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ABSTRACT

This article proposes a neural-network approach to predict and simulate human
mortality rates. This semi-parametric model is capable to detect and duplicate
non-linearities observed in the evolution of log-forces of mortality. The method
proceeds in two steps. During the first stage, a neural-network-based general-
ization of the principal component analysis summarizes the information car-
ried by the surface of log-mortality rates in a small number of latent factors.
In the second step, these latent factors are forecast with an econometric model.
The term structure of log-forces of mortality is next reconstructed by an inverse
transformation. The neural analyzer is adjusted to French, UK and US mor-
tality rates, over the period 1946–2000 and validated with data from 2001 to
2014. Numerical experiments reveal that the neural approach has an excellent
predictive power, compared to the Lee–Carter model with and without cohort
effects.
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1. INTRODUCTION

The improvement of longevity observed over the last century is a matter of
concerns for the insurance industry. This growth is explained by the reduc-
tion of mortality caused by infectious and chronic diseases at older ages. This
trend calls for more advanced techniques to manage the longevity risk. A pop-
ular framework for mortality rates is the model of Lee and Carter (1992). In
their approach, the log-force of mortality is the sum of a fixed age component
and of an age specific function multiplied by a time component. The robust-
ness of this approach contributes to its success among practitioners. We refer
the reader to Lee (2000), Pitacco (2004), Wong-Fupuy and Haberman (2004)
or Cairns (2008) for a review of various extensions of the Lee–Carter (LC)
model. Renshaw and Haberman (2003) propose a multi-factors version and
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Renshaw andHaberman (2006) augment the one factor LCmodel with a cohort
effect.

Three approaches exist for estimating the LC model and its various exten-
sions. The first one, pioneered by Lee and Carter (1992), counts two steps. In the
first stage, age components and latent time processes are obtained by a PCA. In
the second step, an autoregressive model or a random walk is fitted to forecast
the time effect. Yang et al. (2010) compare the performance of this calibration
procedure for variousmodels. Toczydlowska et al. (2017) propose a probabilistic
extension of PCA in a state-space framework.

The second approach of calibration is based on generalized linear models
(GLM). Brouhns et al. (2002) use a Poisson distribution and estimate param-
eters of a LC model by loglikelihood maximization. Renshaw and Haberman
(2006) adapt this approach for estimating an LC model with cohort effects.
O’Hare and Li (2012) study the mortality at young ages and Van Berkum et al.
(2016) detect structural change in the evolution of mortality with GLM. The
recent article of Currie (2016) provides a comprehensive survey on generalized
linear and non-linear models of mortality.

The third method for estimating parameters consists to perform the joint
inference of latent time processes and age parameters, in a single step by a
Markov ChainMonte Carlo (MCMC) method. Antonio et al. (2015) apply this
Bayesian approach to predict the joint mortality of multiple populations. Fung
et al. (2016, 2017) propose a state-space framework for mortality modeling with
cohort effects. This approach is computationally intensive but remedies to the
drawback of two-steps procedures that are somewhat ad-hoc methods, without
statistical foundations. In comparison to a state-space estimation, Fung et al.
(2015) show that estimating mortality models with a two-steps procedure leads
to underestimate annuity prices.

The first approach for estimating mortality models is based on PCA. The
PCA can be regarded as an extraction method that attempts to characterize
lower dimensional structure in large multi-variate datasets. When the data has
a non-linear structure, as it is the case for mortality rates, it will not be detected
by a PCA. In the early 1990s, a neural-network-based generalization of PCA
to the non-linear feature extraction problem was introduced by Kramer (1991)
in the chemical engineering literature, who referred to the resulting technique
as non-linear principal component analysis (NLPCA). Another solution to this
problem comes fromHastie and Stuetzle (1989), who named their method prin-
cipal curves and surfaces (PCS). Malthouse (1998) demonstrated that NLPCA
and PCS are closely related. Kramer’s NLPCA has been applied in various field:
chemical engineering (Dong andMcAvoy, 1996) to psychology (Fotheringhame
and Baddeley, 1997) or climatic mathematics (Monahan, 2000). In this article,
we use a NLPCA so as to summarize the surface of mortality rates.

Our work contributes to the literature in several directions. First, the pro-
posed model for mortality is non-linear and semi-parametric. Second, we use a
neural analyzer for identifying latent time processes. To the best of our knowl-
edge, only a few research articles apply neural networks to forecast mortality
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and in existing studies, the neural net is substituted to an econometric model
or to a linear regression. For example, Atsalakis et al. (2007) propose a neu-
ral network with fuzzy logic inference. Abdulkarim and Garko (2015) fit a
feed-forward neural network with a particle swarm algorithm so as to fore-
cast the maternal mortality in a region of Nigeria. Puddu and Menotti (2009)
use a multi-layer perceptron to predict the coronary heart disease mortality in
seven countries. Puddu and Menotti (2012) extend this approach to predict the
45-year all-cause mortality in Italian rural areas and they do not observe any
difference between the performance of multi-layer perceptrons or multiple lo-
gistic regressions. However, previous studies do not use a neural net to forecast
and simulate the complete term structure of mortality rates and are then not
adapted for actuarial applications. Furthermore, the neural network is not used
directly to predict the mortality. Instead, it summarizes the evolution of mor-
tality curves into latent factors that are extrapolated with a random walk. The
term structure of mortality rates is next reconstructed with the neural network.

Notice that our approach to estimate parameters is a two steps procedure.
In the first stage, we fit the neural net and filter latent processes representative of
time effects. In the second stage, we fit a random walk to forecast the evolution
of these latent variables. In our framework, the neural net defines the non-linear
function between latent processes and observed mortality rates. In theory, it is
then possible to perform the joint inference of latent time processes and neural
net parameters, in a single step by an MCMC method. However, this approach
would be more computationally intensive.

In numerical applications, the core of our analysis focuses on mortality rates
of the French population from 1946 to 2014. This sample of data is partitioned
in two subsets. The first one contains observations from 1946 to 2000 and serve
us to calibrate the neural analyzer. Whereas the second subset of mortality rates
from 2001 to 2014 is used for validation. The neural net is benchmarked to
several extensions of the LC model. We compare it to the original and multi-
factors LCmodel, estimated with a PCA.We also consider the LCmodel, fitted
by log-likelihood maximization in a GLM framework. Finally, we compare the
neural analyzer to the LC model with age specific cohort effect, as proposed by
Renshaw and Haberman (2006). All numerical experiments conclude that the
neural analyzer has an excellent predictive power compared to the LC model.
Finally, the calibration of the neural analyzer to UK and U.S. mortality data
confirms the robustness of our conclusions.

2. THE LEE–CARTER MODEL AND ITS EXTENSIONS

Lee and Carter (1992) proposed a pioneering model for mortality forecasting.
They assumed that log-forces of mortality have a linear structure with respect
to time and that covariates depend upon the age. This model became rapidly
a standard in the industry due to its robustness and easiness of implementa-
tion. Renshaw and Haberman (2003) extended this framework by proposing a
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multi-factor model which provides a better fit of mortality at old ages. Their
approach is based on a principal component analysis and for most of pop-
ulations, three factors explain at least three quarters of the variance of cen-
tered log-mortality rates. Renshaw and Haberman (2006) studied a model with
age-specific cohort and period effects. They also adapted Wilmoth (1993) and
Brouhns et al. (2002a) to estimate the LC model by log-likelihood maximiza-
tion, under Gaussian and Poisson error structures. As we use these models as
benchmark tomeasure the efficiency of the neural-network approach, we briefly
review them in this section.

Throughout the rest of this article, the time of decease of an individual of
age x is assimilated to the first jump of a non-homogeneous Poisson process,
that is denoted

(
Nx
t

)
t≥0. The intensity of the mortality Poisson process is called

the force of mortality or the mortality rate and depends upon time t and age x.
It is denoted by μ(t, x) and may be interpreted as the instantaneous probability
of death at time t, for an x-year old human. The mortality rate is also related to
the probability of survival till time s ≥ t by the following relation:

s px := P (τ ≥ s)

= E
(
Nx
s ≥ 1 | Nx

t

)
= exp−

∫ s

t
μ(s, x+ s − t) ds .

On the other side, the probability of dying at age x during year t, is the comple-
mentary probability of t px defined by

q(t, x) := 1 − exp
(

−
∫ t+1

t
μ(s, x+ s − t) ds

)
.

In the original LC model, the log mortality rates are related to ages as follows:

lnμ(t, x) = αx + βxκt, (1)

where αx ∈ R
xmax is a constant vector representing the permanent impact of age

onmortality.Whereas βx ∈ R
xmax is a constant vector that quantify the marginal

effect of the latent factor κt on mortality at each age. κt is a latent process that
describes the evolution of mortality over time. Notice that the LCmodel is itself
a parametric version of the Cox’s model (1972), in which covariates are replaced
by time-dependent latent factors.1

Actuarial models may distort reality as they only use the surface of log-
mortality rates as input. Authorizing insurers to have a broader access to in-
dividual’s medical data, would allow a better segmentation of risks. This would
permit to identify competing risks which are critical to calculate survival prob-
abilities, as underlined in the paper of Dimitrova et al. (2013) or Puddu et al.
(2017). Indirectly, this would also contribute to the development of new models
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with other covariates than just the insured’s age. But for the moment, the lack
of data prevents such an evolution.

The LC model is estimated by a two-stage procedure looking first at the ob-
servation equation as a regression (ignoring the latent factor structure explic-
itly). In the second stage, time-series models are adjusted to latent factors. In
Lee and Carter (1992), this regression is performed by a singular value decom-
position (SVD). This approach being well documented in the literature, we refer
to e.g. Pitacco et al. (2009) for details. Renshaw and Haberman (2006) adapted
Wilmoth (1993) and Brouhns et al. (2002a) to estimate the LC model by log-
likelihoodmaximization, in a GLM framework with aGaussian error structure.
We will compare these two methods of calibration in numerical applications. To
ensure the identifiability of the model, two constraints are imposed during the
calibration:

∑
x

βx = 1
∑
t

κt = 0. (2)

In multi-factors extensions of the LC model proposed by Renshaw and Haber-
man (2003), the log-force of mortality is a linear combination of d time latent
factors noted κ

i=1,...,d
t , with covariates that depend on the age as follows:

lnμ(t, x) = αx +
d∑
i=1

β i
xκ

i
t , (3)

where the β i=1...d
x ∈ R

xmax are constant vectors such that
∑

x β i
x = 1. κt =(

κ it
)
i=1...d are d latent processes satisfying the constraint

∑
t κ

i
t = 0 for i = 1. . .d,

to ensure the identifiability. This model is estimated by an SVD. The last model
that we consider, adds a cohort effect in the dynamic of log-force of mortality:

lnμ(t, x) = αx + βxκt + βg
xγt−x , (4)

where β
g
x ∈ R

xmax represents the marginal effect of a generation factor, γt−x , on
mortality. Renshaw andHaberman (2006) estimate this model by log-likelihood
maximization, in a GLM framework. We refer the interested reader to their ar-
ticle for details about the estimation procedure. Table 1 summarizes the models
to which our neural-network analyzer is compared in the sequel. It also presents
methods of calibration used for each approach.

In the second stage of the calibration procedure, a time-series model is spec-
ified for the latent processes. Most of authors use an AR(1) model or a random
walk with drift. In this article, we opt for the second choice and assume that
increments of κ it are Gaussian random variables with a mean γi and a variance
σ 2
i :

κ it − κ it−1 = γi + σi εt i = 1, . . . , d, (5)
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TABLE 1

SUMMARY OF MODELS TO WHICH THE NEURAL NET APPROACH IS COMPARED.

Calibration Symbol Log Mortality

Multi-factor SVD LC SVD lnμ(t, x) = αx + ∑d
i=1 β i

xκ
i
t

Lee–Carter

1D Lee–Carter Loglikelihood LC GLM lnμ(t, x) = αx + βxκt

Maximization

Lee–Carter with Loglikelihood LC COH lnμ(t, x) = αx + βxκt + β
g
xγt−x

Cohort Effects Maximization

where εt is a standard normal random variable. Other dynamics, like the switch-
ing regime diffusion in Hainaut (2012) have been proposed so as to detect a
change of trends in the evolution of mortality. But as the random walk model
became the standard in the industry, we adopt it as reference to forecast future
mortality rates by simulations. In the numerical illustration, we use a Jarque–
Bera (JB) test to validate the hypothesis that increments of κ it are normally dis-
tributed, at least during the most recent decades.

3. THE NEURAL NET ANALYZER

The main assumption underlying the LC model and its extensions is the lin-
ear dynamic of log-forces of mortality. This specification justifies to apply the
PCA to fit latent stochastic processes and age effects. PCA can be regarded as
an extraction method that attempts to characterize lower dimensional struc-
ture in large multi-variate datasets. If the underlying distribution is Gaussian,
then PCA is an optimal feature extraction algorithm. However, if the data has a
non-linear structure, as it could be the case for mortality rates, the PCA fails to
detect it.

In the early 1990s, a neural-network-based generalization of PCA was in-
troduced by Kramer (1991) in the chemical engineering literature, who referred
to the resulting technique as the NLPCA. Directly inspired from the literature
on neural networks, we propose here a neural net analyzer that detects the non-
linearities in the lower dimensional structure of the log-forces of mortality.

In our datasets, the available mortality forces range from year tmin to tmax and
from age xmin to xmax. The number of observations for a given year is noted nx =
xmax − xmin. Available demographic data contains the number of deaths aged x
per year, dx,t, and the exposure to risk, Ex,t. Notice that Ex,t is measured by the
size of the population aged x last birthday in the middle of the observation year
t. The death probability is then approached by qx = dx,t

Ex,t
. Under the assumption

that the force of mortality is a stepwise constant function on [t, t+1[×[x, x+1[,
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we calculate it as follows:

μ(s, y) = − ln (1 − q(t, x)) ∀ s ∈ [t, t + 1[ y ∈ [x, x+ 1[.

To compare our results with these yield by other models, we use as input for the
neural net the centered log-forces of mortality, denoted by

X(t) :=

⎛
⎜⎜⎜⎜⎜⎝

lnμ(t, xmin) − αxmin

...

lnμ(t, x) − αx
...

lnμ(t, xmax) − αxmax

⎞
⎟⎟⎟⎟⎟⎠ t = tmin, . . . , tmax.

X(t) is a vector of dimensions nx = xmin − xmax and αx is the vector of average
log-mortality rates:

αx = 1
tmax − tmin + 1

tmax∑
t=tmin

lnμ(t, x) x = xmin, . . . , xmax. (6)

We aim to determine two functions: an encoding and a decoding function. We
denote these functions by f enc : R

nx → R
d and f dec : R

d → R
nx . The encod-

ing function, f enc(.), is non-linear and projects curves of mortality rates at time
t, X(t) ∈ R

nx on a hyperplan of lower dimensions, in R
d . As in the multi-factor

LC model, the coordinates of the projection in R
d are contained in a d-plet

κnnt := (κ
nn,1
t , . . . , κ

nn,d
t ) such that

κnnt := f enc(X(t)) t = tmin, . . . , tmax.

The decoding function f dec(.) uses this summarized information to build an
approximation X̂(t) ∈ R

nx of the initial curve of log-mortality rates:

X̂(t) := f dec
(
κnnt

)
.

Compared to the original LC model, the linear relation βxκt is replaced by a
non-linear function and log-mortality forces are ruled by the following relation:

lnμ(t, x) = αx + f dec
(
x, κnnt

)
(7)

= αx + f dec
(
x, f enc (X(t))

)
.

The encoding and decoding functions are calibrated so as the minimize the sum
of squared residuals between initial and reconstructed mortality curves:

(
f enc, f dec

) = argmin
tmax∑
t=tmin

∥∥X(t) − X̂(t)
∥∥2

2 . (8)
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In the neural analyzer net, the functions f enc(.), f dec(.) are approximated by
two feed-forward neural networks. A neural net is a series of parallel layers of
interconnected neurons. A neuron in the i th layer receives as input, the output
of neurons located in the previous layer. Let n j be the number of neurons in
layer j . The output of the i th neurons in layer j , denoted by yi, j , is computed
as follows:

yi, j = φi, j

(n j−1∑
k=1

ω
j
i,kyk, j−1

)
,

where ω
j
i,k are the weights and φi, j () is a transfer function. In our framework,

two transfer functions are used. The first one is the hyperbolic tangent sigmoid
function, φsig(z) : R → (−1, 1), defined by

φsig(z) = 2
1 + exp (−z) − 1.

The second transfer function is the identity function: φid(z) = z. Cybenko
(1989) demonstrates that finite linear combinations of fixed univariate functions
with a set of affine functionals can uniformly approximate any continuous func-
tion with support in the unit hypercube. Hornik (1991) shows that it is not the
specific choice of the activation function, but rather themulti-layer feed-forward
architecture itself which gives neural networks the potential of being universal
approximators. He also proves that a three layers neural network with n1 input
neurons, hyperbolic transfer functions in the second layer, and linear transfer
functions in the third layer of n2 neurons can approximate to arbitrary accu-
racy any continuous function from R

n1 to R
n2 at the condition that the number

of neurons in the second layer is large enough. These fundamental results justify
our approach that consists to define f enc and f dec by feed-forward neural net-
works. We test the architecture recommended in McNelis (2005) and presented
in Figure 1.

The input and output layers count the same number of neurons, nl , with
a hyperbolic tangent sigmoid transfer function. Mortality log-forces, X(t) are
divided into nl groups of nc = nx

nl
elements. Each subgroup of data is sent ex-

clusively to a single neuron of the input layer. The central layer is a bottleneck
with d neurons that have a linear transfer function. The encoding phase is then
summarized by the following two operations:

yi,1(t) = φsig

(
nx∑
k=1

ω1
i,kXk(t)

)
i = 1, . . . , nl

κnn,it =
nl∑
k=1

ω2
i,kyk,1(t) i = 1, . . . , nd ,
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FIGURE 1: Architecture of the neural analyzer. (Color online)

where ω1
i,k �= 0 if xmin + (i − 1) nc ≤ k < xmin + i nc and ω1

i,k = 0 otherwise.
Whereas the decoding phase is given by the following two steps:

yi,3(t) = φsig

(
nd∑
k=1

ω3
i,kκ

nn,k
t

)
i = 1, . . . , nl ,

X̂i (t) =
nl∑
k=1

ω4
i,kyk,3(t) i = 1, . . . , nx ,

where ω4
i,k �= 0 if xmin + (k− 1) nc ≤ i < xmin + knc and ω4

i,k = 0 otherwise. The

weightsω
j
i,k are calibrated byminimizing the quadratic spread between the input

and the output, as defined in Equation (8). The dimension of X(t) being high,
the number of parameters to calibrate is important. Applying a gradientmethod
to adjust the network is then slow and the risk of staying eventually trapped in
local minimum during the gradient descent is non-negligible. For this reason,
we fit the neural analyzer with a genetic algorithm (GA) that is described in the
next section.

As for the LC model, we calibrate next nd random walks each component
of the d-plet κnnt := (κ

nn,1
t , . . . , κ

nn,d
t ) :

κ it − κ it−1 = γ nn
i + σ nn

i εt i = 1, . . . , d, (9)
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where εt is a standard normal random variable. We will see in the numerical
application that despite its relative simplicity, a random walk process provides
an excellent statistical fit to the time series of κ

nn,i
t .

4. GENETIC ALGORITHM (GA)

The main issue inherent to mortality models is the high dimension of the vector
of parameters. For this reason, estimating the weights of the neural net with a
gradient descent is time consuming. Instead, we adopt a two steps strategy. In
the first stage, we start the search of optimal parameters with a GA, developed
by McNelis (2005). We use next the solution found by this GA algorithm as
starting point of a gradient descent. The GA algorithm is a powerful evolution-
ary search process that proceeds in five steps.

1. The first step consists to create a population of candidate parameters. Con-
trary to a gradient descent, a GA does not start with one initial vector of
parameters, but with an initial population of N∗ (an even number) coeffi-
cient vectors, called the first generation. Letting nω be the total number of
coefficients to estimate, the first generation is the set of nω by N∗ random
vectors: P = {P1 , P2 . . . , PN∗ }.

2. The second step is called the selection.We choose randomly two pairs of coef-
ficients from the population, with replacement. We evaluate the goodness of
fit for these four coefficient vectors, in two pair-wise combinations, according
to the quadratic error function defined by Equation (8). Coefficient vectors
that come closer to minimizing the sum of errors receive better scores. This
is a simple tournament between the two pairs of vectors: the winner of each
tournament is the vector with the best scores. These two winning vectors P1,
P2 ∈ P are retained for “breeding” purposes.

3. The third step is the crossover, in which the two parents, selected during the
second stage, “breed” two children. The algorithm allows crossover to be
performed on P1 and P2, with a fixed probability p > 0. The algorithm uses
one of three different crossover operations, with eachmethod having an equal
1/3 probability of being chosen:
a. Shuffle crossover. We draw nω random numbers from a binomial distri-

bution. If the mth draw is equal to 1, the coefficients P1,m and P2,m are
swapped; otherwise, no change is made. The two vectors resulting from
these swaps are the children, denoted by C1 and C2.

b. Arithmetic crossover. A random number is chosen, δ ∈ (0, 1). This num-
ber is used to create two children that are linear combinations of the two
parent factors, C1 = δP1 + (1 − δ)P2 and C2 = (1 − δ)P1 + δP2.

c. Single-point crossover. For each pair of vectors, an integer I is randomly
chosen from the set[1, nω − 1]. The two vectors are then cut at integer I
and the coefficients to the right of this cut point, P1,1:I+1 and P2,1:I+1 are
swapped to produce C1 and C2.
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Following the crossover operation, each pair of parent vectors gives birth
to two children coefficient vectors. In case of no crossover, the children are
copies of their parents: C1 = P1 and C2 = P2.

4. The fourth step is the mutation of children. With some small probability
pmut that decreases over time, each coefficient of the two children’s vectors
is subjected to a mutation. We can draw a parallel between this step and
the simulated annealing method. Simulated annealing is a probabilistic tech-
nique, introduced byKhachaturyan et al. (1979) for approximating the global
optimum of a given function. Here, the probability of each element is sub-
ject to mutation in generation G = 1, 2, . . . ,G∗ given by the probability
pmut = 0.15 + 0.33

G . G is the generation number, G∗ is the maximum number
of generations. If mutation is to be performed on a vector element, we use
a non-uniform mutation operation, due to Michalewicz (1996) and recom-
mended by McNelis (2005). We draw two random numbers r1 and r2 from
the [0, 1] interval and one random number s from a standard normal distri-
bution. The mutated coefficient C̃i,k for i = 1, 2 and k = 1 to nω is given by
the following formula:

C̃i,k =

⎧⎪⎨
⎪⎩
Ci,k + s

(
1 − r

(1− G
G∗ )b

2

)
i f r1 > 0.5

Ci,k − s
(
1 − r

(1− G
G∗ )b

2

)
i f r1 ≤ 0.5,

where b is a parameter that governs the degree to which the mutation op-
eration is non-uniform. We set b = 2. With this approach, the probability
of creating via mutation a new coefficient that is far from the current coeffi-
cient value diminishes as G → G∗, where G∗ is the number of generations.
Thus, the mutation probability itself evolves through time. McNelis (2005)
mentions that the mutation operation is non-uniform since, over time, the
algorithm is sampling increasingly more intensively in a neighborhood of
the existing coefficient values. This more localized search allows for some
fine tuning of the coefficient vector in the later stages of the search, when the
vectors should be approaching close to a global optimum.

5. The fifth and last step is the election tournament. Following the mutation
operation, the four members of the “family” (P1, P2, C1, C2) engage in a
tournament. The score of children and parents ismeasured by their quadratic
errors, as defined by Equation (8). The two vectors with the best goodness
of fit, whether parents or children, survive and pass to the next generation,
while the two with the worst score are extinguished.

The above process is repeated, with parents returning to the population pool
for possible selection again, until the next generation is populated by N∗ vectors.

Once the next generation is populated, we introduce elitism. It consists to
evaluate all the members of new and past generations according to the score.
If the best member of the older generation performs better than the best mem-
ber of the new generation, this member replaces the worst member of the new
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TABLE 2

GOODNESS OF FIT FOR VARIANTS OF THE LC MODEL. THE FIRST AND SECOND COLUMNS REPORT THE
NUMBER OF LATENT FACTORS AND FITTED COEFFICIENTS. THE THIRD AND FOURTH COLUMNS PRESENT

THE SUM OF SQUARED ERRORS AND THE AVERAGE ERRORS. THE TWO LAST COLUMNS CONTAIN THE
MAXIMUM AND MINIMUM ERRORS.

French Population, 1946–2000

Model Coef.
∑ ∥∥X− X̂

∥∥2

2 Avg.
∥∥X− X̂

∥∥
2 max

(
X− X̂

)
min

(
X− X̂

)
LC SVD 1 180 152.50 0.0024 0.8567 −0.4330
LC SVD 2 270 139.35 0.0023 0.6398 −0.4352
LC SVD 3 360 134.61 0.0023 0.6364 −0.4350
LC GLM 180 29.31 0.0010 0.47017 −0.5515
LC COH 270 10.78 0.0006 0.28573 −0.2220

generation. One continues this process for G∗ generations. The literature gives
us little guidance about selecting a value for G∗. Since we evaluate convergence
by the score of the best member of each generation, G∗ should be large enough
so that we see no changes in the fitness values of the best for several generations.

5. APPLICATION TO THE FRENCH POPULATION

This section focuses on mortality rates observed for the French population
over the period 1946 to 2014. The data set is provided by the Human Mortaty
Database.2 Years before 1946 are excluded from the scope of the study given the
perturbations on mortality caused by the first and second world wars. The ages
considered range from 20 to 109 years. The LCmodels and the neural networks
are calibrated with mortality curves from year 1946 up to 2000. To compare the
predictive capability of models, log-forces of mortality are projected by simula-
tions over 14 years (10,000 simulations) and their average is compared with the
observed mortality during the period 2001–2014.

Table 2 reports the calibration errors of LC models with one to three latent
factors fitted with a SVD (LC SVD), of the LC model fitted by loglikelihood
maximization (LC GLM) and of the LC model with cohort effect (LC COH).
We present the sum of squared errors and the average of errors between ob-
served and modeled log-forces of mortality. The table also provides the maxi-
mum andminimum spreads and the number of fitted parameters. An analysis of
these figures reveals that calibrating the LCmodel with a SVD leads to a higher
quadratic error than the one obtained with statistical approaches. The best fit is
obtained with the model that includes a cohort effect.

We mention in Section 2 that it is common to assume that increments of la-
tent processes κ it follow a random walk with drift. This hypothesis of normality
is tested in Table 3 with the JB test, for the increments of a three dimensions LC
model observed over the period 1970–2000. The JB statistics clearly confirm
this assumption. However, the same test applied to the sample of increments
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TABLE 3

JARQUE–BERA TEST APPLIED TO INCREMENTS OF LATENT FACTORS OVER THE PERIOD 1970–2000, FOR THE
LC SVD 3 MODEL.

Jarque–Bera Statistics for
3D Lee–Carter

Factors Normality p-Value JB Statistic Critical Value 5%

κ1
t − κ1

t−1 Accept 0.1679 2.0286 4.4466
κ2
t − κ2

t−1 Accept 0.3555 1.2713 4.4466
κ3
t − κ3

t−1 Accept 0.3355 1.3327 4.4466

TABLE 4

PREDICTIVE GOODNESS OF FIT FOR VARIANTS OF THE LC MODEL. THE FIRST AND SECOND COLUMNS
REPORT THE NUMBER OF LATENT FACTORS AND FITTED COEFFICIENTS. THE THIRD AND FOURTH COLUMNS
PRESENT THE SUM OF SQUARED ERRORS AND THE AVERAGE ERRORS. THE TWO LAST COLUMNS CONTAIN

THE MAXIMUM AND MINIMUM ERRORS.

French Population, 2001–2014

Dim. Coef.
∑ ∥∥X− X̂

∥∥2

2 Avg.
∥∥X− X̂

∥∥
2 max

(
X− X̂

)
min

(
X− X̂

)
LC SVD 1 180 38.37 0.0049 0.7006 −0.1297
LC SVD 2 270 38.89 0.0049 0.7088 −0.1293
LC SVD 3 360 38.50 0.0049 0.6618 −0.1287
LC GLM 180 11.68 0.0027 0.5532 −0.1724
LC COH 270 17.65 0.0026 0.5329 −0.1377

over the whole period of calibration (1946–2000) leads to the rejection of nor-
mality for the second latent factor. We can draw a parallel with the conclusions
of Hainaut (2012) who fits a switching regime process to latent processes. This
analysis clearly reveals a change of regime between 1960 and 1970. The same
conclusions apply to latent processes of LC GLM and LC COH models. This
change of trend may be explained by the reduction of mortality caused by coro-
nary heart diseases, following two vast prevention campaigns launched during
the 60s. For this reason, the random walks used in simulations to predict the
evolution of log-forces of mortality are fitted to increments of κ it observed only
between 1970 and 2000.

The results about the predictive capability of LC models are reported in Ta-
ble 4. An analysis of the sum of squared errors emphasizes that the performance
of models fitted by SVD with one to three factors are nearly identical. The pre-
dictive capability of the model with a cohort effect is slightly less good than
the one of a LC model estimated by log-likelihood maximization. These figures
will be compared to these obtained with the neural net analyzer in the next
paragraphs.

The neural network is fitted to the same dataset of log-forces of mortality
from 1946 to 2000. Several neural architectures are tested: from three to eight
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TABLE 5

GOODNESS OF FIT FOR THE NEURAL-NETWORK MODEL. THE FIRST, SECOND AND THIRD COLUMNS REPORT,
RESPECTIVELY, THE NUMBER OF INPUT/OUTPUT NEURONS, OF LATENT FACTORS AND OF FITTED

COEFFICIENTS. THE FOURTH AND FIFTH COLUMNS PRESENT THE SUM OF SQUARED ERRORS AND THE
AVERAGE ERRORS. THE TWO LAST COLUMNS CONTAIN THE MAXIMUM AND MINIMUM ERRORS.

French Population, 1946–2000.

nl nd Coef.
∑ ∥∥X− X̂

∥∥2

2 Avg.
∥∥X− X̂

∥∥
2 max

(
X− X̂

)
min

(
X− X̂

)
3 2 552 15.04 0.0008 0.2988 −0.3953
4 2 736 13.37 0.0007 0.3066 −0.3862
5 2 920 12.64 0.0007 0.3088 −0.3678
6 2 1,104 12.18 0.0007 0.3047 −0.3603
7 2 1,288 12.15 0.0007 0.3142 −0.3678
8 2 1,472 11.97 0.0007 0.3085 −0.3648

3 3 558 14.83 0.0008 0.3027 −0.3961
4 3 744 12.64 0.0007 0.3081 −0.3894
5 3 930 11.85 0.0007 0.3072 −0.3721
6 3 1,116 11.56 0.0007 0.3101 −0.3658
7 3 1,302 10.68 0.0007 0.2896 −0.3336
8 3 1,488 9.71 0.0006 0.2844 −0.3141

neurons for the input/output layers and two to three neurons for the interme-
diate layer. The size of populations in the GA is set to 100 vectors of candidate
parameters and we consider 500 generations. The time to calibrate the neural
net on a personal computer varies between 5 and 15 minutes, depending on the
processor.

The calibration errors are reported in Table 5. A comparison with errors
presented in Table 2 confirms that the neural analyzer outperforms LC models
fitted by SVD and provides a comparable or better fit than LC GLM and LC
COH, depending upon the configuration of neurons. Increasing the number of
neurons in the input/output layer improves the goodness of fit. The quadratic
error obtained with a 8–3–8 neural net (eight input/output and three interme-
diate neurons) is lower than the one for the LC COHmodel. This confirms that
the neural net approach captures age-specific cohort effects.

Figure 2 shows filtered latent factors by tested neural networks. For most
of configurations, the latent processes κ

nn,i
t exhibit a quasi-linear trend, either

increasing or decreasing. As for the LC model, we assume that increments of
latent factors follow a random walk with drift for the prediction. This hypoth-
esis is checked with a JB test for the 3–2–3 neural net, over the period 1970–
2000. Statistics of this test, reported in Table 6, confirm the reliability of this
assumption.As for LCmodels, the same test applied to the sample of increments
over the whole period of calibration (1946–2000) rejects the normality for the
first latent factor. If we look to the evolution of this process (first graph of Fig-
ure 2), we observe a change of trend between periods 1948–1960 and 1960–2000.
As mentioned previously, this change of trend may be partly explained by the
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FIGURE 2: Latent processes, κnn,it , filtered with different configurations of neural networks. The title of each
graph reports, respectively, the number of neurons in the input/intermediate/output layers. (Color online)

reduction of mortality caused by coronary heart diseases, following two preven-
tion campaigns launched around the 60s.

To validate the predictive capability of the neural model, we forecast log-
forces of mortality over 14 years and compare them to the real rates observed
over the period 2001–2014. A total of 10,000 simulations are performed and we
consider as forecast, the yearly average of simulated log-mortality rates. Table 7
presents the errors of estimation. A comparison with errors of LC models con-
firms the excellent predictive power of the neural network: the sum of squared
errors falls to 8.17, for the 3–2–3 configuration, whereas the predictive error
of the LC model with cohort effects has a predictive error of 17.65. Figure 3
compares predicted and real log-forces of mortality for years 2001 and 2014,
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TABLE 6

JARQUE–BERA TEST APPLIED TO INCREMENTS OF LATENT FACTORS OVER THE PERIOD 1970–2000, FOR
NEURAL ANALYZER WITH THREE NEURONS IN INPUT/OUTPUT LAYERS AND TWO NEURONS IN THE

INTERMEDIATE LAYER.

Jarque–Bera Statistics for a 3–2–3 Neural Net

Factors Normality p-Value JB Statistic Critical Value 5%

κ
nn,1
t − κ

nn,1
t−1 Accept 0.5000 0.0762 4.4496

κ
nn,2
t − κ

nn,2
t−1 Accept 0.3698 1.2296 4.4496

TABLE 7

PREDICTIVE GOODNESS OF FIT FOR THE NEURAL-NETWORK MODEL. THE FIRST AND SECOND COLUMNS
REPORT THE NUMBER OF LATENT FACTORS AND FITTED COEFFICIENTS. THE THIRD AND FOURTH COLUMNS
PRESENT THE SUM OF SQUARED ERRORS AND THE AVERAGE ERRORS. THE TWO LAST COLUMNS CONTAIN

THE MAXIMUM AND MINIMUM ERRORS.

French Population, 2001–2014, Forecast.

nl nd Coef.
∑ ∥∥X− X̂

∥∥2

2 Avg.
∥∥X− X̂

∥∥
2 max

(
X− X̂

)
min

(
X− X̂

)
3 2 552 8.17 0.0023 0.4922 −0.1474
4 2 736 9.60 0.0025 0.4607 −0.1587
5 2 920 10.84 0.0026 0.4567 −0.1788
6 2 1,104 14.20 0.0030 0.4549 −0.1705
7 2 1,288 16.51 0.0032 0.4498 −0.1647
8 2 1,472 16.62 0.0032 0.4408 −0.1754

3 3 558 9.09 0.0024 0.5021 −0.1470
4 3 744 9.71 0.0025 0.4701 −0.1546
5 3 930 10.57 0.0026 0.4603 −0.1628
6 3 1,116 10.81 0.0026 0.4333 −0.1875
7 3 1,302 14.24 0.0031 0.4084 −0.1902
8 3 1,488 17.43 0.0033 0.5053 −0.1914

with this configuration of neurons. A deeper analysis of figures in Table 7 re-
veals that increasing the number of neurons deteriorates the predictive power
of networks. In particular, the 8–3–8 neural net yields the highest prediction
error, despite having the lowest calibration error. This phenomenon is related to
the mechanism of overfitting. Overfitting occurs when the model is excessively
complex, such as having too many parameters relative to the number of obser-
vations. An overfitted model has poor predictive performance and it overreacts
to minor fluctuations in the training data. Overfitting may easily be avoided by
choosing the neural-network architecture that offers the best trade-off between
calibration and prediction errors. In our case, the predictive power of the 3–2–3
configuration (three input/output and two intermediate neurons) being excel-
lent and its calibration error being close to the one of the LC COH model, the
remainder of this section focuses on this network.
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FIGURE 3: The left and right plots compare the real log-mortality rates in 2014/2001 to the average log-forces
of mortality simulated with the 3–2–3 neural analyzer. A total of 10,000 simulations are realized.

(Color online)

The left and right plots of Figure 4, respectively, present a breakdown of
means and standard deviations of relative average errors of calibration, per age,
and for the period 2001–2014. The 3–2–3 network is here compared to LCmod-
els with (LC GLM) and without cohort effects (LC COH). The fact that stan-
dard deviations of these errors for all models continuously increase with age, is
inherent to the hypothesis of linearity of log-forces of mortality with respect to
latent factors. Excepted for ages above 80 years, the deviation of relative errors
for the neural net is nearly constant and may then be attributed to measurement
errors, which is a desirable quality for a model. Before 50 years, the average of
relative errors for the 3–2–3 net is close to zero For the age group 50 to 80, aver-
age relative errors and their deviations computed with the neural net are lower
in absolute value than these obtained by other approaches.

If we look to the left plot of Figure 4, we observe a clear cut in the evolution
of relative average errors at the age of 50 years. This cut comes from the con-
figuration of the neural analyzer: we have three input/output neurons affected,
respectively, and exclusively to three age groups. The first input neuron receives
only information about the mortality between the ages of 20 and 50 years and
this deteriorates the goodness of fit around the age of 50. It is probably possi-
ble to improve the calibration by sharing some information between adjacent
neurons.

Figure 5 illustrates the influence of latent factors filtered by a 3–2–3 neural
net on the term structure of log-forces ofmortality (forecast, year 2014). The left
plot emphasizes that κ

nn,1
t mainly influences log-mortality rates between 20 and

50 years old. Increasing κ
nn,1
t reduces log-mortality rates for this age group and

slightly increases log-forces of mortality for ages 50 and above. The right graph
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FIGURE 4: Breakdown of means and standard deviations of relative average errors of calibration, per age. We
compare the LC GLM and LC COH models to the 3–2–3 neural network. (Color online)

shows that the second latent factor κ
nn,2
t mainly concerns individuals aged be-

tween 51 and 109 years. Increasing κ
nn,2
t reduces log-mortality rates for this age

range and slightly increases rates for ages before 50. Compared to LC models,
latent factors yield by the neural net offer then the same ease of interpretation.

Table 8 compares the moments of simulated log-forces of mortality, pre-
dicted by the cohort LC model and the 3–2–3 neural analyzer. The forecasts
are computed for the year 2010, with models fitted to data from 1946–2000.
Figure 6 shows the densities of lnμ(2010, 40) obtained by simulations. These
statistics and the graph emphasize that distributions of simulated log-forces of
mortality display visible differences depending on the model. With the neural
analyzer, the distribution exhibits a higher variance than for the LC model and
right asymmetry. Whereas log-mortality rates predicted by the neural net are
slightly leptokurtic, they are strictly Gaussian in the cohort LC model.3 It is
interesting to compare simulated moments to these calculated with past mor-
tality rates, over the period 1946–2010. We observe that the empirical historical
distribution also displays a right asymmetry that is not present in the LCmodel.
The historical variance is alsomuch higher than the one predicted by the LC and
neural models. The distribution is leptokurtic at 20 years old, and the kurtosis
decreases next with age. However, these statements must be nuanced given the
limited number of observations available to calculate these statistics.
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FIGURE 5: 3–2–3 neural network: sensitivity of log-mortality rates to variations of latent factors.
(Color online)

FIGURE 6: Comparison of simulated densities for lnμ(2010, 40), yield by the LC with cohort effect and the
3–2–3 neural model. (Color online)

We pursue our analysis of LC and neural networks by a comparison of
cross-sectional lifetime expectancies predicted by models, over the period 2001–
2014. The lifetime expectancy for a x years old individual on year t, is defined
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TABLE 8

THIS TABLE COMPARES MOMENTS OF LOG-FORCES OF MORTALITY SIMULATED BY THE NEURAL ANALYZER
(THREE INPUT/OUTPUT NEURONS AND TWO INTERMEDIATE NEURONS) AND THE COHORT LC MODEL. A

TOTAL OF 10,000 SIMULATIONS ARE PERFORMED AND RATES ARE COMPUTED AGE 20, 40, 60 AND 80, FOR
THE YEAR 2010. THE THIRD SUB-TABLE REPORTS THE MOMENTS OF OBSERVED LOG-FORCES OF MORTALITY

OVER THE PERIOD 1946–2010.

20 years 40 years 60 years 80 years

3–2–3 Neural Analyzer

E (lnμ(t, x)) −7.4532 −6.8255 −5.1414 −3.3868
std (lnμ(t, x)) 0.0690 0.07972 0.031125 0.037625
S (lnμ(t, x)) 0.0714 0.07142 0.16981 0.16981
K (lnμ(t, x)) 2.9881 2.9881 3.1085 3.1088

Cohort LC Model (LC COH)

E (lnμ(t, x)) −7.3365 −6.7959 −4.9346 −3.4342
std (lnμ(t, x)) 0.0853 0.04085 0.0291 0.0623
S (lnμ(t, x)) −0.0416 −0.0024 −0.0023 −0.0023
K (lnμ(t, x)) 2.9772 2.9660 2.9282 2.9791

Historical Log-Mortality Rates (1946–2010)

E (lnμ(t, x)) −6.5021 −5.8614 −4.3754 −2.604
std (lnμ(t, x)) 0.7993 0.6400 0.3858 0.3814
S (lnμ(t, x)) 1.2508 1.1690 0.4596 0.0881
K (lnμ(t, x)) 3.1277 2.9206 2.3744 2.0588

as follows:

ex(t) :=
xmax∑
s=1

s px(t) ,

where s px(t) is the survival probability from age x to age x+ s, calculated with
cross-sectional mortality rates:

s px(t) = exp
(

−
∫ s

0
μ(t, x+ u) du

)

≈ exp

(
−

s−1∑
k=0

μ(t, x+ k)

)
.

Table 9 presents information about cross-sectional lifetime expectancies at 20,
40, 60, 80 years old obtained with the cohort LC model (LC COH). A total
of 10,000 simulations are performed and lifetime expectancies are computed
scenario per scenario. Averages of predicted expectancies are reported in the
first-third of the table. These figures forecast that the maximum improvement
of longevity concerns the 20 years individuals who gain 2.2 years of lifetime
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TABLE 9

COHORT LEE–CARTER MODEL (LC COH): AVERAGE CROSS-SECTIONAL LIFETIME EXPECTANCIES AND
THEIR SPREAD WITH REAL EXPECTANCIES.

e20(t) e40(t) e60(t) e80(t)

2001 60.394 41.251 23.665 8.998
2005 61.111 41.899 24.312 9.382
2010 61.943 42.650 25.071 9.857
2014 62.592 43.241 25.637 10.236

eObs
20 (t) − e20(t) eObs

40 (t) − e40(t) eObs
60 (t) − e60(t) eObs

80 (t) − e80(t)

2001 −0.0115 0.0137 0.0143 0.0076
2005 0.2509 0.2087 0.0804 0.0026
2010 0.4723 0.4355 0.1648 0.1001
2014 0.7631 0.6995 0.2337 0.1959

TABLE 10

3–2–3 NEURAL NET: AVERAGE CROSS-SECTIONAL LIFETIME EXPECTANCIES AND THEIR SPREAD WITH REAL
EXPECTANCIES.

eNN
20 (t) eNN

40 (t) eNN
60 (t) eNN

80 (t)

2001 60.392 41.247 23.635 8.9842
2005 61.125 41.913 24.19 9.3227
2010 61.971 42.685 24.839 9.7315
2014 62.588 43.25 25.316 10.043

eObs
20 (t) − eNN

20 (t) eObs
40 (t) − eNN

40 (t) eObs
60 (t) − eNN

60 (t) eObs
80 (t) − eNN

80 (t)

2001 −0.0092 0.0174 0.0446 0.0217
2005 0.2367 0.1947 0.2018 0.0628
2010 0.4444 0.4012 0.3975 0.2264
2014 0.7676 0.6909 0.5548 0.3891

expectancy between 2001 and 2014. This improvement is slightly lower than
the real one observed over this period (2.99 years). The LC model underesti-
mates the improvement of longevity by 0.20 years for an 80 years old person to
0.76 years for a 20 years old individual, in 2014.

Table 10 presents information about cross-sectional lifetime expectancies at
20, 40, 60, 80 years old computed with the 3–2–3 neural analyzer. As for the
LC model, the maximum improvement of longevity concerns the 20 years old
generation who gains on average 2.19 years of lifetime expectancy between 2001
and 2014. In a similar way to the LCCOHmodel, the neural net underestimates
the real improvement of longevity observed over this period.

https://doi.org/10.1017/asb.2017.45 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.45


502 D. HAINAUT

2000 2020 2040 2060 2080 2100
60

65

70

75
e

20 y
(t) Cohort Lee Carter

e
20 y

(t) GLM Lee Carter

e
20 y

(t) 3D SVD Lee Carter

e
20 y

(t) Neural Net

2000 2020 2040 2060 2080 2100
22

24

26

28

30

32

34

36

e
60 y

(t) Cohort Lee Carter

e
60 y

(t) GLM Lee Carter

e
60 y

(t) 3D SVD Lee Carter

e
60 y

(t) Neural Net

FIGURE 7: Predicted cross-sectional lifetime expectancies with LC and neural models, over the period
2001–2100. (Color online)

The neural analyzer predicts realistic log-mortality rates over a short period
of time, following the last year of calibration. However, does it remains reli-
able for long-term forecasting? To answer this question, we calculate the cross-
sectional lifetime expectancies of a 20, 40, 60 and 80 years old individual, from
2001 to 2100. The evolution of expectancies at 20 and 60 years old are shown
in Figure 7. The lifetime expectancies, computed with a 3D LC model fitted by
SVD grow, respectively, linearly from 60 to 65 years and from 23 to 27 years.
The same expectancies forecasted by the LCGLMmodel, respectively, increase
from 60 to 74 and from 23 to 35 years. Whereas the LC model with cohort ef-
fects predicts a rise from 60 up to 74 and 23 up to 35 years. Life expectancies
computed with the neural net display a concave growth. They dominate these
yield by the LC model but are below the forecasts of LC GLM and LC COH
models, excepted over the period 2000–2020. Table 11 compares life expectan-
cies predicted by LC COH and neural net models, for different ages and years.
According to the neural analyzer, the average lifetime will, respectively, increase
of 8 and 5 years for a 20 and 80 years old individual, over the next century.
Whereas the LC COH forecasts an increase of 12 and 8 years for persons aged
20 and 80 years. We cannot say which model is the most reliable for long-term
forecast of log-forces of mortality. However, the neural net approach predicts
realistic projections.
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TABLE 11

LONG TERM PREDICTIONS OF CROSS-SECTIONAL LIFE EXPECTANCIES, COMPUTED BY SIMULATIONS WITH
THE COHORT LC AND NEURAL MODELS, OVER THE PERIOD 2001–2100.

eNN
20 (t) eNN

40 (t) eNN
60 (t) eNN

80 (t)

2001 60.400 41.255 23.642 8.9887
2025 64.088 44.636 26.505 10.863
2050 66.453 46.851 28.454 12.369
2100 68.621 48.919 30.358 14.098

eLCCOH
20 (t) eLCCOH

40 (t) eLCCOH
60 (t) eLCCOH

80 (t)

2001 60.367 41.223 23.656 8.9891
2025 63.842 44.485 26.899 11.123
2050 67.542 48.068 30.33 13.232
2100 72.603 52.942 35.318 16.895

6. COMPARISON WITH THE UK AND U.S. POPULATIONS

In this section, we check that the neural-net approach efficiently explain theU.S.
and UK mortality. Table 12 reports calibration errors for LC models with and
without a cohort effect and for neural nets, fitted to UK log-forces of mortality,
from 1946 up to 2000. As for the French population, the LC model with a co-
hort effect yields a low calibration error. However, neural nets achieve similar or
better performances, depending upon the configuration. We also observe that
increasing the number of neurons systematically reduces the calibration error.
According to figures of Table 13, the predictive power of the LC COH over the
period 2001–2013 is lower than the one of the LCmodel, fitted by log-likelihood
maximization. For the UK population, the 3–2–3 network displays an excellent
predictive capability compared to other neural configurations and to competing
models. Tables 14 and 15 report the calibration and prediction errors for models
adjusted to U.S. mortality rates. The lowest calibration errors are obtained with
neural nets and three intermediate neurons. Despite that the LC COH model
has an excellent explanatory power for the period 1946–2000, its predictive ca-
pability is clearly lower than these of neural nets, whatever their configuration.
Contrary to French and UK cases, we do not observe any deterioration of pre-
dictive errors when we increase the number of neurons. We conclude form this
analysis that the efficiency of the neural net analyzer does not depend upon the
reference dataset.

7. CONCLUSIONS

This study proposes a new method based on a neural network to predict and
simulate the future human mortality. Contrary to previous attempts in the lit-
erature, the neural network is not used as a substitute to an econometric model.
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TABLE 12

GOODNESS OF FIT FOR EXTENSION OF THE LC MODEL AND NEURAL NETS. THE SECOND AND THIRD
COLUMNS PRESENT THE SUM OF SQUARED ERRORS AND THE AVERAGE ERRORS. THE TWO LAST COLUMNS

CONTAIN THE MAXIMUM AND MINIMUM ERRORS.

UK Population, 1946–2000

Model
∑ ∥∥X− X̂

∥∥2

2 Avg.
∥∥X− X̂

∥∥
2 max

(
X− X̂

)
min

(
X− X̂

)
LC SVD 1 131.4 0.0023 0.9390 −0.4606
LC SVD 2 114.08 0.0021 0.7845 −0.3871
LC SVD 3 111.18 0.0021 0.7509 −0.3748
LC GLM 32.85 0.0011 0.3484 −0.4444
LC COH 8.946 0.0005 0.2478 −0.1962

NN 3–2–3 15.16 0.0008 0.2104 −0.2927
NN 4–2–4 11.01 0.0007 0.2119 −0.2789
NN 5–2–5 10.09 0.0006 0.2076 −0.2655

NN 4–3–4 9.04 0.0006 0.1934 −0.2751
NN 5–3–5 7.74 0.0006 0.2153 −0.2673
NN 6–3–6 7.79 0.0006 0.2329 −0.2577

TABLE 13

PREDICTIVE GOODNESS OF FIT FOR LC MODELS AND NEURAL NETWORKS. THE SECOND AND THIRD
COLUMNS PRESENT THE SUM OF SQUARED ERRORS AND THE AVERAGE ERRORS. THE TWO LAST COLUMNS

CONTAIN THE MAXIMUM AND MINIMUM ERRORS.

UK Population, 2001–2013

Model
∑ ∥∥X− X̂

∥∥2

2 Avg.
∥∥X− X̂

∥∥
2 max

(
X− X̂

)
min

(
X− X̂

)
LC SVD 1 27.43 0.0044 0.5337 −0.0974
LC SVD 2 26.90 0.0044 0.5865 −0.1022
LC SVD 3 26.68 0.0044 0.5648 −0.1035
LC GLM 11.68 0.0027 0.5532 −0.1723
LC COH 13.38 0.0026 0.3631 −0.2311

NN 3–2–3 12.83 0.0028 0.5179 −0.1410
NN 4–2–4 13.13 0.0029 0.5228 −0.1750
NN 5–2–5 14.18 0.0030 0.5409 −0.1382

NN 4–3–4 13.54 0.0029 0.5215 −0.1300
NN 5–3–5 14.38 0.0030 0.5310 −0.1043
NN 6–3–6 14.55 0.0030 0.5517 −0.1358

Instead, it summarizes the information carried by the surface of log-forces of
mortality in a limited number of latent factors. These factors are next extrap-
olated and future term structures of mortality rates are obtained by an inverse
transform. Given the important number of parameters, a GA combined to a
gradient descent, is used to calibrate the network.
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TABLE 14

GOODNESS OF FIT FOR EXTENSIONS OF THE LC MODEL AND NEURAL NETS. THE FIRST AND SECOND
COLUMNS REPORT THE NUMBER OF LATENT FACTORS AND FITTED COEFFICIENTS. THE THIRD AND FOURTH
COLUMNS PRESENT THE SUM OF SQUARED ERRORS AND THE AVERAGE ERRORS. THE TWO LAST COLUMNS

CONTAIN THE MAXIMUM AND MINIMUM ERRORS.

US Population, 1946–2000

Model
∑ ∥∥X− X̂

∥∥2

2 Avg.
∥∥X− X̂

∥∥
2 max

(
X− X̂

)
min

(
X− X̂

)
LC SVD 1 81.69 0.0018 0.4293 −0.3642
LC SVD 2 76.02 0.0017 0.3108 −0.3756
LC SVD 3 73.18 0.0017 0.3222 −0.3560
LC GLM 12.26 0.0007 0.1863 −0.2456
LC COH 6.23 0.0004 0.1403 −0.1966

NN 3–2–3 8.19 0.0006 0.1441 −0.1801
NN 4–2–4 6.55 0.0005 0.1363 −0.1675
NN 5–2–5 6.40 0.0005 0.1852 −0.1980

NN 4–3–4 5.61 0.0005 0.1452 −0.1574
NN 5–3–5 5.46 0.0005 0.1713 −0.1831
NN 6–3–6 4.75 0.0004 0.1639 −0.1796

Numerical tests performed on the French, UK and U.S. log-forces of mor-
tality, emphasizes that the neural analyzer outperforms LCmodel and its multi-
factor extensions, fitted by SVD or log-likelihood maximization. The neural net
approach has an explanatory power that is comparable or even better the LC
model with age specific cohort effects. On the other hand, the latent factors
filtered by the neural network exhibit a clear linear trend and JB tests confirm
that it is not absurd to forecast them with a simple random walk.

A comparison of average of predicted mortality rates with observed rates
over the period 2001–2014 underlines the excellent predictive power of the neu-
ral approach, compared to competing models. However, the number of neu-
rons must be chosen carefully to avoid over-parameterization. In particular, for
French and UK population, the predictive power of the neural net worsens if
there are too many neurons.

The average relative errors for neural nets and their standard deviations are
lower than these obtained with an LC model with cohort effects. Excepted for
ages above 80 years, the deviation of relative errors is nearly constant, which is
a desirable quality for a model. The probability density function of future log-
forces of mortality forecast by the neural net differs from the one obtained with
the cohort LCmodel. More precisely, the density displays a higher variance and
leptokurticity and a small right asymmetry. Finally, the neural analyzer predicts
believable long-term life expectancies.

Neural-network models are promising for applications in actuarial sciences
and there are many tracks for further research. In particular, it would be in-
teresting to extend our approach to explain the joint evolution of mortality of
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TABLE 15

PREDICTIVE GOODNESS OF FIT FOR LC MODELS AND NEURAL NETWORKS. THE FIRST AND SECOND
COLUMNS REPORT THE NUMBER OF LATENT FACTORS AND FITTED COEFFICIENTS. THE THIRD AND FOURTH
COLUMNS PRESENT THE SUM OF SQUARED ERRORS AND THE AVERAGE ERRORS. THE TWO LAST COLUMNS

CONTAIN THE MAXIMUM AND MINIMUM ERRORS.

US Population, 2000–2015

Model
∑ ∥∥X− X̂

∥∥2

2 Avg.
∥∥X− X̂

∥∥
2 max

(
X− X̂

)
min

(
X− X̂

)
LC SVD 1 15.61 0.0029 0.2998 −0.2311
LC SVD 2 19.31 0.0032 0.3082 −0.3035
LC SVD 3 21.26 0.0034 0.2945 −0.2866
LC GLM 10.73 0.0024 0.2020 −0.3567
LC COH 25.73 0.0032 0.1931 −0.6505

NN 3–2–3 11.86 0.0027 0.2152 −0.3409
NN 4–2–4 13.58 0.0029 0.2223 −0.3700
NN 5–2–5 14.75 0.0030 0.2170 −0.3615

NN 4–3–4 15.28 0.0031 0.3003 −0.3520
NN 5–3–5 16.62 0.0032 0.3223 −0.3786
NN 6–3–6 18.87 0.0034 0.2911 −0.4110

several populations. Another way to explore is the optimality of the structure
of the neural net. It is probably possible to enhance the predictive power by
modifying the architecture of the neural network.
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NOTES

1. Let us consider T, a duration random variable of hazard rate: hθ (t) = θh(t). If h(t) is a
deterministic function and θ = exp

(
β� z

)
with z, the vector of covariates at time t, then ln h(t|z) =

h(t) + β� z which is the LC model if covariates are time-dependent latent processes.
2. www.mortality.org
3. Notice that in the LCmodel, the log-mortality rates are normally distributed: their skewness

and kurtosis are then, respectively, equal to 0 and 3. Skewness and kurtosis reported in Table 8 are
not exactly equal to these figures because they are computed with simulated log-forces of mortality.
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