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Using artificial intelligence  
to accelerate materials development
By Philip Ball

Philip Ball, Science Writer, Nature, London, UK.

Science is typically slow work. It can 
take years or even decades for explor-

atory work on, say, a new concept in ma-
terials to become a product ready for the 
market place. But advances in artificial in-
telligence (AI) have the potential to greatly 
accelerate that tortuous process. Computer 
algorithms are increasingly helping with 
the exploring and understanding, and the 
direction of experimentation, modeling, 
and simulation. They are working in par-
allel with human creativity and ingenu-
ity to find and refine new materials for 
tomorrow’s technologies. Launching one 
effort to harness computational and data-
driven resources, the Materials Genome 
Initiative, in 2011, US President Barack 
Obama laid out the objective. “The in-
vention of silicon circuits and lithium-ion 
batteries made computers and iPods and 
iPads possible,” he said, “but it took years 
to get those technologies from the draw-
ing board to the market place. We can do 
it faster.” 
	 Yet sometimes the choices available 
to materials scientists are enough to make 
you despair. Take so-called “high-entropy 
alloys,”1 which have high strength and are 
mixtures of five or more metallic elements; 
some may contain up to 20 elements. How 
can one ever hope to probe all the pos-
sible permutations and phases? Or take 
the exotic quantum mechanical properties 
discovered during the past decade or so in 
complex materials with compositions such 
as Ca10Cr7O28 and YbMgGaO4.2,3 How 
can we find out in any comprehensive, 
systematic way what other new and po-
tentially useful behaviors might exist in 
combinations of elements that no one has 
thought to look at before?
	 It is unfeasible to trawl blindly through 
all the options experimentally. Previously, 

the options were narrowed down largely 
through intuition. But human intuition be-
comes severely tested by both the range 
and complexity of the possible choices.
	 Yet computer algorithms can now de-
velop a kind of intuition too through the 
same process that we tend to use: looking 
for patterns and regularities in what we 
already know. This is machine learning 
(ML), an aspect of AI that aims to digest 
and generalize existing knowledge to find 
new solutions to problems. It is used today 
in all manner of applications in which a 
large amount of data exceeds human capa-
bility to assimilate it all—from genomics 
and drug design to analysis of financial 
markets and the development of game-
playing algorithms. It seems increasingly 
likely that some of the outstanding chal-
lenges in materials design will be solved 
this way too. 
	 The potential effect of AI in materials 
science, however, extends well beyond 
the discovery of new substances and 
compositions. Far from being merely a 
tool for automated materials exploration, 
said Benji Maruyama of the Air Force 
Research Laboratory in Dayton, Ohio, 
AI might supply nothing less than a new 
way of doing science, helping to improve, 
streamline, and guide the process of ac-
quiring new knowledge about the materi-
als universe  (see the Materials Research 
Society OnDemand® Webinar at mrs.org/
ondemand-ai). “We are on a long-term 
trend towards more AI being integrated 
into the research process,” said Patrick 
Riley, an AI researcher at Google.
	 “Machine-learning algorithms could 
help eliminate bottlenecks that appear 
in the research process,” said Kristofer 
Reyes, a computational materials scien-
tist at the University at Buffalo, The State 

University of New York. Algorithms that 
learn from experience might help research-
ers to choose and design experiments, 
analyze the results, and generalize the 
knowledge extracted. And to judge from 
experience in other areas, such as the au-
tonomous game-playing capabilities of 
AI, it is possible that such systems could 
take genuinely creative leaps beyond the 
bounds of human intuition. In the years to 
come, the relationship between humans 
and computers might be realigned: defined 
no longer in terms of users and tools, but 
as a collaboration. “Certainly, ML can pre-
dict materials with desirable properties,” 
said Bryce Meredig of Citrine Informatics 
in Redwood City, Calif., a company that 
has developed a commercially available 
AI platform for materials informatics. 
“But if we think about a future in which 
all materials scientists have ML-based co-
pilots, just like in our daily lives with Alexa 
and Google Assistant, the possibilities are 
much broader.”
	 “We’re still at the beginning of this 
journey,” cautioned Riley. But he feels 
that if the technical challenges can be met, 
AI could become an “amazing research 
assistant.”

The next generation  
of materials discovery
The most familiar and, in some ways, cur-
rently the most advanced applications of 
AI are in discovery science, where compu-
tational resources are used to analyze and 
learn from volumes of data that far exceed 
the ability of humans to process.
	 For thousands of years, new materi-
als were discovered by random trial and 
error—essentially by accident. That was 
probably how glass and metals such as 
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iron were first prepared in anti quity, and 
little had changed up until the 19th century, 
when Thomas Edison sought materials for 
his incandescent bulb filaments by trying 
out anything he could lay his hands on.
	 As the properties of materials became 
better understood and quantified in math-
ematical models and equations, it became 
possible to bring to bear some element of 
design to this quest, for example, by ex-
trapolating observed relationships between 
composition and function. Materials such 
as advanced composites could be planned 
based on known determinants of crack 
formation and propagation, leading to the 
advent of fiber-reinforced materials in the 
mid-20th century.
	 An ability to calculate properties from 
first principles, for example from classi-
cal approximations of interatomic forces 
or, more recently, from ab initio quantum 
mechanics, ushered in the modern era of 
materials rationally designed with the aid 
of computer calculations. In principle, vast 
swathes of materials space can be mapped 
out this way without having to synthesize 
and purify anything in the lab. 
	 But there are limits to what even super- 
computers can achieve in such a pros-
pecting venture, and what’s more, there 
are limits to how reliably some materials 
properties can be predicted this way. All 
the same, materials discovery and design 
informed by computation of properties 
such as electronic band structure and co-
hesive energies have given rise to materials 
such as advanced alloys and electrically or 
optically active polymers.
	 Now the challenge of making new 
materials is progressing to what some re-
searchers see as a fourth stage.4 It is being 
driven by three factors: access to larger 
sets of data on materials structure–func-
tion relationships than in the past; im-
provements in the scope and reliability of 
computer modeling and simulation; and 
algorithms that permit ML, which can ana-
lyze big data sets to extract trends, laws, 
and principles beyond the reach of human 
intuition. The use of ML in materials dis-
covery makes no claims yet to mimic the 
processes of human intelligence: on the 
whole this is merely a matter of using rath-
er literal-minded algorithms to generalize 
knowledge gleaned from existing data sets 

in order to make predictions about how 
new substances will behave. All the same, 
the approach is already proving fertile for 
finding new materials with useful proper-
ties. And, ultimately, it might go beyond 
number-crunching interpolation and start 
to seek out general principles governing 
the relationships between composition, 
structure, and function.

From correlation to 
prediction: Supervised  
and unsupervised learning
The use of ML techniques acknowledges 
that the range of possible substances—the 
materials universe—is much vaster than 
the human mind can encompass or than 
the experimentalist can hope to explore 
empirically. In this regard, materials scien-
tists face the same challenge as chemists, 
who can’t hope to explore experimentally 
more than a tiny corner of the space of all 
possible molecules, and so need help with 
navigating the options and focusing on the 
regions that show the greatest promise for 
a given application, such as drug action.5 
	 The aim here is to learn from experi-
ence—to try to deduce which materials 
might be promising based on those that 
have proved successful already. Take ther-
moelectric materials, which can either con-
vert heat into electricity or use electricity 
to absorb heat. One of the most efficient 
thermoelectric materials known so far is 
lead telluride, but the presence of toxic lead 
limits potential applications. Many other 
candidate thermoelectrics have been iden-
tified, but the criteria for a commercially 
viable product—adequate performance 
from constituents that are neither expensive 
nor toxic—are demanding. Rather than 
using quantum mechanical calculations 
to blindly crunch out the electronic prop-
erties of potential materials, seeking the 
characteristics needed for a good thermo- 
electric, ML algorithms would look for 
correlations between the composition, 
structure, and properties of those current-
ly known to make inferences about other 
materials that might work. These empiri-
cal correlations between microscopic and 
macroscopic properties are called descrip-
tors. Once they have been deduced and 
tested by algorithms for materials known 

to have the desired properties, they can be 
applied to other materials in a database to 
find new candidates. 
	 In this way, ML can fill in gaps, mak-
ing deductions from known data that can 
be extended to unknown materials and 
compositions. “It is best used for situa-
tions where we have no understanding or 
predictive algorithms, but for which we 
have a lot of data available,” said Gerbrand 
Ceder of the University of California at 
Berkeley. “These are the kind of problems 
where ML can, in principle, shine.” 
	 In general, ML algorithms use part of 
the available data set for learning to look for 
relationships between the input data and the 
desired properties. The other known data 
are then used for model validation and op-
timization to see how well the ML model 
predicts the target property for cases where 
the answer is known. Once the appropri-
ate descriptors are identified, they can then 
be used to seek new candidate materials 
among those known but not tested for the 
property of interest, whether that be per-
formance as a battery cathode material6 or 
topological insulator behavior.7 
	 The most common approach is called 
“supervised learning.” This assumes that 
you know what you are looking for—the 
value of  Young’s modulus or simply a 
classification of materials into metals, 
semiconductors, and insulators. You iden-
tify the necessary parameters (e.g., valence 
states or atomic radii of the constituent at-
oms) for that property. Then the algorithm 
searches for some functional relationship 
between the inputs and the outputs—the 
descriptor appropriate to the problem at 
hand. Once this relationship has been re-
fined to the required degree of fidelity, it 
can be tested for making predictions on 
known materials.
	 Supervised learning can be strength-
ened in an approach called deep learning, 
in which the training data include not 
only many examples of the thing to be 
recognized (e.g., a cat), but also negative 
examples (e.g., things that are not cats). 
“Deep learning is essentially function fit-
ting to training data ‘on steroids,’ ” said 
computer scientist Carla Gomes of Cornell 
University in Ithaca, N.Y.
	 Supervised learning compels you to 
make some choices about which factors 
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Figure 1. Schematic representation of how 
lattice-matched nanoparticles (bottom phase 
in blue and yellow) induce low-energy-barrier 
epitaxial growth of solidifying metals (top 
phase in purple), with lattice-matched planes 
in the unit cells, indicated in green on the right. 
Reprinted with permission from Reference 10. 
© 2017 Macmillan Publishers Ltd.

you think matter to the target proper-
ty. “You tend to put in things that you 
think are important—you’re testing a 
hypothesis,” said Kristin Persson of the 
University of California, Berkeley. To 
check that you’re getting sensible results, 
you might also put in parameters that you 
think absolutely should not correlate; to 
take an absurd example, the alphabetical 
order of the compound names, so that if 
the ML model finds there is a correlation, 
then you’d have to get suspicious.
	 “Once we were machine-learning 
Young’s modulus with about three thou-
sand data points,” said Persson. “An 
initial set of descriptors included the 
space-group label of the structures. That 
has zero importance—it’s an arbitrary 
assignment.” But it was found to be the 
second most important descriptor. “This 
suggests there is an artificial correlation 
through something else,” said Persson. 
“You sometimes get these pathological 
correlations.” That’s why you need in-
tuition at both ends of the learning pro-
cess—to choose the parameters and to 
decide what to look for. 
	 Sometimes, though, there can be a 
benefit in standing back and letting the 
machine decide what matters. So-called 
unsupervised learning doesn’t make any 
assumptions about what we’re looking 
for. Given a bunch of materials with par-
ticular compositions or other input pa-
rameters and with a range of observed 
properties, the algorithm looks for trends 
or clusters between the two, with no par-
ticular preconceptions of what you’re 
looking for or what matters for a given 
property. “Unsupervised algorithms 
are typically when you have no labels 
and you are just looking for patterns in 
the data,” said Olexandr Isayev of The 
University of North Carolina at Chapel 
Hill. “Arguably, unsupervised methods 
are much more powerful. This is, after all, 
closer to how the human brain works.”
	 For example, Shou-Cheng Zhang of 
Stanford University in California and 
co-workers applied unsupervised learn-
ing to existing experimental data on 
approximately 60,000 inorganic 2-, 3-, 
and 4-component compounds.8 The algo-
rithm produced a vast, multidimensional 
but sparse matrix of atom–environment 

pairs encoding similarities in composition 
between the compounds formed by differ-
ent types of atoms. In effect, each atom 
has an associated vector for which the di-
mensions are abstract quantities learned 
from scratch by the algorithm. Some of 
these vector dimensions loosely correlate 
with known properties of the elements 
concerned—one, for example, strongly 
predicts nonmetal behavior and another 
metallic behavior. But the algorithm de-
cides which vector components to heed. 
The algorithm accurately identifies the 
family groupings familiar from the pe-
riodic table, for example, the kinship of 
halogens or alkali metals. The atom-wise 
properties turn out to effectively predict 
the characteristics of compounds, such as 
whether they are metals or insulators.
	 “When dealing with complex materi-
als, I believe unsupervised ML works best, 
said Zhang, whose recent death at the age 
of 55 shocked and saddened many in the 
community of condensed-matter physics. 
His team is now trying the same approach 
to look for structure–property relationships 
in antibody proteins, which might reveal 
useful information for biomolecular rec-
ognition and drug design.
	 Once you have conducted your search 
for promising materials, selecting the best 
candidate for further exploration and at-
tempted synthesis isn’t always an easy 
task. Sometimes it involves a compromise 
between properties, which might factor in 
cost. Veronique Van Speybroeck of Ghent 
University in Belgium and her co-workers 
have developed an algorithm for ranking 
materials in computational screening in 
which a “win fraction” for each candidate 
quantifies the fraction of the tradeoff with 
another candidate that favors the one under 
consideration, summed over all the design 
criteria.9 A ranking can then be created by 
finding the minimum of the win fraction 
for each candidate with respect to all of the 
others: the larger this minimum, the better 
the tradeoff of desirable properties. Van 
Speybroeck and her colleagues showed 
that their approach produces intuitively 
sensible results in a computational search 
for economical metals and alloys with high 
mass density and for finding candidate ma-
terials with an optimal balance of hardness, 
thermal resistance, and cost. 

Lattice-matched
nucleant phase

Primary
solidification phase

	 Resources for accelerating materials sci-
ence are also being developed in the private 
sector. Citrine Informatics hopes that their 
materials database will assist not just in the 
discovery but also in the commercialization 
of materials in areas ranging from batteries 
and photovoltaics to aerospace superalloys 
and screen coatings for personal electron-
ics. This AI resource has already been used 
to identify nucleating agents for producing 
crack-free microstructures in three-dimen-
sional (3D) printed aluminum alloys (see 
Figure 1),10 and industrial customers, rang-
ing from BASF and Boeing to Panasonic, 
are using Citrine’s database to seek materi-
als for applications such as catalysis, aero-
space engineering, and electronics.

Searching for structure
One of the most basic problems in materi-
als science is the prediction of structure. 
In 1988, the editor of Nature pronounced 
it a “scandal” that a priori computational 
prediction of crystal structures was not 
possible. That situation is somewhat bet-
ter today, but it is still far from routine. 
A typical computational approach is to 
take a given material composition (e.g., 
the ratios of elements), and calculate the 
energies of all possible unit cells to see 
which one has the lowest energy, which 
takes a lot of time and effort.
	 But what if there is some relationship 
between composition and structure, so 
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that, for example, materials with particu-
lar types of valence states, stoichiometries, 
and ratios of atomic or ionic radii tend to 
favor specific structures? Then ML might 
be able to make a good guess at the struc-
ture from the features of the constituents.
	 Indeed, “this is a perfect problem for 
ML,” according to Ceder. Crystal struc-
ture databases have more than 100,000 
structure assignments, so, in principle, a 
machine should be able to predict struc-
ture by learning from these data. In 2006, 
Ceder and his colleagues described a ML 
algorithm that enabled structure prediction 
for a wide range of binary-metal alloys.11 
They found that not only were particular 
structures correlated with the size ratio of 
the component atoms, but the structure 
adopted by a binary combination at one 
stoichiometry was a good predictor of the 
structure of the same pair at another stoi-
chiometry (e.g., AB2 and AB3). 
	 By training their model on learning data 
taken from a large database of binary crys-
tal structures, they found that they could 
make good predictions of the structures 
of nearly 4000 others in the data set, even 
though no alloys with the same pair of el-
ements was included in the training set. 

The researchers used the ML algorithm to 
narrow the set of candidate structures for 
a given alloy to approximately five, so that 
it then became practical to use quantum 
mechanical calculations for just these can-
didates to pick out the one likely to be the 
most stable. In this way, they were able to 
correctly predict the actual structure 90% 
of the time. 
	 Even if you have structural informa-
tion on a new material, such as x-ray 
diffraction data, it can be challenging to 
extract a structure from it. Gomes and her 
co-workers are developing methods that 
seek to use prior knowledge and reasoning 
in AI algorithms to assist that process.12 
Mapping back from the diffraction data to 
a structure is a computational problem that 
is “NP-hard,” which means that finding the 
solution can take a long time and increases 
exponentially with the complexity of the 
system being studied. What’s more, the 
possible solutions for a given x-ray diffrac-
tion pattern are not unique, and so finding 
the best one requires judgment and com-
parison with prior data.
	 Nicola Marzari of the École Polytech-
nique Fédérale de Lausanne and his co-
workers have explored ML for finding 

two-dimensional (2D) materials with inter-
esting electronic properties (see Figure 2).13 

The strength and exotic electronic struc-
ture of graphene—2D layers of graphite-
like carbon—and hexagonal boron nitride 
have made it clear that similar materials 
could be useful for electronics and other 
applications. Marzari and colleagues used 
ML to search for 2D candidate materi-
als among more than 100,000 3D crystal 
structures, finding around 6000 of them. 
They then used electronic-structure cal-
culations to whittle this list to ones that 
seemed stable enough for the individual 
layers to be separable in the process called 
exfoliation, which can produce graphene 
from graphite. They ended up with approxi-
mately 1000 candidates that they screened 
computationally for potentially useful elec-
tronic and magnetic properties.
	 One of these corresponded to a so-
called quantum spin Hall insulator, a mate-
rial in which the quantum spin Hall effect, 
which can create metallic, electrically con-
ducting edge states in otherwise insulating 
material, is suppressed by the opening of a 
bandgap between the conducting and local-
ized electron states. Marzari and colleagues 
predicted that this behavior would be seen 

in a 2D version of a natural mineral 
called jacutingaite, a compound of 
platinum, mercury, and selenium. 
They were able to verify, using 
detailed quantum calculations, 
that this material should have the 
predicted properties.14

	 This approach of following up 
a ML sweep of the materials data-
base with first-principles calcula-
tions of the most promising candi-
dates is common. Isayev said that 
in their searches for new materi-
als, they would typically perform 
first-principles electronic-structure 
calculations on the best candidates 
found by their ML algorithms, us-
ing the standard method called 
density functional theory (DFT) 
before trying to make them ex-
perimentally, to check if there are 
any possible surprises.
	 But “the first-principles theo-
ries we have are not that accurate 
for a number of things,” said 
Marzari. Their ability to provide 

Figure 2. (a) Schematic representation of the fundamental steps needed to find low-dimensional units of a 
parent 3D crystal (here MgPS3). (b–e) Examples illustrating non-trivial layered structures that can be identi-
fied in (b) triclinic or monoclinic structures that are not layered along the [001] crystallographic direction 
(As2Te3O11). (c) Layered compounds whose constitutive layers extend over multiple unit cells and thus require 
the use of supercells to be identified (CuGeO3). (d) Layers that have partial overlap of the atomic projections 
along the stacking direction, with no manifest vacuum separation between them (Mo2Ta2O11). (e) Composite 
structures that contain units with different dimensionality [(CH6N)2(UO2)2(SO4)3, where 2D layers of uranyl  
sulfate are intercalated with 0D methylammonium molecules]. Reprinted with permission from Reference 13. 
© 2018 Nature Publishing Group.

a

c eb d

3D primitive cell supercell bond connectivity 2D/1D/0D units 2D primitive cell

https://doi.org/10.1557/mrs.2019.113 Published online by Cambridge University Press

https://doi.org/10.1557/mrs.2019.113


339MRS BULLETIN • VOLUME 44 • MAY 2019 • www.mrs.org/bulletin

NEWS & ANALYSIS FEATURE ARTICLE

good thermodynamic predictions is not 
great, which means it’s hard to be sure if 
the material is stable or if it will be easy to 
make in preference to alternative materi-
als. It’s also hard to anticipate how ame-
nable metastable materials might be; after 
all, based on energy minimization alone, 
one wouldn’t expect diamond to persist 
under ambient conditions.
	 Yet ML can help with these theoreti-
cal shortcomings. It can circumvent the 
need for computationally intensive calcu-
lation of a property, such as a bandgap or 
electronic structure, by learning to predict 
those things as well.15 “If you have large 
databases of DFT calculation/simulation 
results,” said Gomes, “it is possible for 
deep-learning models to learn and speed 
up DFT calculations; the models predict 
the outcome of a DFT simulation with-
out running the actual simulation.” In this 
way, said Marzari, “one can use machine 
learning to predict the results of calcula-
tions that would be very expensive, ei-
ther because they require large systems 
or long simulation times, or because they 
are very complex.” 
	 The Materials Project, an initiative be-
ing developed at the Lawrence Berkeley 
National Laboratory and directed by 
Persson, currently has approximately 
60,000 band structures in its database. 
These are calculated using the standard 
approach of DFT, and the data set has been 
used, for example, to look for novel ther-
moelectric materials or electrode materi-
als for lithium batteries.16 “We can now 
predict the bandgap for any material that is 
within the circle of the data set to an accu-
racy equal to that of DFT today,” Persson 
said. All the same, without adding more 
experimental data, such predictions still 
can only tell you the result that DFT would 
deliver; they avoid the need to carry out the 
calculations themselves, but can’t escape 
the approximations that the theory makes. 

Not enough data 
All this sounds very promising, but there is 
a big obstacle to the successful prediction 
of all manner of materials properties using 
ML. No algorithm, however good, can be 
expected to generate knowledge in regions 
of materials space where none currently 

exists. “ML techniques essentially rely 
on predictions based on what was seen 
in the known training data,” said Gomes. 
“However, to discover truly new materials, 
we want to go essentially outside what is 
known so far.” In other words, the learning 
process is only as good, and as broad, as 
the data set that informs it. What’s more, 
ML algorithms cannot anticipate anoma-
lies and unexpected behaviors within the 
available data. It creates a continuous 
landscape in a discrete variable space, as-
suming that the path between two points is 
always smooth – which might not be true.
	 The sheer lack of data, though, is cur-
rently a limiting factor. Right now, there 
are 200,000 to 500,000 known inorganic 
materials, which might sound like a lot, 
but it is a relatively small subset of all 
those possible. “You can’t machine-learn 
something that isn’t supported by your 
input data,” said Persson. So ML is very 
good at finding hidden correlations in large 
data sets that are difficult for human beings 
to see, but is not particularly good at find-
ing materials that are not supported by the 
data set that you give it. “Google asked us 
recently how we could machine learn a 
better battery,” she said, “and I told them 
it is very difficult because we don’t have a 
large enough data set to address a complex 
problem like that.” 
	 “Modern algorithms really excel in 
modeling of very complex data relation-
ships, but vast amounts of data will be 
needed to train such models,” said John 
Gregoire of the California Institute of 
Technology in Pasadena, who leads a proj-
ect searching for new electrocatalysts for 
artificial photosynthesis. “What remains to 
be seen is whether we could ever generate 
enough materials data to take advantage of 
this approach.”
	 All the same, ML might spot trends and 
commonalities in existing data, such as the 
fact that the ions like to move between an 
octahedral coordination site in one place 
and a tetrahedral one in another. If you now 
give it a huge number of crystal structures, 
it might be able to find such structures. You 
cannot just give it cycling curves for all 
the batteries made to date and expect it to 
figure out what is needed, Persson said, be-
cause there are a lot of bad data in there—it 
is not a clean, robust data set, but is full 

of noise. “There has been a focus on col-
lecting a lot of data, but what we need is 
quality, not just quantity,” said Marzari.
	 Producing and harnessing data is es-
sential to this project, and journals could 
help by encouraging the presentation of 
data in standardized ways. “We write pa-
pers the way we have done historically, 
as a kind of story,” said Persson. “But if 
we want to use natural language process-
ing to extract information, that’s not the 
best way.” She thinks there will need to 
be some changes to how papers are writ-
ten for ease of data extraction, perhaps as  
a tabular version with the metrics of the 
synthesis, the outcomes, and so forth. “In 
academia, we are notoriously bad at data 
capture,” said Isayev. “In addition, most 
data is locked in PDF files and must be 
extracted. We really need to establish best 
practices and publish negative data too.” 
The problem is there is no single format for 
data that are well suited to all applications, 
he added. “Ultimately, those features are 
dependent on what specific question is to 
be answered.”
	 The issue here is not simply about col-
lecting more data, but about integrating 
different types of data. It is one thing to 
collect vast amounts of crystal structures, 
for example, but how might that be use-
fully combined with theories or simula-
tions of structure–property relationships, 
or with experimental measurements that 
might depend on issues such as impuri-
ties or higher-order microstructure? ML 
might deduce correlations between such 
multi-model data sets that are invisible to 
human researchers.
	 Citrine is making concerted efforts to 
gather and integrate diverse kinds of data 
sets, said Meredig. “Being able to under-
stand multi-modal data sets is essential to 
generating value from materials data. In 
our field, data are inherently multi-modal, 
hierarchical, heterogeneous, and generally 
complex.” Meredig said that Citrine aims 
to let users store any kind of materials data 
on its platform: simulations, experiments, 
sample processing histories, and so forth. 
	 The need for more data also highlights 
the neglected value of negative results. If 
a material does not have the properties you 
are looking for, that could still be a valu-
able piece of information for the global 
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materials knowledge set, but such results 
are generally hard to publish. “It’s a real 
problem that we only publish successes,” 
said Persson. “And even then, there’s often 
some fudging and massaging of the data. 
We need complete data sets, not just the 
good ones. We can be smarter about how 
we use the knowledge that’s out there.”
	 But it can be hard to find good metrics 
for inputting data. “We don’t even have a 
good metric for local coordination,” said 
Persson. We can look at a crystal structure 
and be unsure if we are looking at fivefold 
or sixfold coordination, for example. There 
is not always a simple, discrete number 
or category to describe the parameter we 
want to give the algorithm. This problem 
of finding good input metrics becomes 
even harder for noncrystalline structures, 
or those with a high degree of disorder or 
heterogeneity. For example, the electrical 
behavior of semiconductors can depend 
sensitively on the presence of dopants, 
which may be irregularly distributed 
throughout a crystal lattice. The failure or 
fracture of many materials is initiated at 
flaws that may be rare, but nonetheless crit-
ical, to the overall performance. Of course, 
some materials are not crystalline at all, 
but amorphous–particularly organic and 

polymeric materials. It 
is a challenge then to 
find metrics appropri-
ate for training ML al-
gorithms and anticipat-
ing trends in behavior. 
Still, it can be done. For 
example, a team led 
by researchers at the 
Stanford Synchrotron 
Radiation Lightsource 
in California, has 
trained a ML model 
to find new ternary 
metallic glasses.17 
And materials scien-
tist John Mauro of The 
Pennsylvania State 
University has argued 
that by applying ML to 
composition–property 
relationships in glasses, 
it should be possible to 
“decode the glass ge-
nome”—the biological 

analogy refers to the idea that there might 
be a kind of code that links composition, 
structure, and properties—to find faster, 
cheaper routes to new glassy materials.18

	 Isayev said that one of the most use-
ful features to be able to predict with ML 
would be a material’s microstructure: the 
level beyond the crystal structure itself, for 
example, in terms of grain boundaries or 
compositional gradients. Bulk properties 
such as mechanical behavior can be very 
sensitive to such factors. But he says that 
getting this information experimentally is 
typically slow, and there are no good gen-
eral computational methods for predicting 
it. Nonetheless, there are already efforts 
under way to use ML to classify and inter-
pret microstructures from imaging studies 
(see Figure 3).19

The challenge of making 
predicted materials
Aside from the need for more and better 
data, there is another big obstacle to turn-
ing ML into a method that actually delivers 
tangible, useful materials: you have to be 
able to make them. Even if a material is 
stable, in principle, that does not mean you 
will be able to figure out how to make it. 

“A specialty of my lab is trying to rapidly 
synthesize new materials, and I have had 
collaborators give me machine-predicted 
materials from their AI algorithms,” said 
Gregoire. “But we have yet to success-
fully synthesize a single one. Most mod-
els are focused on the functionality of the 
materials, but synthesizability also needs 
to be incorporated.” It is for this reason, 
said Marzari, that “I prefer to explore the 
unknown properties of materials that are 
known to exist,” such as jacutingaite.
	 “Synthesis is currently the bottleneck,” 
agreed Persson. “It can take me minutes to 
predict a novel piezoelectric. I know this 
because we did it a couple of years ago. 
And then it sat for two years in the project,” 
because no one could see how to make it. 
Finally, one brave researcher decided to try, 
“and it took her another two years.” It did, 
however, have the properties predicted. 
	 But Persson believes that synthesis too 
can be machine-learned. “We need to know 
what drives synthesis. Some people think of 
it as an entirely unpredictable kinetic land-
scape, but I do not believe that. I’m sure 
there are rules; nature always goes by rules.”
	 It will not be easy to find them though. 
It is one thing to use ML or traditional ab 
initio methods to calculate phase diagrams 
that will tell you if a material is thermo-
dynamically stable in principle. It’s quite 
another to predict how surface effects, de-
fects, or heterogeneities in real materials 
might modify their stability, let alone to 
figure out the roles of kinetic factors and 
reactive intermediate states in the nucle-
ation of new phases.
	 “Today, there is no predictive theory of 
which compounds can be synthesized and 
how,” said Ceder.

Guiding experiments
AI can help researchers figure out where 
to look in the materials universe to stand 
a good chance of finding substances with 
specified target properties. It could even 
help to devise ways of making candidate 
materials. But that is still only a part of 
the process of getting some useful prod-
uct from the research process. “I think 
we’ll gradually see greater use of AI for 
a broader set of questions,” said Riley. 
“Most of the uses of AI in materials today 

Figure 3. The most important textures for a set of microstructures in 
various materials. From left to right, the columns represent the first, 
second, and third most important texture features for each case. 
From top to bottom, each row represents a different case: titanium, 
steel, and powder. Reprinted with permission from Reference 19. 
© 2017 Elsevier.
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ask very specific questions, like ‘Will this 
hypothetical material have the property I 
want?’ But we already have AI systems 
that try to answer more subtle questions, 
like ‘What’s most unusual about this set 
of examples?’ or ‘Can you find a simple 
equation that explains this data?’ ” 
	 The philosophy of ML is that anything 
can be learned in an automated way if there 
are enough data to train the algorithm. 
So why not use it to assist in devising a 
research strategy? (See the 2018 MRS 
Spring Meeting interview with Maruyama 
at mrs.org/interview-maruyama.)
	 That strategy is generally iterative: you 
conduct a set of experiments, whether real 
or computational, refine your aims based 
on what you learned, and conduct some 
more. “It’s often useful in the discovery 
process to have lots of iterations, not just 
lots of runs of the same basic experiment,” 
said Maruyama. Each iterative step needs 
thoughtful experimental design, and some-
times that design process is the rate-limiting 

step toward genuine innovation. “Most 
people are using AI to assess what’s going 
on in their experiments, but not to make 
the decisions,” said Maruyama. In general, 
a “closed-loop” system deploys robotics 
to synthesize and characterize materials 
products, and then feeds back the gained 
information into the decisions made by ML 
about the next cycle. This creates a much 
more directed search than traditional rapid-
throughput methods that explore large ma-
terials spaces in a blind, scattershot manner: 
the best materials can be identified much 
more quickly.
	 Maruyama and his co-workers have de-
vised a prototype system to create a closed-
loop automated process for growing carbon 
nanotubes (see Figure 4).20 These carbon 
nanostructures are typically grown by 
chemical vapor deposition from a carbon-
rich source onto microstructured particles 
of a catalytic metal. The challenge is that 
there are so many experimental parameters 
one could vary (e.g., temperature pres-

sure, feedstock com-
position). Exploring 
the entire high-dimen-
sional parameter space 
is impractical, and it is 
preferable to gradually 
improve the outcome by 
making decisions about 
the next experiment that 
incorporates knowledge 
gleaned from the last.
	 The researchers first 
carried out 84 experi-
ments, spanning much 
of the available param-
eter space, as a training 
set for their automated 
research system. In 
each case, the nano-
tube growth rate was 
measured using Raman 
spectroscopy. The AI 
software was then used 
to plan and execute 600 
further experiments that 
aimed to target specific 
growth rates, refining 
each iteration using 
the previously col-
lected data. The system 
learned to achieve target 

rates of 500, 3000, and 16,000 nanotubes 
per second, allowing it to develop well-
defined nanotube surface densities in some 
specified time. 
	 In a similar way, Turab Lookman of 
the Los Alamos National Laboratory in 
New Mexico and co-workers have used 
an automated iterative process to search 
experimentally for new shape-memory 
alloys with minimum thermal hysteresis, 
a factor that leads to fatigue in repeated 
deformation cycles. They identified 14 
compositions based on the nickel-titanium 
system that had smaller hysteresis than any 
of those in the training set. The best perfor-
mance was achieved by an alloy contain-
ing small and precise amounts of copper, 
iron, and palladium that would have been 
difficult to spot from an exhaustive search 
of the ~800,000 potential compositions 
that their system could generate.21

	 As well as assisting in experimental 
selection and design, AI techniques can 
speed up the analysis of results. Right 
now, said Reyes, a graduate student might 
spend several days painstakingly extract-
ing quantities such as particle-size distri-
butions from microscope images, whereas 
image-analysis and trained deep-learning 
algorithms could complete a task like this 
almost instantaneously. 
	 ML can also help to condense massive, 
high-dimensional data sets into a mean-
ingful form. “As researchers, we often 
take a large amount of effort in reducing 
and summarizing data into something we 
can visualize and plot,” said Reyes. “ML 
algorithms don’t have this limitation and 
can see structure in hundreds to thousands 
of dimensions.”
	 Reyes is also developing algorithms 
to plan experiments that work on similar 
lines to the AlphaGo AI system, which 
has defeated the best human players at 
the game Go. However, “unlike a Go 
game, experimental results are noisy 
and have inherent randomness, and we 
must incorporate this variability,” he ex-
plained. It is a bit like having to decide 
on a move without perfect knowledge of 
the state of the board and where pieces 
are liable to move somewhat at random. 
To deal with this imperfect knowledge of 
a materials system, Reyes and colleagues 
incorporate Bayesian reasoning into their 

Figure 4. Variability in the experimental parameter space with learn-
ing. Experimental conditions chosen by the autonomous research 
system (ARES) in Task 3, before convergence (a, b), and in Task 10, 
after convergence (c, d), are compared over four experimental pa-
rameters (temperature, water concentration, and H2 and C2H4 partial 
pressures). Red dots represent successful, on-target experiments. 
(a, b) Before convergence, ARES sampled a wide range of growth 
conditions, and only 8% of experiments were on target. (c, d) After 
convergence, ARES sampled a narrow range of growth conditions, 
with 68% on-target experiments, demonstrating its ability to au-
tonomously optimize multiple experimental parameters. Reprinted 
with permission from Reference 20. © 2016 Nature.
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algorithms, where prior beliefs about the 
best outcome are updated as new informa-
tion becomes available.22

	 Gomes, meanwhile, is a member of 
a multi-institutional project to develop a 
system called the Scientific Autonomous 
Reasoning Agent (SARA), which will 
“integrate first-principles quantum physics, 
experimental materials synthesis, process-
ing, and characterization, and AI-based 
algorithms for reasoning and conducting 
science, including the representation, plan-
ning, optimization, and learning of mate-
rials knowledge.” The project has been 
recently launched and has not yet led to 
publications, but Gomes said the aim is to 
develop a closed-loop iterative process that 
will formulate hypotheses about making 
materials with given structures and proper-
ties, to plan and execute experiments (such 
as x-ray diffraction), to interpret the results, 
and to use that knowledge to devise the 
next round of hypothesis testing. “We have 
an ambitious plan for SARA,” she said.
	 Ultimately, AI systems might turn data 
into full-blown theories. “Long term, I 

absolutely think that AI will be suggesting 
novel research directions and theories,” 
said Riley. “True machine super-intel-
ligence is still a way off—our machine 
learning often has trouble understanding 
the context of information or dealing with 
very disparate types of data, something 
that humans can do quite well. But in 
narrow domains, we are already seeing 
machines produce creativity of a sort.” 
Riley added that in his work at Google 
on small-molecule chemistry, “our algo-
rithms have produced ideas that caused 
our collaborators to say, ‘I didn’t think 
of that, but it’s a good idea!’ ” 
	 Does this mean that research itself 
might become fully automated? “The idea 
that soon we will have AI algorithms that 
can perform scientific discovery complete-
ly autonomously is a bit far-fetched,” said 
Gomes. “Nevertheless, I do believe that 
AI algorithms can dramatically speed up 
discovery by several orders of magnitude.” 
Maruyama said that this kind of approach 
could permit researchers to be more ambi-
tious in tackling targets that might seem too 

dauntingly complex and multidimensional 
to be attempted by conventional human-
led experimental design. He hopes that 
approaches like this could create a kind 
of Moore’s Law for the speed of research: 
a steady acceleration as computer power 
expands.
	 If so, the social ramifications could 
be enormous. Faster and more efficient 
research should ultimately translate into 
cheaper products—ones that work better 
and require less investment of time and re-
sources in R&D. In a sector such as materi-
als for energy conversion—photovoltaic, 
thermoelectric, and battery materials—this 
could help governments to reduce their reli-
ance on fossil fuels,23 a vital concern in the 
light of the urgency expressed by the 2018 
report of the Intergovernmental Panel on 
Climate Change.
	 Such acceleration of materials dis-
covery is the objective of the Materials 
Genome Initiative, which is supported by 
the US Departments of Energy, Defense, 
Commerce, and others. The program aims 
to “discover, manufacture, and deploy ad-
vanced materials twice as fast, at a frac-
tion of the cost,” and AI should be vital to 
that goal. In the coming years, “AI-driven 
autonomous materials research is going 
to fundamentally change how we do ma-
terials science,” said James Warren, the 
technical program director for the initia-
tive at the National Institute of Standards 
and Technology in Gaithersburg, Md. (see 
Figures 5 and 6). 

AI as collaboration,  
not competition
Despite such bold predictions, it is not yet 
clear where ML can take us in the materials 
universe. “I don't think we know what prop-
erties will be reliably predicted, and I don’t 
think I’ve seen any convincing prediction 
of properties of new materials or even any 
materials beyond the scope of the training 
set,” said Gregoire. “Generative models that 
provide a material that meets user specifi-
cations is an ultimate goal, but there’s been 
limited progress to date for materials.” The 
most-immediate impact of ML in materials 
science, he thinks, will be in automation 
and acceleration of tasks we already know 
how to do.

Figure 5. Workflow of a closed-loop approach to autonomous materials discovery. The procedure 
begins with identifying an application space of candidates for a given problem. The promising 
leads from this library are identified, potentially through computational screening, and are fur-
ther narrowed by identifying the synthetically accessible molecules. Finally, the constraints of 
available robotics systems are taken into consideration before starting automated synthesis and 
characterization. Feedback from in situ experimentation is used to adjust the model, building 
the application space for the next iteration of this loop. Other feedback mechanisms at various 
stages of the loop aid in ensuring the candidates are compatible with all stages of the loop and 
reduce trial and error in the long term. Reprinted with permission from Reference 23. © 2018 
Macmillan Publishers Ltd. 
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	 All the same, exploring the physical 
world via relationships extracted empirical-
ly from vast data sets by ML is becoming 
an increasingly common way to do science. 
Although the results can be predictively 
useful, some argue that they barely qualify 
as science, because they amount to just 
finding correlations, without any mecha-
nistic understanding of what controls them. 
“What we really want is to understand the 
underlying physics and chemistry,” said 
Maruyama, ideally without having to col-
lect immense data sets to do so. 
	 Some researchers worry that AI and ML, 
as they become more pervasive in science, 
might come to supplant human ingenuity, 
and science itself might then become an 
exercise in blind number-crunching, lack-
ing the spark of true creativity. However, 
it would be a mistake to regard this as an 
either/or situation. The skill sets of AI and 
human researchers are complementary, as 
is obvious from the way it has proved so 
difficult to make AI systems that can pro-
cess visual or audio information with the 
ease of the human mind, or that can apply 
sheer “common sense” to extract mean-
ing from ambiguous sentences. So maybe 
the ideal is to work together. “I think it is 
better to view an AI system as a collabo-
rator, where we should teach that system 
everything we know about the problem,” 
said Gregoire. “If the high-level goal of a 
project is to assess the statistical signifi-
cance of some relationship, then one might 
be concerned with human bias. But when 
the goal is to discover useful materials, hu-
man bias is not really a problem. Given that 
practically all discoveries to date have been 
made by human reasoning as opposed to 
machine reasoning, we want to keep the 
experts involved in the process.”
	 Maruyama said that by freeing human 
researchers from routine data-crunching 
and experimental optimization, AI could 
allow them more time for aspects of 
research that require the creativity and 
imagination in which humans excel. 
For Reyes, optimal use of the technol-
ogy involves finding ways to blend the 
“domain knowledge” acquired by ML 
from massive data sets with human expert 
opinion. A major challenge here, he said, 
is for human experts to handle the high-
dimensional quantities that ML tends to 

generate. “We have thought a lot about 
visualization and are building interactive 
tools to help the expert codify their knowl-
edge,” he added.
	 AI could also help them to cope with 
the increasingly overwhelming scale of 
the literature. “It’s quite difficult to keep 
up with the expanding rate of research 
output,” said Riley. “We’re likely to see 
some combination of AI methods and re-
searchers producing more structured data 
and documents so that machines can more 
effectively assist researchers in understand-
ing the research output of their fields.”
	 Properly applied, said Persson, ML will 
be an empowering tool, not a competitor. 
“We’re not going to make ourselves obso-
lete,” she said. “We are just going to ask 
different questions.” 
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