an isomorphism on 7r*, SO X ~ Y x Tn. 

3. The Conner-Raymond Theorem. In this section we shall give a proof of the 
Conner-Raymond Theorem based on Theorem 6 (and the following Remark). Recall, 

THEOREM 11 (Conner-Raymond [1]). If Sx acts on X so that the orbit map UJ : 
Sl —>X induces an injection UJ* : H\(Sl) —> H\(X) onto a T-summand, then 

X —homeo \X / S ) X S 

and the action is on the 2nd factor. 

Before we give Gottlieb's proof of Theorem 11, we recall how the orbit map is 
related to G(X). 

Let G act on X and let u : G —* X be defined by u(g) = g • xo, for fixed xo G X. 
The action gives rise to the associated Borel fibration and, hence, to the Barratt-Puppe 
sequence, 

>QBG -^->X —>X xGEG —>BG. 

The following Lemma shows that a;#(7r*G) = 3#(7r*QBG), so Imuj#\ Ç G(X) by 
Theorem 1. 

LEMMA 12. The following diagram homotopy commutes: 

QBG -?-> X 

-1 s* 
G 

PROOF. In the following diagram each column is a fibration and the maps G —+ GxX, 
EG —> EG x X are the obvious inclusions into the first factors with second coordinate 
xo G X. Commutativity is easily checked, (û denotes the action.) 

G — > GxX - ^ X 

i i i 
EG —• EGxX —> EGxGX' 

i i i 
EG - U EG - U EG 
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Observe that the composition of maps in the top row is UJ. The mappings of fibrations 
now provide a homotopy commutative diagram one step back in the Barratt-Puppe 
sequence: i i 

QBG —• QBG —• QBG 

— d 

PPROOF OF THEOREM 11. The orbit of the action is clearly ^/Isotropy. But since 
LU* is onto a Z-summand (generated by the orbit), it must be the case that Sl acts 
freely. Hence, we obtain a principal bundle Sl —> X —> X/Sl. Now, by Theorem 6, 
we have X ~ Y x Sl, where the S ̂ factor is split off via the orbit map UJ. This means 
that in the principal bundle, X homotopy retracts onto Sl and 7r*(X) = TT*(X/S1) X 

7c*(Sl) compatible with 7r*(X) = 7r*(F) X ir*(S]). Hence the composition Y —> X —• 
X/Sl induces isomorphisms on homotopy groups and consequently, Y ~X/Sl. This 
provides a homotopy section of the bundle, X/Sl —• X. The homotopy lifting property 
may now be applied to obtain a true section and, therefore, the bundle is trivial. Thus 
X ~ (X/Sl) x Sl and the action is translation on the 2nd factor. 

REMARK. Of course, the torus version of Theorem 11 holds as well. 

4. An Answer to a Question of Gottlieb. In ([4] p. 846) Gottlieb asked whether 
the inclusion G(X) Ç P(X) (with notation as in §1) is, in fact, an equality. Tudor Ganea 
provided a negative answer to this question in [3] by constructing the following infinite 
dimensional example and showing that G(X) = {1} and P(X) = TT\X = Z/2. 

EXAMPLE. The Ganea space X is the pullback 

X y PK 

RP(oo) - U AXZ/2,3) 

where PK —• i£(Z/2,3) is the path fibration and / is the nontrivial class in 
H\RP(oo); Z/2) ^ Z/2. 

Of course, the one unsatisfying aspect of Ganea's example is its infinite dimen
sionality. Indeed, it can be shown that any finite approximation of X loses its salient 
properties. It seemed conceivable, then, that the restrictiveness of requiring finiteness 
might force G(X) = P(X). The following result, whose proof makes essential use of 
Theorem 6, provides a finite example with G(X) ^ P(X). 

THEOREM 13. There exists a compact 7-dimensional manifoldX with P(X) = TT\X = 
Z 0 Z 0 Z 0 Z and G(X) = {1}. 

REMARK. It was originally thought that a finite nilpotent complex X with TT\X ^ {1} 
would also have G(X) ^ {1}. This notion is easily disposed of in several ways. The 
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most straightforward I owe to Bob Oliver: Let Lp denote the standard 3-dimensional 
lens space and Mp the Moore space constructed as the cofibre of a degree p map 
S3-+S3. Let 

X=LpWMp 

and note that TT\ = T/p by Van Kampen's Theorem. Also, the universal cover X has 
the form of S3 with p copies of Mp attached at points in a Z//?-orbit of the basepoint. 
Hence, 

10 otherwise. 

The action of 7T\X on Hi(X) is trivial on the Z-factor (since the covering transforma
tions on Lp = S3 are nomotopic to the identity) and the nontrivial action on (Z/pY 
is by permutation of factors;. Now, any action of a p-group on another p-group is 
nilpotent. Hence, X is a finite nilpotent complex with it\X = T/p, but G(X) = {1} 
(by Theorem 2, since no element of TTIX acts trivially on //;(X)). 

PROOF OF THEOREM 13. Let T4 denote the 4-torus S1 x Sl x Sl x Sl and let k : T4 —• 
S4 be a map of degree 1. Note that such a map exists by the Hopf Classification and 
that we may assume k is smooth since any homotopy class of maps between manifolds 
has a smooth representative. We define X to be the principal bundle induced via k 
from the Hopf fibration S1 --• S4. We then have a principal bundle S3 —-> X —> T4. 

Now, the action of TTIX = TTIT4 = Z 0 Z 0 Z 0 Z on 7T/X = 7T/S3 is trivial because 
S7 is simply connected andl the action on the homotopy groups of the fibre S3 is 
natural with respect to the map of fibrations X —-> S1. 

Hence, X is a simple space, i.e. P(X) = 7TiX. 
Of course, X is compact because it is a closed subspace of the compact manifold 

T4 x S1. The usual local triviality arguments show that it is in fact a 7-dimensional 
manifold (since k is assumed smooth). 

In order to complete the proof, we must show that G(X) = {1}. Suppose this is 
not the case. Then there exists a E G(X) and, because h : TT\X -^ H\(X\ Z), h(a) 
has infinite order. By our main result Theorem 6, there is a finite covering X —> X 
w i t h X - r xSl. 

Now X is a covering of the simple space X, so it is simple as well. Furthermore, 
the covering map provides vr\X = 7T/X for / ^ 2 and a short exact sequence TT\X —> 
7TiX —> Z/AI. After tensoring with Q, we obtain 7T/X 0 Q = 7T/X 0 Q. for all /. Hence, 
the rationalizations of X and X are homotopy equivalent (see [9], for example, for an 
exposition of localization theory); Xo — Xo. Hence, Xo — Yo x SQ since localization 
commutes with products. The homotopy groups of Yo are then: TT\YO = Q 0 Q 0 Q, 
7T3Fo — Q and n^Yo = 0 otherwise (since 7T/53 0 Q = 0 for / ^ 3). Therefore, a 
Postnikov Tower for Y0 is given by, 

Yo —• PK 

T3 - U ^(Q,4) 
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However, i G [T$,K(Q,4)] ^ H\T$\ Q) - 0, so I ~ constant. Hence, Y0 ~ T* x 
i r ( Q , 3 ) - r 0

3 x 5 0
3 . But this then implies, 

This could only happen if the defining map k : T4 -+ S4 were rationally trivial. This, 
of course, is not the case since k has degree 1, so we have arrived at a contradiction. 
Therefore, G(X) = {1}. 

REMARK. (1) Note that the universal cover of X is homotopy equivalent to S3 and 
that the covering transformations are all homotopic to the identity. Thus G(X) — {1} 
does not immediately follow as in Oliver's example (following Theorem 13). 

(2) The interested reader should consult [18] for further examples relating Gottlieb 
groups, Whitehead products and //-space structures. 

QUESTION. Besides usual examples such as //-spaces, K(TT, l)'s with Zn ^ {1}, 
Lens spaces or total spaces of principal bundles over simply connected bases (see 
[15]), is there a class of finite complexes characterized by homotopical conditions 
whose members have nontrivial Gottlieb groups? 
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