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Abstract. Let 1 ≤ p < ∞. A sequence 〈xn〉 in a Banach space X is defined to be
p-operator summable if for each 〈fn〉 ∈ lw

∗
p (X∗) we have 〈〈fn(xk)〉k〉n ∈ ls

p(lp). Every norm
p-summable sequence in a Banach space is operator p-summable whereas in its turn
every operator p-summable sequence is weakly p-summable. An operator T ∈ B(X, Y )
is said to be p-limited if for every 〈xn〉 ∈ lwp (X), 〈Txn〉 is operator p-summable. The
set of all p-limited operators forms a normed operator ideal. It is shown that every
weakly p-summable sequence in X is operator p-summable if and only if every operator
T ∈ B(X, lp) is p-absolutely summing. On the other hand, every operator p-summable
sequence in X is norm p-summable if and only if every p-limited operator in B(lp′ , X)
is absolutely p-summing. Moreover, this is the case if and only if X is a subspace of
Lp(μ) for some Borel measure μ.

2010 Mathematics Subject Classification. Primary 46B20;
Secondary 46B28, 46B50.

1. Introduction. Let X be a Banach space, 〈xn〉 a sequence in X and 1 ≤ p < ∞.
We say that 〈xn〉 is (norm) p-summable in X if

∑∞
n=1 ‖xn‖p < ∞. If

∑∞
n=1 |f (xn)|p < ∞,

for all f ∈ X∗, then we say that 〈xn〉 is weakly p-summable in X . It is easy to note that
a norm p-summable sequence is always a weakly p-summable whereas the converse, in
general, is not true. In fact, in a Banach space X every weakly p-summable sequence is
norm p-summable if and only if X is finite dimensional. These two types of summability
were used by Grothendieck [13] to introduce the operator ideal of absolutely summing
operators (for p = 1), further generalized by Piestch [18], who defined the operator
ideal of absolutely p-summing operators for all 1 ≤ p < ∞. These operator ideals have
been studied extensively in the literature.

Let ls
p(X) denote the set of all norm p-summable sequences and lwp (X) denote that

of all weakly p-summable sequences in X . Then these two sets become Banach spaces
under suitable norms. More precisely, ls

p(X) can be identified as the ‘countable p-direct
sum’ of X ; similarly, lwp (X) can be shown to be isometrically isomorphic to the space
B(lp′ , X) of operators if p > 1 (here p′ is the harmonic conjugate of p, i.e. 1

p + 1
p′ = 1)

and lp′ is replaced by c0 when p = 1.

https://doi.org/10.1017/S0017089513000360 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000360


428 ANIL KUMAR KARN AND DEBA PRASAD SINHA

In this paper we introduce a new kind of summability of sequences in Banach
spaces using the notion of p-summing operators and call it the operator p-summability
(definition below). This notion crops up naturally while extending the idea of limited
sets to a p-level. In general, this type of summability of sequences is different from both
weak and norm summability. In this paper we investigate Banach spaces for which this
type of summability coincides either with weak or with norm summability. For the
first type of Banach spaces in question, we encounter a p-level of the Dunford–Pettis
property whereas for the other we are encouraged to introduce the notion of p-level
of the Gelfand–Phillips property. The later type of Banach space ultimately reduces to
subspaces of Lp(μ) for some Borel measure μ.

Example of a Banach space can be constructed, for which the operator p-
summability is different from both norm and weak p-summabilities.

2. An operator summability. A non-empty subset S of a Banach space X is said
to be limited if for every weak∗-null sequence 〈fn〉 in X∗ (i.e. limn→∞fn(x) = 0, for all
x ∈ X), fn → 0 uniformly on S. Alternatively, given a weak∗-null sequence 〈fn〉 in X∗,
there is an 〈αn〉 ∈ c0 such that |fn(x)| ≤ αn for all x ∈ S and all n ∈ N. We can extend this
idea to the ‘p-sense’ in the following way. We define a subset S of X to be p-limited in X
(1 ≤ p < ∞) if for every weak∗-p-summable sequence 〈fn〉 in X∗ (i.e.

∑∞
n=1 |fn(x)|p < ∞

for all x ∈ X) there is an 〈αn〉 ∈ lp such that |fn(x)| ≤ αn for all x ∈ S and n ∈ N.
The history of limited sets originated from the following error of Gelfand [12]: A

set S in Banach space X is compact if and only if every weak∗-null sequence in X∗ is
uniformly null on S. Clearly, every compact set has this property. However, Phillips
[17] came out with an example of a non-compact set with the above property, i.e. of
a limited non-compact set. The authors [22] (followed by Delgado et al.[7, 8], Pineiro
and Delgado [19] and Choi and Kim [6]) recently studied the concept of p-compact
sets for 1 ≤ p < ∞. It is interesting to note that the above-mentioned analogy carries
over to p-level too. Firstly, we show that p-compact sets are p-limited.

We begin with some definitions. For x = 〈xn〉 ∈ lwp (X), we define an operator Ex :
lp′ → X given by Ex(α) = ∑∞

n=1 αnxn, α = 〈αn〉 ∈ lp′ . Then Ex ∈ B(lp′ , X). Moreover,
in this identification lwp (X) is isometrically isomorphic to B(lp′ , X). For p = 1, lp′ is
replaced by c0. We say that K ⊂ X is relatively p-compact if there is an x = 〈xn〉 ∈ ls

p(X)
such that K ⊂ Ex(Ball(lp′ )). Similarly, K ⊂ X is said to be (relatively) weakly p-compact
if there is an x = 〈xn〉 ∈ lwp (X) such that K ⊂ Ex(Ball(lp′ )).

Before we come to operator summability, we prove some elementary facts about
p-limited sets.

PROPOSITION 2.1. Let 1 ≤ p < ∞ and X be a Banach space. Then every p-compact
subset of X is p-limited.

Proof. Let K ⊂ X be a p-compact and 〈fn〉 ∈ lw
∗

p (X∗). There is an x = 〈xk〉 ∈ ls
p(X)

such that K ⊂ Ex(Ball(lp′ )). Then

∞∑
k=1

∞∑
n=1

|fn(xk)|p ≤ (‖ 〈fn〉 ‖w∗
p )p

∞∑
k=1

‖xk‖p
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so that

∞∑
n=1

∞∑
k=1

|fn(xk)|p =
∞∑

k=1

∞∑
n=1

|fn(xk)|p ≤
(
‖ 〈fn〉 ‖w∗

p ‖x‖s
p

)p
.

Set (
∑∞

k=1 |fn(xk)|p)
1
p = αn for all n so that 〈αn〉 ∈ lp. Now if z ∈ K , then z = ∑∞

k=1 βkxk

for some 〈βk〉 ∈ Ball(lp′ ), and for each n we have

|fn(z)| =
∣∣∣∣∣

∞∑
k=1

βkfn(xk)

∣∣∣∣∣ ≤ (
∞∑

k=1

|βk|p′
)

1
p′

( ∞∑
k=1

|fn(xk)|p
) 1

p

≤ αn.

Hence, K is p-limited. �

PROPOSITION 2.2. Let A and B be two subsets of a Banach space X.
(a) If B is p-limited and A ⊂ B, then A is also p-limited.
(b) If A is p-limited, then A is p-limited.
(c) If A and B are p-limited sets, so are A ∪ B, A + B and A ∩ B.
(d) If A is p-limited and T ∈ B(X, Y ), then T(A) is p-limited in Y.

Proof. Suppose A is p-limited. We prove (b). Let 〈fn〉 ∈ lwp
∗(X∗). Then there is an

〈αn〉 ∈ lp such that |fn(x)| ≤ αn for all x ∈ A and n ∈ N. Let x ∈ A. Then there is an 〈xk〉
in A such that xk → x. Thus, for each n, fn(xk) → fn(x). Fixing n we have |fn(xk)| ≤ αn

for all k. It follows that |fn(x)| ≤ αn for all n so that A is p-limited. Thus, (b) follows.
The proofs of (a), (c) and (d) are immediate. �

The following result describes a new class amongst weakly p-summable sequences
in a Banach space.

LEMMA 2.3. Let 〈xn〉 ∈ lwp (X). Then Ex(Ball(lp′ )) is p-limited if and only if for every
〈fn〉 ∈ lw

∗
p (X∗) we have

〈〈fn(xk)〉k

〉
n ∈ ls

p(lp).

Proof. Consider x = 〈xn〉 ∈ lwp (X) such that S = Ex(Ball(lp′ )) is p-limited. Then
given 〈fn〉 ∈ lw

∗
p (X∗), there is an 〈αn〉 ∈ lp such that for each β = 〈βk〉 ∈ Ball(lp′ ) we

have

|fn(Ex(β))| ≤ αn, for all n,

i.e.

| 〈β, 〈fn(xk)〉〉∞k=1 | ≤ αn, for all n.

It follows that ‖ 〈fn(xk)〉∞k=1 ‖p ≤ αn for all n. Thus,
〈〈fn(xk)〉k

〉
n ∈ ls

p(lp) for all 〈fn〉 ∈
lw

∗
p (X∗).

Now tracing back the proof, we can also prove the converse. �
Since lw

∗
p (X∗) can be identified with B(X, lp), where to each f = 〈fn〉 ∈ lw

∗
p (X∗)

we get (Ef )∗ ∈ B(X, lp) given by (Ef )∗(x) = 〈fn(x)〉 with ‖f ‖w∗
p = ‖(Ef )∗‖, and since

lw
∗

p (X∗) = lwp (X∗), the above lemma can be reorganized as follows.

PROPOSITION 2.4. Let x = 〈xn〉 be a sequence in X. The following are equivalent.
(a) x ∈ lwp (X) and Ex(Ball(lp′ )) is a p-limited set in X.
(b) 〈Txn〉 ∈ ls

p(lp) for all T ∈ B(X, lp).
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Let us rename this phenomena as follows.

DEFINITION 2.5. A sequence 〈xn〉 in X is said to be operator p-summable in X if it
satisfies one (and hence all) of the conditions of Proposition 2.4.

Note that every norm p-summable sequence in X is operator p-summable. To
see this, let 〈xn〉 ∈ ls

p(X) and T ∈ B(X, lp). Then ‖Txn‖ ≤ ‖T‖‖xn‖ for all n so that
〈Txn〉 ∈ ls

p(lp). Thus, 〈xn〉 is operator p-summable. We have already seen that an operator
p-summable sequence is weakly p-summable.

3. Towards weak summability. In this section we characterize Banach spaces with
the property that every weakly p-summable sequence is operator p-summable and give
some examples of such spaces. We shall call a Banach space with this property a
weak p-space. A simple characterization of such spaces in terms of operator ideals is
given below. Let X and Y be Banach spaces and let 1 ≤ p < ∞. Then an operator
T ∈ B(X, Y ) is called absolutely p-summing if for every 〈xn〉 ∈ lwp (X), 〈Txn〉 ∈ ls

p(Y ).
The set of all absolutely p-summing operators in B(X, Y ) is denoted by �p(X, Y ).

PROPOSITION 3.1. Let X be a Banach space and 1 ≤ p < ∞. Then X is a weak
p-space if and only if �p(X, lp) = B(X, lp).

Proof. Let T ∈ B(X, lp) and x = 〈xn〉 ∈ lwp (X). Suppose X is a weak p-space. Then
〈xn〉 is operator p-summable so that 〈Txn〉 ∈ ls

p(lp). Thus, T ∈ �p(X, lp). Tracing back,
we can prove the converse. �

Before we give some examples of weak p-spaces we shall further explore Banach
spaces that satisfy an operator ideal equation of the above type. Given Banach spaces
X and Y , let W (X, Y ) and ν(X, Y ) denote the sets of weakly compact and completely
continuous operators from X to Y respectively. Recall that a Banach space X is said
to have the Dunford–Pettis property (DPP, for short) if for any Banach space Y ,
W (X, Y ) ⊂ ν(X, Y ).

Dunford and Pettis [11] in 1940 proved that every weakly compact operator defined
on a L1(μ) space takes weakly compact sets to norm compact sets. Grothendieck [14]
in 1953 defined a Banach space X to have the Dunford–Pettis property if weakly
compact operators defined on X are completely continuous and proved that C(K)
spaces also have this property. This result was also obtained independently in 1955 by
Bartle et al. [1]. Brace [3] and Grothendieck [14] gave some nice characterizations of
the Dunford–Pettis property. A detailed survey of the Dunford–Pettis property can be
found in [9]. In this section we propose to extend this property to a p-setting to meet
our above-mentioned end. For this purpose we recall the following characterization of
the Dunford–Pettis property, essentially due to Grothendieck [14].

THEOREM 3.2. Let X be a Banach space, then the following statements are equivalent:
(a) W (X, Y ) ⊂ ν(X, Y ) for all Banach spaces Y.
(b) W (X, c0) ⊂ ν(X, c0).
(c) For 〈xn〉 ∈ cw

0 (X) and 〈fn〉 ∈ cw
0 (X∗),

〈〈fk(xn)〉k

〉
n ∈ cs

0(c0).
(d) For 〈xn〉 ∈ cw

0 (X) and 〈fn〉 ∈ cw
0 (X∗), 〈fn(xn)〉 ∈ c0.

Picking up (c) as an end, we now propose the following definition.

DEFINITION 3.3. Let 1 ≤ p, q ≤ ∞. A Banach space X is said to have the (p, q)-
Dunford–Pettis property ((p, q)-DPP, for short) if given 〈xn〉 ∈ lwq (X) and 〈fn〉 ∈ lwp (X∗),
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we have
〈〈fk(xn)〉k

〉
n ∈ ls

q(lp). For p(or q) = ∞, lp (or lq) is replaced by c0. For all p, the
(p, p)-Dunford–Pettis property shall be called the p- Dunford–Pettis property.

It is immediate from Theorem 3.2 that the ∞-DPP is the classical Dunford–
Pettis property. In what follows, we shall extend the above characterization theorem
to the (p, q)-setting. Towards this end the notion of weak p-compactness studied by
the authors [22] (also see Castillo and Sanchez [4, 5]) fits smugly in the scheme. Let
X and Y be Banach spaces and let 1 ≤ p < ∞. An operator T ∈ B(X, Y ) is said to
be p-compact (weakly p-compact) if T(Ball(X)) is relatively p-compact (respectively,
relatively weakly p-compact). Here lp′ is replaced by c0 if p = 1. Let Wp(X, Y ) denote
the set of all weakly p-compact operators and Kp(X, Y ) that of all p-compact operators.
The next result was obtained by the authors [22].

THEOREM 3.4. Let X and Y be Banach spaces, 1 ≤ p < ∞ and T ∈ B(X, Y ). Then
the following statements are equivalent:

(a) T is weakly p-compact.
(b) There are y ∈ lwp (Y ) and Sy ∈ B(R(y), X∗) such that T∗ = Sy · E∗

y , where
R(y) = Range(E∗

y ) ⊂ lp.

The set Wp(X, Y ) of all weakly p-compact operators in B(X, Y ) is a Banach
operator ideal with the factorization norm ωp defined as follows:

ωp(T) = inf {‖Sy‖‖Ey‖ : T∗ = Sy · E∗
y as in Theorem 3.4(b)}.

Let (A, α) be an operator ideal. For Banach spaces X and Y we put

Ad(X, Y ) = {T ∈ B(X, Y ) : T∗ ∈ A(Y∗, X∗)}.

For an operator T ∈ Ad(X, Y ), we put αd(T) = α(T∗). With these notations (Ad, αd)
is also a Banach operator ideal and is called the dual ideal of (A, α).

COROLLARY 3.5. For Banach spaces X and Y, T ∈ W d
p (X, Y ) if and only if there are

f = 〈fn〉 ∈ lwp (X∗) and Sf ∈ B(R(f ), Y ) such that T = Sf · (Ef )∗. Here R(f ) = {〈fn(x)〉 :
x ∈ X} ⊂ lp and (Ef )∗ = E∗

f |X .

We can now extend the classical characterization theorem for the Dunford–
Pettis property to the (p, q)-setting. Let X and Y be a pair of Banach spaces and
T ∈ B(X, Y∗). Then we have T = i∗Y · T∗∗ · iX . Indeed, for x ∈ X and y ∈ Y we have〈
i∗Y · T∗∗ · iX (x), y

〉 = 〈Tx, y〉. Here iX : X ↪→ X∗∗ is the canonical embedding.

THEOREM 3.6. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and X a Banach space. Then the following
statements are equivalent:

(a) X has the (p, q)-Dunford–Pettis property.
(b) Wp(Y, X∗) ⊂ �d

q(Y, X∗) for every Banach space Y.
(c) �d

q(lp′, X∗) = B(lp′, X∗).

Proof. It only remains to show that (a) implies (b), for Wp(lp′, X∗) = B(lp′, X∗). To
this end, assume that X has the (p, q)-DPP and let T ∈ Wp(Y, X∗). Then by Theorem
3.4, there are f = 〈fn〉 ∈ lwp (X∗) and Sf ∈ B(R(f), Y∗) such that T∗ = Sf · E∗

f . Firstly
we show that T∗|X ∈ �q(X, Y∗). To see this, let 〈xn〉 ∈ lwq (X). Then as 〈fn〉 ∈ lwp (X∗),
we have 〈(Ef)∗ · iX (xn)〉 = 〈〈fk(xn)〉k

〉
n ∈ ls

q(lp). Thus, 〈T∗ · iX (xn)〉 ∈ ls
q(Y∗). In other
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words, T∗ · iX ∈ �q(X, Y∗). It follows from Proposition 2.19 in [10] that i∗X · T∗∗ ∈
�d

q(Y∗∗, X∗) so that T = i∗X · T∗∗ · iY ∈ �d
q(Y, X∗). This completes the proof. �

Note. The authors in [22] have observed that absolutely p-summing operators
may be regarded as p-completely continuous operators as they take weakly p-compact
sets to p-compact sets. Thus, the classical Dunford–Pettis property may be traced
back, provided we regard absolutely p-summing operators as p-completely continuous
operators.

In view of Proposition 3.1 and Theorem 3.6, we have the following characterization
for weak p-spaces.

THEOREM 3.7. Let 1 ≤ p < ∞. Then for a Banach space X the following statements
are equivalent:

(a) X is a weak p-space.
(b) X has the p-Dunford–Pettis property.
(c) Wp(Y, X∗) ⊂ �d

p(Y, X∗) for every Banach space Y.
(d) �d

p(lp′ , X∗) = B(lp′ , X∗).
(c′) W d

p (X, Y∗) ⊂ �p(X, Y∗) for every Banach space Y.
(d′) �p(X, lp) = B(X, lp).

Proof. Note that W d
p (X, lp) = B(X, lp). Thus, in the light of Proposition 3.1 and

Theorem 3.6, it is enough to show that (c)⇔(c′) and that (d′)⇒(d). Firstly, assume
that Wp(Y, X∗) ⊂ �d

p(Y, X∗) and let T ∈ W d
p (X, Y∗). Then T∗ · iY ∈ Wp(Y, X∗) ⊂

�d
p(Y, X∗). Thus, i∗Y · T∗∗ ∈ �p(X∗∗, Y∗) so that T = i∗Y · T∗∗ · iX ∈ �p(X, Y∗) [10,

2.4]. Therefore, W d
p (X, Y∗) ⊂ �p(X, Y∗). Next, let W d

p (X, Y∗) ⊂ �p(X, Y∗). If T ∈
Wp(Y, X∗), then by Theorem 3.4, T∗ = Sf · E∗

f for some f ∈ lwp (X∗). Thus, by Corollary
3.5, T∗ · iX ∈ W d

p (X, Y∗) ⊂ �p(X, Y∗). It follows from Proposition 2.19 in [10] that
T = i∗X · T∗∗ · iY ∈ �d

p(Y, X∗). Thus, Wp(Y, X∗) ⊂ �d
p(Y, X∗) so that (c)⇔(c′). Now let

1 < p < ∞ and assume that �p(X, lp) = B(X, lp). Let T ∈ B(lp′ , X∗). Then T∗ · iX ∈
B(X, lp) = �p(X, lp). Thus, i∗X · T∗∗ ∈ �d

p(lp′ , X∗). As lp′ is reflexive, we have T =
i∗X · T∗∗ so that �d

p(lp′ , X∗) = B(lp′ , X∗). Finally, suppose that �1(X, l1) = B(X, l1). Let
T ∈ B(c0, X∗). Then T∗ · iX ∈ B(X, l1) = �1(X, l1). Thus, i∗X · T∗∗ · ic0 ∈ �d

1(c0, X∗) so
that �d

1(c0, X∗) = B(c0, X∗). Therefore, (d′)⇒(d), which completes the proof. �

Some more consequences of Theorem 3.6 are in order.

COROLLARY 3.8. If 1 ≤ q ≤ p < ∞ and if X has the (p, q)-Dunford–Pettis property,
then it has the p-Dunford–Pettis property. In particular, X is a weak p-space.

COROLLARY 3.9. If X∗ has the p-Dunford–Pettis property, so does X. In other words,
if X∗ is a weak p-space, so is X.

Remark. The p = ∞ case of the above corollary, i.e. if X∗ has the classical
Dunford–Pettis property, so does X , was proved by Grothendieck [14].

Examples (1) Let X be an L∞-space. If 1 ≤ p ≤ 2, then X has the (p, 2)-DPP and
2 is sharp [13, 16]. If 2 < p < q < ∞, then X has the (p, q)-DPP and q is sharp, that
is to say (by the abuse of the language) that X has the almost p-DPP for every p > 2
[15, 20].
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(2) In view of Theorem 3.6, every L1-space has the above properties. In particular, c0

and l1 have the 2-DPP, the almost p-DPP if p > 2 and also the ∞-DPP (=Dunford–
Pettis property).

It is interesting to note that these are the only Lp-spaces with any (r, s)-DPP,
1 ≤ r, s ≤ ∞.

THEOREM 3.10. Let 1 < p < ∞. Then lp does not have the r-Dunford–Pettis property
for any r > 1. In other words, for 1 < p < ∞, lp is not a weak r-space for any r > 1.

Proof. We divide the proof in several parts.
Case 1. Let r ≥ max{p, p′}. Let {en} be the standard unit vector basis of lp and {fn} that
of lp′ . Then 〈en〉 ∈ lwr (lp) and 〈fn〉 ∈ lwr (lp′). Since 〈〈fk(en)〉k〉n = 〈〈δn

k〉k〉n /∈ ls
r(lr), where

δn
k is the Kronecker delta, we conclude that lp does not have the r-DPP if r ≥ max{p, p′}.

Before we proceed to the other cases, we need to prove the following lemma.

LEMMA 3.11. Let 1 ≤ s ≤ p′, where p′ is the harmonic conjugate of p, 1 < p < ∞.
Find t > s such that 1

s − 1
p′ = 1

t . Then for any 〈αn〉 ∈ lt, 〈αnen〉 ∈ lws (lp).

Proof of Lemma 3.11. If 〈βn〉 ∈ lp′ , then

( ∞∑
n=1

| 〈β, αnen〉 |s
)1/s

=
( ∞∑

n=1

|αnβn|s
)1/s

≤
( ∞∑

n=1

|αn|t
)1/t ( ∞∑

n=1

|βn|p′
)1/′

< ∞.

Thus, 〈αnen〉 ∈ lws (lp). �
Proof. Now we consider the other cases of the theorem.

Case 2. Let 1 < r < min{p, p′}. Find t1, t2 > 1 such that 1
t1

= 1
r − 1

p′ and 1
t2

= 1
r − 1

p .

Then 1
t1

+ 1
t2

= 2
r − 1 < 1

r . Thus, we can find 〈αn〉 ∈ lt1 and 〈βn〉 ∈ lt2 such that 〈αnβn〉 /∈
lr. Now by the above lemma 〈αnen〉 ∈ lwr (lp) and 〈βnfn〉 lwr (lp′). But

〈〈〈βkfk, αnen〉〉k〉n /∈ ls
r(lr).

Thus, lp does not have the r-DPP if 1 ≤ r < min{p, p′}.

Case 3. Let r lie between p and p′. Note that lp has the r-DPP if and only if lp′ has
the r-DPP. Thus, without any loss of generality, we may assume that p < r < p′. Find
t > 1 such that 1

t = 1
r − 1

p′ . Then r < t so that we can find 〈αn〉 ∈ lt with 〈αn〉 /∈ lr. Then
〈αnen〉 ∈ lwr (lp). Also, 〈fn〉 ∈ lwr (lp′). But

〈〈〈fk, αnen〉〉k〉n /∈ ls
r(lr).

Thus, lp does not have the r-DPP if r lies between p and p′.
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Finally, since �p(lp) �= B(lp), we conclude that both lp and lp′ do not have the p-
and p′-DPP. This completes the proof. �

COROLLARY 3.12. For 1 < p < ∞, lp does not have

(a) The (r, s)-Dunford–Pettis property if 1 < r, s < ∞.
(b) The (r, 1)-Dunford–Pettis property if 1 < r < ∞.
(c) The (1, r)-Dunford–Pettis property if 1 < r < ∞.

Proof. (a) For 1 < s ≤ r, if lp has the (r, s)-DPP then it also has the r-DPP. Thus, if
1 < s ≤ r < ∞, then lp does not have the (r, s)-DPP.

Next, let 1 < r < s. Find 〈αn〉 ∈ lws (lp) such that 〈αn〉 /∈ lwr (lp). Find β ∈ lp′ such that∑∞
n=1 | 〈β, αn〉 |r = ∞. Putting β1 = β and βn = 0 for n ≥ 2, 〈βn〉 ∈ lwr (lp′). However,

〈〈〈βk, αn〉〉k〉n /∈ ls
s(lr).

Thus, lp does not have the (r, s)-DPP for 1 < r, s < ∞.
Now both (b) and (c) can be obtained on the lines of (a). �

Note. We have not been able to settle whether for 1 < p < ∞, lp has the 1-DPP.

4. Towards norm summability. In this section we shall examine a condition that
forces every operator p-summable sequence to become norm-p-summable. Let X be a
Banach space and 1 ≤ p < ∞. If x ∈ lwp (X) is such that Ex ∈ �p(lp′ , X), then it follows
from Proposition 5.5(a) in [22] and by Proposition 2.4 that x is an operator p-summable
sequence in X . In the light of this observation, we propose to study an operator version
of the operator p-summable sequences.

DEFINITION 4.1. An operator T ∈ B(X, Y ) is said to be p-limited if T(BallX) is p-
limited in Y , and T is said to be sequentially p-limited if 〈Txn〉 is operator p-summable
for all 〈xn〉 ∈ lwp (X).

It follows from Proposition 2.4 that a sequence x = 〈xn〉 in X is operator p-
summable if and only if Ex ∈ B(lp′ , X) is a p-limited operator if and only if Ex ∈
�d

p(lp′ , X). Further, we have the following.

PROPOSITION 4.2. Let 1 ≤ p < ∞. Every p-limited operator T ∈ B(X, Y ) is
sequentially p-limited.

Proof. Let x = 〈xn〉 ∈ lwp (X). We may assume that ‖〈xn〉‖w
p ≤ 1 so that

Ex(Ball(lp′ )) ⊂ Ball(X). Since T(Ball(X)) is p-limited in Y , T(Ex(Ball(lp′ ))) is also
p-limited in Y . Now by Lemma 2.3, 〈Txn〉 is operator p-summable in Y . �

The following result will be used to characterize sequentially p-limited operator.

LEMMA 4.3. Let 1 ≤ p < ∞ and let α ∈ lwp (lp). Then α ∈ ls
p(lp) if and only if Eα ∈

�p(lp′ , lp) = �d
p(lp′ , lp). Here lp′ = c0 when p = 1.

Proof. When 1 < p < ∞, this fact follows from Remark (v) of Proposition 5.5 in
[22]. Thus, we may assume that p = 1. Again in this case, it follows from [22, Proposition
5.5(a)] that if Eα ∈ �1(c0, l1), then α ∈ ls

1(l1).
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Conversely, let α ∈ ls
1(l1), α = 〈αn〉 = 〈〈αk

n 〉k〉n such that αn = 〈αk
n 〉k ∈ l1 for all n.

Put α̃k = 〈αk
n 〉n for all k. Then

∞∑
k=1

∞∑
n=1

|αk
n | =

∞∑
n=1

∞∑
k=1

|αk
n | = ‖α‖s

1

so that α̃k ∈ l1 for all k with α̃ = 〈α̃k〉 ∈ ls
1(l1). If β = 〈βn〉 = 〈〈βm

n 〉m〉n ∈ lw1 (c0). Then

〈Eα(βn)〉n =
〈 ∞∑

m=1

βm
n αm

〉
n

=
〈〈 ∞∑

m=1

βm
n αk

m

〉
k

〉
n

= 〈〈(βn, α̃k〉k〉n.

Since

∞∑
k=1

∞∑
n=1

|(βn, α̃k)| ≤ ‖β‖w
1

∞∑
k=1

‖α̃k‖ = ‖β‖w
1 ‖α‖s

1,

we get 〈Eα(βn)〉n ∈ ls
1(l1) with ‖ 〈Eα(βn)〉n ‖s

1 ≤ ‖β‖w
1 ‖α‖s

1. Thus, Eα ∈ �1(c0, l1) with
π1(Eα) ≤ ‖α‖s

1. Since ‖α‖s
1 ≤ π1(Eα), we conclude π1(Eα) = ‖α‖s

1. �
THEOREM 4.4. Let T ∈ B(X, Y ). For 1 ≤ p < ∞, the following are equivalent:

(1) T is sequentially p-limited.
(2) TU ∈ �d

p(lp′ , Y ) for all U ∈ B(lp′ , X).
(3) ST ∈ �p(X, lp) for all S ∈ B(Y, lp).

Proof. That (1) is equivalent to (2) follows from Proposition 2.4.
Now let (1) hold. If S ∈ B(Y, lp) and x = 〈xn〉 ∈ lwp (X) so that Ex ∈ B(lp′), then

TEx ∈ �d
p(lp′ , X). Thus, by Lemma 4.3, it follows that STEx ∈ �d

p(lp′ , lp) = �p(lp′ , lp).
In other words, 〈STxn〉 ∈ ls

p(lp) so that ST ∈ �p(X, lp). Thus, (3) also holds. Finally,
we can trace back the proof to show that (3) implies (1). �

Remarks.
(1) If an operator T ∈ �p(X, Y ) ∪ �d

p(X, Y ), then T is sequentially p-limited.
(2) Every sequentially p-limited operator in B(X, lp) is in �p(X, lp).

Now we prove the following sequential characterization of subspaces of Lp(μ)
whose operator characterization was obtained by Kwapién [15].

THEOREM 4.5. Let 1 ≤ p < ∞. For a Banach space X, the following are equivalent:
(1) Every operator p-summable sequence in X is norm p-summable.
(2) �d

p(Y, X) ⊂ �p(Y, X) for every Banach space Y.

(3) �d
p(lp′ , X) = �p(lp′ , X).

(4) X is a subspace of Lp(μ) for some Borel measure μ[15].

Proof. The equivalence of (2) and (4) was proved by Kwapién [15].
Let (1) hold. Assume that T ∈ �d

p(Y, X) for some Banach space Y . If y = 〈yn〉 ∈
lwp (Y ), then Ey ∈ B(lp′ , Y ). Thus, TEy ∈ �d

p(lp′ , X). Now by Lemma 4.3 and assumption
(1), we get that 〈Tyn〉 ∈ lop

p (X) = ls
p(X). It follows that T ∈ �p(Y, X) so that (2) holds.
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Since �p(lp′ , X) ⊂ �d
p(lp′ , X) follows from [22], we may conclude that (2) implies

(3).
Finally, assume that (3) holds. Let x ∈ lop

p (X). Then Ex ∈ �d
p(lp′ , X) = �p(lp′ , X).

Now that x ∈ ls
p(X) again follows from [22]. This completes the proof. �

Recall that a Banach space X is said to have the Gelfand–Phillips property if
every limited set in X is relatively compact. Recall further that every limited set in
a Banach space is conditionally weakly compact [2]. We do not know about the
‘p-version’ of this result, possibly due to the absence of a p-prototype of a Rosenthal’s
l1-theorem. At the same time, let us note that in a Banach space, in which any operator
p-summable sequence is norm p-summable, a (relatively) weakly p-compact set is
(relatively) p-compact if and only if it is p-limited. Thus, the condition that every
operator p-summable sequence in a Banach space is norm p-summable can be seen as
a p-version of the Gelfand–Phillips property.

An operator ideal. Let 1 ≤ p < ∞. For a pair of Banach spaces X and Y, consider
the set Lt·p(X, Y ) of all sequentially p-limited operators in B(X, Y ). For T ∈ Lt·p(X, Y ),
we define

ltp(T) := sup{πp(ST) : S ∈ B(Y, lp)and‖S‖ ≤ 1}.

Then it is a routine to prove the following result.

PROPOSITION 4.6. For 1 ≤ p < ∞, (Lt·p, ltp) is a normed operator ideal.

Note. We have not been able to show whether in general Lt·p(X, Y ) is ltp-complete.
We, however, adopted the following approach.

Let X and Y be Banach spaces and T ∈ B(X, Y ). For any 1 ≤ p < ∞, we can define
ϕT : B(Y, lp) → B(X, lp) given by ϕT (S) = ST for all S ∈ B(Y, lp). Now it is easy to
show that T �→ ϕT is a linear isometry from B(X, Y ) into B(B(Y, lp), B(X, lp)); 1 ≤
p ≤ ∞. Moreover, if 1 ≤ p < ∞, it follows from Proposition 4.3 that T ∈ Lt·p(X, Y ) if
and only if ϕT (B(Y, lp)) ⊂ �p(X, lp). In this case for all T ∈ Lt·p(X, Y ), we have

ltp(T) = The operator norm of ϕT in B(B(Y, lp),�p(X, lp)).

We write for the completion of {ϕT : T ∈ Lt·p(X, Y )} in B(B(Y, lp),�p(X, lp)) by
Ltp(X, Y ) and denote the operator norm on Ltp(X, Y ) again by ltp(.). Thus, proposition
4.6 may be re-investigated in the following manner.

PROPOSITION 4.7. (Ltp, ltp) is a Banach operator ideal, 1 ≤ p < ∞.

Remarks.
(1) If x ∈ lwp (X) is operator p-summable, then ‖x‖w

p = ‖Ex‖ ≤ ltp(Ex) := ltp(x). If x ∈
ls
p(X), then ltp(x) ≤ ‖x‖s

p.
(2) For T ∈ �p(X, Y ), ‖T‖ ≤ ltp(T) ≤ π (T). If T ∈ �p(X, lp), then ltp(T) = πp(T).
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