
Isomorphism of the Groups of Vassiliev Invariants

of Legendrian and Pseudo-Legendrian Knots

VLADIMIR TCHERNOV
Institute for Mathematics, Zurich University, Winterthurerstrasse 190, CH-8057, Zurich,
Switzerland. e-mail: Chernov@math.unizh.ch

(Received: 27 March 2001; accepted in final form: 6 July 2001)

Abstract. The study of the Vassiliev invariants of Legendrian knots was started by D. Fuchs

and S. Tabachnikov who showed that the groups of C-valued Vassiliev invariants of
Legendrian and of framed knots in the standard contact R3 are canonically isomorphic.
Recently we constructed the first examples of contact 3-manifolds where Vassiliev invariants

of Legendrian and of framed knots are different. Moreover in these examples Vassiliev invar-
iants of Legendrian knots distinguish Legendrian knots that are isotopic as framed knots and
homotopic as Legendrian immersions. This raised the question what information about

Legendrian knots can be captured using Vassiliev invariants. Here we answer this question
by showing that for any contact 3-manifold with a cooriented contact structure the groups
of Vassiliev invariants of Legendrian knots and of knots that are nowhere tangent to a vector
field that coorients the contact structure are canonically isomorphic.

Mathematics Subject Classifications (2000). Primary: 57M27, 53Dxx; Secondary: 57M50,
53Z05.
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1. Introduction

In this section we describe the main results of the paper. (In case any of the termi-

nology appears to be new to the reader, the corresponding definitions are given in

the next section.)

If a contact structure on a 3-manifoldM is cooriented, then every Legendrian knot

(i.e. a knot that is everywhere tangent to the contact distribution) has a natural fram-

ing (a continuous normal vector field). Hence, when studying Legendrian knots in

such contact manifolds the main question is to distinguish those of them that realize

isotopic framed knots.

On the other hand a cooriented contact structure C on a manifoldM gives rise to a

nondegenerate vector field VC in TM that coorients the contact structure. Clearly if

two Legendrian knots K0 and K1 are isotopic as Legendrian knots, then they are also

isotopic in the category of knots that are everywhere nontangent to VC.

This observation leads to the following definition. Let ðM;CÞ be a contact mani-

fold with a cooriented contact structure, and let VC be the nondegenerate vector field
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on TM that coorients the contact structure. A knot K0 in M is said to be pseudo-

Legendrian if it is everywhere nontangent to VC. Two pseudo-Legendrian knots

K0 and K1 (in ðM;C;VCÞ) are pseudo-Legendrian isotopic if there exists an isotopy

I : ½0; 1� � S1 !M such that I
�
�
0�S1

¼ K0, I
�
�
1�S1

¼ K1, and 8t 2 ½0; 1� the knot

Kt ¼ I
�
�
t�S1

is pseudo-Legendrian (with respect to VC).

Clearly if K0 and K1 are Legendrian isotopic Legendrian knots, then they are also

pseudo-Legendrian isotopic (with respect to any nondegenerate vector field VC that

coorients C).

Vassiliev invariants proved to be an extremely useful tool in the study of framed

knots, and the conjecture is that they are sufficient to distinguish all the isotopy clas-

ses of framed knots. Vassiliev invariants can also be easily defined in the categories of

Legendrian and of pseudo-Legendrian knots.

The study of the groups of Vassiliev invariants of Legendrian knots was initiated

by the work [4] of D. Fuchs and S. Tabachnikov where it was proved that the

groups of C-valued Vassiliev invariants of Legendrian and of framed knots in

the standard contact R3 are canonically isomorphic. Later the similar result was

proved by J. Hill [8] for the groups of C-valued Vassiliev invariants of Legendrian

and of framed knots in the spherical cotangent bundle ST 
R2 of R2 with the stan-

dard contact structure. The proofs of these isomorphisms were based on the exis-

tence of the universal C-valued Vassiliev invariant for these spaces, also known as

the Kontsevich integral [9]. (For ST 
R2 such a universal invariant was first cons-

tructed by V. Goryunov [6].) Unfortunately the Kontsevich integral exists only

for a rather limited collection of 3-manifolds. (Recently Andersen, Mattes, and

Reshetikhin [1] constructed such an invariant for manifolds that are R1-fibered

over an oriented surface F with @F 6¼ ;.) For this reason the question whether

the groups of Vassiliev invariants of Legendrian and of framed knots are always

isomorphic was open for some time.

Recently, the author used different technique to prove [12, 13] that for any Abe-

lian group A the groups of A-valued Vassiliev invariants of Legendrian and of

framed knots are canonically isomorphic for a large class of contact 3-manifolds

with a cooriented contact structure. This class of contact 3-manifolds ðM;CÞ inclu-

des all contact manifolds with a tight contact structure, all contact manifolds that

are closed and admit a metric of negative sectional curvature, and all contact mani-

folds such that the Euler class of the contact bundle is in the torsion of H2ðM;ZÞ.

On the other hand [12, 13], the author constructed the first known examples of

contact manifolds where the groups of Vassiliev invariants of Legendrian and of

framed knots are not canonically isomorphic. In these examples Vassiliev invariants

of Legendrian knots can be successfully used to distinguish Legendrian knots that

realize isotopic framed knots and that are homotopic as Legendrian immersions

of S1. Namely, such examples were constructed forM ¼ S1 � S2 and for anyM that

is an orientable total space of an S1-bundle over a nonorientable surface of genus

bigger than one. This brought up a question what information about Legendrian

knots can be captured with the help of Vassiliev invariants of Legendrian knots.

104 VLADIMIR TCHERNOV

https://doi.org/10.1023/A:1021733206049 Published online by Cambridge University Press

https://doi.org/10.1023/A:1021733206049


Here we answer this question? by proving the following Theorem, that says that

the groups of Vassiliev invariants of Legendrian and of pseudo-Legendrian knots

are always canonically isomorphic.

Let A be an Abelian group, let ðM;CÞ be a contact 3-manifold with a cooriented

contact structure, and let VC be a nondegenerate vector field that coorients C. Let L
be a connected component of the space of Legendrian immersions of S1 and let Lp be
a connected component of the space of pseudo-Legendrian immersions of S1 (with

respect to VC) that contains L. (Such a component always exists since a path in L
corresponds to a path in Lp.)

THEOREM 1. The groups of A-valued Vassiliev invariants of Legendrian knots from
L and of pseudo-Legendrian knots from Lp are canonically isomorphic.

See Theorem 2.2.3. In particular, if K1 and K2 are two Legendrian knots that are

homotopic as Legendrian immersions and that realize isotopic framed knots, and x

is a Vassiliev invariant of Legendrian knots such that xðK1Þ 6¼ xðK2Þ, then K1 and K2
are not isotopic as pseudo-Legendrian knots. This means that the only information

about a Legendrian knot that can be captured using Vassiliev invariants of Legen-

drian knots is the pseudo-Legendrian isotopy class of the Legendrian knot.

2. Main Results

2.1. CONVENTIONS AND DEFINITIONS

We work in the smooth category.

In this paper A is an Abelian group (not necessarily torsion free), andM is a con-

nected oriented three-dimensional Riemannian manifold (not necessarily compact).

A contact structure on a three-dimensional manifold M is a smooth field

fCx � TxMjx 2Mg of tangent two-dimensional planes, locally defined as a kernel

of a differential 1-form a with nonvanishing a ^ da. A manifold with a contact struc-

ture possesses the canonical orientation determined by the volume form a ^ da. The
standard contact structure in R3

¼ ðx; y; zÞ is the kernel of the 1-form a ¼ ydx� dz.

A contact structure is cooriented if the two-dimensional planes defining the contact

structure are continuously cooriented (transversally oriented). A contact structure is

?In their work, R. Benedetti and C. Petronio [2], p. 34, conjectured the fact that is very similar to the

one shown in Theorem 1, but their definition of pseudo-Legendrian isotopy is different. Namely, let V be

the space of nondegenerate vector fields on TM that are homotopic (as nondegenerate vector fields) to a

vector field that coorients C. They call a pseudo-Legendrian knot in ðM;CÞ a pair ðK;VÞ that consists of

V 2 V and of a knot K that is everywhere nontangent to V. They say that pseudo-Legendrian knots

ðK0;V0Þ and ðK1;V1Þ are pseudo-Legendrian isotopic if there exists a homotopy of vector fields

IV: ½0; 1� ! V with IVð0Þ ¼ V0, IVð1Þ ¼ V1, and an isotopy I: ½0; 1� � S1 !M with I
�
�
0�S1

¼ K0, I
�
�
1�S1

¼ K1
such that 8t 2 ½0; 1� Kt ¼ I

�
�
t�S1

is nowhere tangent to IVðtÞ 2 V. We were not able to prove their conjecture
and, moreover, we believe that it is possible to construct an example showing that the groups of Vassiliev

invariants of Legendrian knots and of knots that are pseudo-Legendrian with respect to their definition

are different.
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oriented if the two-dimensional planes defining the contact structure are continu-

ously oriented. Since every contact manifold has a natural orientation we see that

every cooriented contact structure is naturally oriented and every oriented contact

structure is naturally cooriented.

A contact structure is parallelizable (parallelized) if the two-dimensional vector

bundle fCxg over M is trivializable (trivialized). Since every contact manifold has a

canonical orientation, one can see that every parallelized contact structure is natu-

rally cooriented.

A curve in M is an immersion of S1 into M. (All curves have the natural orienta-

tion induced by the orientation of S1.) A framed curve inM is a curve equipped with

a continuous unit normal vector field.

A Legendrian curve in a contact manifold (M, C) is a curve inM that is everywhere

tangent to C. If the contact structure on M is cooriented, then every Legendrian

curve has a natural framing given by the unit normals to the planes of the contact

structure that point in the direction specified by the coorientation.

To a Legendrian curve Kl in a contact manifold ðM;CÞ with a parallelized contact

structure one can associate an integer that is the number of revolutions of the direc-

tion of the velocity vector of Kl (with respect to the chosen frames in C) under tra-

versing Kl according to the orientation. This integer is called the Maslov number of

Kl. The set of Maslov numbers enumerates the set of the connected components of

the space of Legendrian curves in R3 (cf. 2.3.1).

For a contact manifold ðM;CÞ with a cooriented contact structure fix a nonde-

generate vector field VC that coorients the contact structure. A pseudo-Legendrian

curve in ðM;C;VCÞ is a curve that is nowhere tangent to VC. Clearly every

Legendrian curve in ðM;CÞ realizes a pseudo-Legendrian curve. (This means that if

L is a Legendrian curve in ðM;CÞ, then it is also a pseudo-Legendrian curve in

ðM;C;VCÞ.)

A knot ð framed knotÞ inM is an embedding (framed embedding) of S1 intoM. In

a similar way we define Legendrian knots, and pseudo-Legendrian knots in a contact

manifold ðM;CÞ with a cooriented contact structure.

A singular ð framed Þ knot with n double points is a curve (framed curve) in M

whose only singularities are n transverse double points. An isotopy of a singular

(framed) knot with n double points is a path in the space of singular (framed) knots

with n double points under which the preimages of the double points on S1 change

continuously. In a similar way we define singular Legendrian and pseudo-

Legendrian knots and the notion of isotopy of singular Legendrian knots and of sin-

gular pseudo-Legendrian knots.

An A-valued framed (resp. Legendrian, resp. pseudo-Legendrian) knot invariant
is an A-valued function on the set of the isotopy classes of framed (resp. Legendrian,
resp. pseudo-Legendrian) knots.

A transverse double point t of a singular knot can be resolved in two essentially

different ways. We say that a resolution of a double point is positive (resp. negative)

if the tangent vector to the first strand, the tangent vector to the second strand, and

106 VLADIMIR TCHERNOV

https://doi.org/10.1023/A:1021733206049 Published online by Cambridge University Press

https://doi.org/10.1023/A:1021733206049


the vector from the second strand to the first form the positive 3-frame. (This does

not depend on the order of the strands). If the singular knot is Legendrian (resp.

pseudo-Legendrian), then these resolution can be made in the category of

Legendrian (resp. pseudo-Legendrian) knots.

A singular framed (resp. Legendrian, resp. pseudo-Legendrian) knot K with

ðnþ 1Þ transverse double points admits 2nþ1 possible resolutions of the double

points. The sign of the resolution is put to be þ if the number of negatively

resolved double points is even, and it is put to be � otherwise. Let x be an A-
valued invariant of framed (resp. Legendrian, resp. pseudo-Legendrian) knots.

The invariant x is said to be of finite order (or Vassiliev invariant) if there exists

a nonnegative integer n such that for any singular knot Ks with ðnþ 1Þ transverse

double points the sum (with appropriate signs) of the values of x on the nonsin-

gular knots obtained by the 2nþ1 resolutions of the double points is zero. An

invariant is said to be of order not greater than n (of order 4 n) if n can be cho-

sen as the integer in the definition above. The group of A-valued finite order

invariants has an increasing filtration by the subgroups of the invariants of

order 4 n.

2.2. ISOMORPHISM BETWEEN THE GROUPS OF ORDER 4n INVARIANTS OF

LEGENDRIAN AND OF PSEUDO-LEGENDRIAN KNOTS

Let ðM;CÞ be a contact manifold with a cooriented contact structure, let VC be a

nondegenerate vector field that coorients the contact structure, and let L be a con-

nected component of the space of Legendrian curves in ðM;CÞ. (The description

of the set of connected components of the space of Legendrian curves is given in

2.3.1.)

Put Lp to be the connected component of the space of pseudo-Legendrian curves
in ðM;C;VCÞ that contains L. (Such a component exists because a Legendrian curve
L in ðM;CÞ is pseudo-Legendrian in ðM;C;VCÞ. Moreover, as it is shown in

Proposition 3.2.16 every component of the space of pseudo-Legendrian curves

in ðM;C;VCÞ contains a unique component of the space of Legendrian curves in

ðM;CÞ.)

Let VL
n (resp. V

Lp
n ) be the group of A-valued order 4 n invariants of Legendrian

(resp. pseudo-Legendrian) knots from L (resp. from Lp). Clearly every invariant
y 2 V

Lp
n restricted to the category of Legendrian knots in L is an element

fðyÞ 2 VL
n . This gives a homomorphism f:VLp

n ! VL
n .

We prove the following Theorems.

THEOREM 2.2.1. xðK1Þ ¼ xðK2Þ, for every x 2 VL
n and for every Legendrian knots

K1;K2 2 L such that K1 and K2 are pseudo-Legendrian isotopic knots in ðM;C;VCÞ.

For the Proof of Theorem 2.2.1 see Section 3.1.
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THEOREM 2.2.2. The following two statements I and II are equivalent.

ðIÞ f:VLp
n ! VL

n is an isomorphism.

ðIIÞ xðK1Þ ¼ xðK2Þ for every x 2 VL
n and for every Legendrian knots K1;K2 2 L such

that K1 and K2 are pseudo-Legendrian isotopic knots in ðM;C;VCÞ.

The Proof of Theorem 2.2.2 becomes obvious when the mapping from the

Legendrian isotopy classes of Legendrian knots from L to the pseudo-Legendrian

isotopy classes of pseudo-Legendrian knots from Lp is surjective. However the
famous Bennequin inequality shows that this map is not surjective even when

ðM;CÞ is the standard contact R3.

The Proof of Theorem 2.2.2 is given in Section 3.3.

Combining Theorems 2.2.1 and 2.2.2 we get the following.

THEOREM 2.2.3. The groups VL
n and V

Lp
n of A-valued Vassiliev invariants of

Legendrian knots from L and of pseudo-Legendrian knots from Lp are canonically
isomorphic.

2.3. SOME IMPORTANT TECHNIQUES FOR WORKING WITH LEGENDRIAN

AND PSEUDO-LEGENDRIAN KNOTS

2.3.1. h-Principle for Legendrian Curves and the Connected Components

of the Space of Legendrian Curves

For ðM;CÞ a contact manifold with a cooriented contact structure, we put CM to be

the total space of the fiberwise spherization of the contact bundle, and we put

pr:CM!M to be the corresponding locally trivial S1-fibration. The h-principle

proved for the Legendrian curves by M. Gromov ([7], pp. 338–339) says that the

space of Legendrian curves in ðM;CÞ is weak homotopy equivalent to the space of

free loops OCM in CM. The equivalence is given by mapping a point of a

Legendrian curve to the point of CM corresponding to the direction of the velocity

vector of the curve at this point. In particular the h-principle implies that the set of the

connected components of the space of Legendrian curves in ðM;CÞ can be naturally

identified with the set of conjugacy classes of elements of p1ðCMÞ.

2.3.2. Description of Legendrian and of pseudo-Legendrian Knots in R3

The contact Darboux theorem says that every contact 3-manifold ðM;CÞ is locally

contactomorphic to R3
¼ ðx; y; zÞ with the standard contact structure that is the ker-

nel of the 1-form a ¼ ydx� dz. A chart in which ðM;CÞ is contactomorphic to the

standard contact R3 is called a Darboux chart.

Legendrian knots in the standard contact R3 are conveniently presented by the

projections into the plane ðx; zÞ. Identify a point ðx; y; zÞ 2 R3 with the point

ðx; zÞ 2 R2 furnished with the fixed direction of an unoriented straight line through

108 VLADIMIR TCHERNOV

https://doi.org/10.1023/A:1021733206049 Published online by Cambridge University Press

https://doi.org/10.1023/A:1021733206049


ðx; zÞ with the slope y. Then the curve in R3 is a one parameter family of points with

non-vertical directions in R2.

While a generic regular curve has a regular projection into the ðx; zÞ-plane, the pro-

jection of a generic Legendrian curve into the ðx; zÞ-plane has isolated critical points

(since all the planes of the contact structure are parallel to the y-axis). Hence the pro-

jection of a generic Legendrian curve may have cusps. A curve in R
3 is Legendrian if

and only if the corresponding planar curve with cusps is everywhere tangent to the

field of directions. In particular, this field is determined by the curve with cusps. This

description of a Legendrian curve is often called the front projection description of the

Legendrian curve.

A pseudo-Legendrian knot in ðR3; kerðydx� dzÞÞ can be depicted as follows. Let

VC be a unit vector field on R3 that coorients the contact structure. Choose a system

of coordinates ðx0; y0; z0Þ in R3 so that VC is parallel to the z
0-axis and points in the

same direction. Then a pseudo-Legendrian knot K can be depicted by the standard

knot diagram in ðx0; y0; z0Þ. Since K is pseudo-Legendrian it means that the velocity

vector of K at every point is not parallel to the z0-axis. A pseudo-Legendrian isotopy

of a pseudo-Legendrian knot can be depicted by a sequence of second and third

Reidemeister moves. (The first Reidemeister move does not occur, since during this

move the velocity vector of one of the points on the kink becomes parallel to the z0-

axis.)

3. Proofs

3.1. PROOF OF THEOREM 2.2.1

3.1.1. Some Useful Facts Proved by D. Fuchs and S. Tabachnikov ð½4�Þ

There are two types of cusps arising under the projection of the part of a Legendrian

knot that is contained in a Darboux chart to the ðx; zÞ-plane (see 2.3.2). They are

formed by cusps for which the branch of the projection of the knot going away from

the cusp is locally located respectively above or below the tangent line at the cusp

point. (See Figures 1(b) and (c) respectively.) For a Legendrian knot K and

i; j 2 N we denote by K�i;�j the Legendrian knot that is the same as K everywhere

except of a part contained in a Darboux chart; in the Darboux chart K�i;�j differs

Figure 1.
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from K in the way described, see 2.3.2, by the addition of i cusp pairs of the first type

and j cusp pairs of the second type to the front projection description of the part of K

located in the Darboux chart. (It is possible to show that the Legendrian isotopy

class of K�i;�j depends only on i; j and on the Legendrian isotopy class of K, and does

not depend on the choice of the Darboux chart, but we will not use this fact.)

The following three facts were proved by Fuchs and Tabachnikov [4].

(1) Let K1 and K2 be Legendrian knots in the standard contact R3 that realize iso-

topic unframed knots. Then for any n1; n2 2 N large enough there exist

n3; n4 2 N such that the Legendrian knot K�n1;�n2
1 is Legendrian isotopic to

K�n3;�n4
2 .

(2) If there exists n 2 N such that Legendrian knots K�n;�n
1 and K�n;�n

2 are

Legendrian isotopic, then every Vassiliev invariant of Legendrian knots takes

equal values on K1 and on K2.

(3) The number n from the previous observation exists if the ambient contact mani-

fold is R3 and the Legendrian knots K1 and K2 belong to the same component

of the space of Legendrian curves and realize isotopic framed knots.

As it was later observed by Fuchs and Tabachnikov [5] the first two observation

are true for any contact 3-manifold (since the proof of the corresponding facts is

local). But the number n from the statement of the third observation does not exist

in general. In the case of the ambient manifold being R3 Fuchs and Tabachnikov

showed the existence of such n using the explicit calculation involving the Maslov

class and the Bennequin invariant of Legendrian knots. However in order for the

Bennequin invariant to be well-defined the knots have to be zero-homologous,

and in order for the Maslov class to be well-defined the knots have to be zero-

homologous or the contact structure has to be parallelizable.

Clearly to prove Theorem 2.2.1 it suffices to show that the number n from the third

observation exists for any Legendrian knots K1 and K2 that realize isotopic pseudo-

Legendrian knots in ðM;C;VCÞ. (We assume that the contact structure C on M is

cooriented.)

Let K1 and K2 be Legendrian knots that realize pseudo-Legendrian isotopic

pseudo-Legendrian knots (in ðM;C;VCÞ), and let n1; n2; n3; n4 2 N be such that

K �n1;�n2
1 and K �n3;�n4

2 are Legendrian isotopic.

We start by showing that if K1 and K2 are pseudo-Legendrian isotopic, then

n1; n2; n3; n4 can be chosen so that n1 þ n2 ¼ n3 þ n4, and that n1 � n2 ¼ n3 � n4.

3.1.2. Proof of the Fact that n1; n2; n3; n4 can be Chosen so that n1 þ n2 ¼ n3 þ n4

Let I : S1 � ½0; 1� !M be the pseudo-Legendrian isotopy that changes K1 to K2.

Analyzing the proof of Fuchs and Tabachnikov one verifies that for n1; n2 large

enough the Legendrian isotopy m : S1 � ½0; 1� !M changing K�n1;�n2
1 to K�n3;�n4

2

can be chosen so that for every t 2 ½0; 1� the Legendrian knot mt ¼ m
�
�
ðS1�tÞ

is
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contained in a thin tubular neighborhood Tt of It ¼ I
�
�
ðS1�tÞ

and is isotopic (as an

unframed knot) to mt inside Tt.
Every pseudo-Legendrian knot is naturally framed. Put �mt and �It to be the framed

knots corresponding respectively to mt and to It. For two framed knots �mt and �It rea-

lizing unframed knots that are isotopic inside Tt there is a well-defined Z-valued

obstruction to be isotopic inside Tt in the category of framed knots.

This obstruction is the difference of the self-linking numbers of the inclusions of �mt

and �It into R3 induced by an identification of Tt with the standard solid torus in R3.

(One verifies that for �mt and �It that are isotopic as unframed knots inside Tt this dif-

ference does not depend on the choice of the identification of Tt with the standard

solid torus in R3.)

From the formula for the Bennequin invariant stated in [4] one gets that the value

of the obstruction for K�n1;�n2
1 to be isotopic as a framed knot to K1 inside T0 is

equal to n1 þ n2. Similarly the value of the obstruction for K
�n3;�n4
2 to be isotopic

as a framed knot to K2 inside T1 is equal to n3 þ n4. Clearly the value of the obstruc-

tion for �mt to be isotopic to �It inside Tt does not depend on t, and we get that

n1 þ n2 ¼ n3 þ n4.

3.1.3. Proof of the Fact that n1; n2; n3; n4 can be Chosen so that n1 � n2 ¼ n3 � n4

Identify S1 with fz 2 C
�
� jzj ¼ 1g. Put ½1; i�, ½i;�1�, ½�1;�i�, and ½�i; 1� to be the four

non-overlapping arcs of S1 with the end points at 1;�1; i;�i 2 S1.

Let p : S1 � S1 !M be the mapping, such that

(1) p
�
�
S1�½1;i�

is a homotopy of loops that changes K1 to K
�n1;�n2
1 and happens in a

thin tubular neighborhood of K1;

(2) p
�
�
S1�½i;�1�

is (up to a reparametrization) the Legendrian isotopy m that changes
K�n1;�n2
1 to K�n3;�n4

2 ;

(3) p
�
�
S1�½�1;�i�

is a homotopy of loops that changes K�n3;�n4
2 to K2 and happens in a

thin tubular neighborhood of K2;

(4) p
�
�
S1�½�i;1�

is (up to a reparametrization) the isotopy I�1 that changes K2 to K1.

Consider the oriented R2 bundle pr : x ! S1 � S1 that is induced by p : S1�

S1 !M from the contact bundle C onM. Since the isotopies IK and m were chosen
so that they are C0 close, we get that the image of the fundamental class of S1 � S1

under p
 is zero in H2ðMÞ. Thus the Euler class ex of pr : x ! S1 � S1 is

0 2 Z ¼ H2ðS1 � S1Þ.

Put pr1: x1 ! S1 � ½1; i�, pr2: x2 ! S1 � ½i;�1�, pr3: x3 ! S1 � ½�1;�i�, and

pr4: x4 ! S1 � ½�i; 1� to be the restrictions of pr : x ! S1 � S1.

The velocity vectors of Legendrian knots K1, K
�n1;�n2
1 , K�n3;�n4

2 , and K2 give the

nonzero section of pr : x ! S1 � S1 over @ðS1 � ½1; i�Þ, @ðS1 � ½i;�1�Þ, @ðS1�

½�1;�i�Þ; and @ðS1 � ½�i; 1�Þ.

Put ex1 to be the Z-valued obstruction to extend the nonzero section of

pr1 : x1 ! S1 � ½1; i� over @ðS1 � ½1; i�Þ ¼ S1 � f1g [ S1 � fig given by the velocity
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vectors of K1 and of K�n1;�n2
1 to a nonzero section of pr1: x1 ! S1 � ½1; i� over

S1 � ½1; i�. (It is the relative Euler class that takes values in Z ¼ H2ðS1 � ½1; i�;

@ðS1 � ½1; i�ÞÞ.)

Similarly put ex2 ; ex3 ; ex4 2 Z to be the obstructions to extend the nonzero sections

of x2; x3; x4 over @ðS1 � ½i;�1�Þ; @ðS1 � ½�1;�i�Þ; and @ðS1 � ½�i; 1�Þ that were descri-

bed above to nonzero sections respectively over S1 � ½i;�1�;S1 � ½�1;�i�; and

S1 � ½�i; 1�.

One verifies that

ex1 þ ex2 þ ex3 þ ex4 ¼ ex ¼ 0: ð1Þ

For a Legendrian knot K in the standard contact R3 put mðKÞ 2 Z to be the

Maslov class of K. In [4] it is shown that mðK�i1;�i2Þ ¼ mðKÞ þ ði2 � i1Þ for

i1; i2 2 Z and for the Legendrian knots K and K�i1;�i2 in the standard contact R3.

A straightforward verification based on this equality shows that

ex1 ¼ n2 � n1 and ex3 ¼ n3 � n4: ð2Þ

The velocity vectors of the Legendrian knots mðtÞ define the nonzero section of
pr2: x2 ! S1 � ½i;�1� that extends the nonzero section over @ðS1 � ½i;�1�Þ defined

by the velocity vectors of K�n1;�n2
1 and of K�n3;�n4

2 . Thus

ex2 ¼ 0: ð3Þ

Since 8t 2 ½0; 1� the knot It ¼ I
�
�
S1�t

is nowhere tangent to VC we get that for every

point of It the projection to C along VC of the velocity vector of It at this point is

nonzero. Thus the isotopy I defines the nonzero section of x4 over S1 � ½�i; 1� that

is the extension of the nonzero section of x4 over @ðS1 � ½�i; 1�Þ defined by the velo-

city vectors of K1 and of K2. Hence we get that

ex4 ¼ 0: ð4Þ

Combining together identities (1)–(4), we get that 0 ¼ ex ¼ ex1 þ ex2 þ ex3 þ ex4 ¼

ex1 þ ex3 ¼ ðn2 � n1Þ þ ðn3 � n4Þ: Thus n1 � n2 ¼ n3 � n4.

3.1.4. From the Identities n1 þ n2 ¼ n3 þ n4 and n1 � n2 ¼ n3 � n4 one gets that

n1 ¼ n3 and n2 ¼ n4. Assume that n15 n2. (The case where n2 > n1 is treated

similarly.) Put k ¼ n1 � n2. It is easy to show that since K�n1;�n2
1 and K�n3;�n4

2 are

Legendrian isotopic, then K�n1;�n2�k
1 and K�n3;�n4�k

2 are also Legendrian isotopic.

(Basically one can keep the k extra cusp pairs close together on a small piece of

the projection of the part of the knot contained in a Darboux chart during the

whole isotopy process.) But K�n1;�n2�k
1 and K�n3;�n4�k

2 are obtained from K1 and
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K2 by the modification corresponding to the addition of n1 ¼ n2 þ k ¼ n3 ¼ n4 þ k

pairs of cusps of each of the two types, and we can take n from the observation 2

to be n1 ¼ n2 þ k ¼ n3 ¼ n4 þ k.

This shows that K1 and K2 can not be distinguished by the Vassiliev invariants

of Legendrian knots provided that they realize isotopic pseudo-Legendrian

knots. &

3.2. SOME PROPOSITION NEEDED FOR THE PROOF OF THEOREM 2.2.2

DEFINITION 3.2.1. There are four types of small kinks that can be added to a

pseudo-Legendrian knot. They are kinks of types ð1; 1Þ; ð1;�1Þ; ð�1;�1Þ; ð�1; 1Þ,

shown in Figure 2. (Here the first number in the pair corresponds to the increment to

the rotation number of a knot and the second to the increment to the selflinking

number of the knot that occurs if one adds a kink to a pseudo-Legendrian knot in

R3.)

Let Kp be a pseudo-Legendrian knot. For i; j 2 Z the ði; jÞ-stabilization Ki;jp of Kp
is a pseudo-Legendrian knot obtained from Kp by the addition of i kinks of type

ð1; 1Þ, provided that i5 0, jij kinks of type ð�1;�1Þ, provided that i < 0 and of j

kinks of type ð�1; 1Þ, provided that j5 0 j jj kinks of type ð1;�1Þ, provided that

j < 0:

Similarly one defines the ði; jÞ-stabilization of a singular pseudo-Legendrian knot

with n transverse double points.

It is easy to verify that the pseudo-Legendrian isotopy type of the knot Ki;jp does

not depend on the places on Kp where the kinks are added. (To get the same fact

for singular pseudo-Legendrian knots one observes that it is possible to pull a kink

Figure 2. The four types of kinks.
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through a transverse double point of a singular pseudo-Legendrian knot by a

pseudo-Legendrian isotopy of the singular knot.)

As it is shown in Figure 3 the pair of kinks of types ð1; 1Þ and ð�1;�1Þ can be cancel-

led by a pseudo-Legendrian isotopy. Similar considerations show that a pair of kinks

of types ð1;�1Þ and ð�1; 1Þ also can be cancelled by a pseudo-Legendrian isotopy.

Thus we get the following Proposition.

PROPOSITION 3.2.2. For a pseudo-Legendrian knot Kp and for i; j; k; l 2 Z the ði; jÞ-

stabilization ðKk;lp Þ
i;j of Kk;lp is pseudo-Legendrian isotopic to Kiþk; jþlp .

PROPOSITION 3.2.3. Let K1 and K2 be pseudo-Legendrian ðwith respect to VCÞ

knots that are C0-close isotopic to each other as unframed knots. Then there exist

i; j 2 Z such that K1 is pseudo-Legendrian isotopic to K
i;j
2 .

3:2:4: Proof. Let T be a tubular neighborhood of K1 inside which K1 and K2 are

isotopic as unframed knots.

Identify ðT;VC
�
�
T
Þ with the standard solid torus in R3

¼ ðx; y; zÞ such that both the

axis of the torus and the vector field are parallel to the z-axis. Similar to 2.3.2 we can

depict the pseudo-Legendrian knots K1 and K2 by their knot diagrams obtained by

projection to an annulus A along the z-axis.

Since K1 and K2 are isotopic inside T as unframed knots, we get that the knot dia-

gram of K1 in A can be changed to a knot diagram of K2 in A by a sequence of

Reidemeister moves. The second and the third Reidemeister moves can be done in

the pseudo-Legendrian category. The first Reidemeister move can not be done in

the pseudo-Legendrian category since under it the velocity vector of a knot at one

of the points becomes parallel to the z-axis, and hence the knot becomes tangent

to VC at one point.

There are four types of first Reidemeister move. They are distinguished by the four

possible types of kinks that appear under them, see Figure 2.

Figure 3. The creation of a (1,1) and (�1,�1) kinks by a pseudo-Legendrian isotopy.
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As it is shown in Figure 3 one can create (or annihilate) a fð1; 1Þ; ð�1;�1Þg-pair of

kinks by a pseudo-Legendrian isotopy. Similar considerations show that one can cre-

ate (or annihilate) a fð1;�1Þ; ð�1; 1Þg-pair of kinks by a pseudo-Legendrian isotopy.

Using this observation we can imitate the isotopy of unframed knots that changes

K1 to K2 by a pseudo-Legendrian isotopy. Namely, if for example the isotopy that

changes K1 to K2 as an unframed knot involves the first Reidemeister that creates

the ð1; 1Þ-kink, instead of this move we perform the pseudo-Legendrian isotopy that

creates a fð1; 1Þ; ð�1;�1Þg-pair of kinks, make the ð�1;�1Þ kink very small and keep

it very small during the later isotopy process.

In the end of this imitation process we get that K1 is pseudo-Legendrian isotopic

to a knot that looks exactly as K2 except of a number of small extra kinks that are

present on it.

Cancel by a pseudo-Legendrian isotopy the fð1; 1Þ; ð�1;�1Þg pairs of extra kinks

either till there are no extra kinks of type ð1; 1Þ left or till there are no extra kinks

of type ð�1;�1Þ left. (Observe that we can bring any pair of kinks to be close toge-

ther by a pseudo-Legendrian isotopy. For this we make one of the kinks small and

slide it along the knot to the desired position.)

Cancel by a pseudo-Legendrian isotopy the fð1;�1Þ; ð�1; 1Þg pairs of extra kinks

either till there are no extra kinks of type ð1;�1Þ left or till there are no extra kinks

of type ð�1; 1Þ left.

It is clear that as the result of this process we obtain the pseudo-Legendrian iso-

topy of K1 to K
i;j
2 ; for some i; j;2 Z. &

PROPOSITION 3.2.5. Let K1 and K2 be pseudo-Legendrian knots, and i; j 2 Z be

such that K1 and K
i;j
2 are pseudo-Legendrian isotopic. Then for any k; l 2 Z the knots

Kk;l1 and Kiþk;jþl2 are also pseudo-Legendrian isotopic.

3:2:6: Proof. Make the jkj and jlj extra kinks used to obtain Kk;l1 very small and

concentrate them on a small piece of K1. Keep them small and close together during

the isotopy process that was connecting K1 and K
i;j
2 . As a result we get a pseudo-

Legendrian isotopy between K k;l
1 and ðK i;j

2 Þ
k;l. Finally Proposition 3.2.2 says that

ðK i; j
2 Þ

k;l is pseudo-Legendrian isotopic to K iþk; jþl
2 . &

PROPOSITION 3.2.7. Let K be a pseudo-Legendrian knot, that is pseudo-Legendrian

isotopic to a Legendrian knot ði.e. its pseudo-Legendrian isotopy type is realizable by a

Legendrian knotÞ. Then for any i; j 2 N the pseudo-Legendrian isotopy class of K�i;�j is

also realizable by a Legendrian knot.

3:2:8: Proof of Proposition 3.2.7. One observes that if Kl is a Legendrian knot that

is pseudo-Legendrian isotopic to K, then the Legendrian knot obtained by the

modification shown in Figure 1b is pseudo-Legendrian isotopic to K�1;0. Similarly

the Legendrian knot obtained by the modification shown in Figure 1c is pseudo-

Legendrian isotopic to K0;�1. Performing the two modifications i and j times

respectively we get the Legendrian knot that is pseudo-Legendrian isotopic to

K�i;�j. &
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PROPOSITION 3.2.9. Every component of the space of pseudo-Legendrian curves

contains at most one component of the space of Legendrian curves.

In Fact every component of the space of pseudo-Legendrian curves contains exactly

one component of the space of Legendrian curves, but to prove this statement, see

Proposition 3:2:16 we have to use Proposition 3:2:14 that is in turn based on Proposi-

tion 3:2:9:

3:2:10: Proof. The h-principle, see 2.3.1, says that the connected components of

the space of Legendrian curves in ðM;CÞ are in one to one correspondence with the

conjugacy classes of elements of p1ðCMÞ. Under this identification the connected

component of the space of Legendrian curves that contains a Legendrian curve Kl
corresponds to the conjugacy class of ~Kl 2 p1ðCM; ~Klð1ÞÞ, where the loop ~Kl is

obtained by mapping t 2 S1 to the point of CM that corresponds to the velocity

vector of Kl at KlðtÞ.

Let K0;l and K1;l be Legendrian curves that are in Lp. Consider a pseudo-

Legendrian homotopy H : ½0; 1� � S1 !M that connects K1;l and K2;l. Observe that

a pseudo-Legendrian curve K also defines a loop ~K in CM by mapping t in S1 to

the point of CM that corresponds to the projection of the velocity vector of K at

KðtÞ to a contact plane along VC. (Since K is pseudo-Legendrian the projection is

nonzero.)

Thus the family of pseudo-Legendrian curves Kt ¼ H
�
�
t�S1

defines the free homo-

topy of loops ~K1;l and ~K2;l. Hence, by the h-principle K1;l and K2;l belong to the same

component of the space of Legendrian curves.

Since K1;l and K2;l were arbitrary Legendrian curves from Lp we get that Lp con-
tains at most one component of the space of Legendrian curves. &

PROPOSITION 3.2.11. Let Lp be a connected component of the space of pseudo-
Legendrian curves, and let K 2 Lp be a pseudo-Legendrian knot. Then for any i 2 Z the

pseudo-Legendrian knots Ki;i also belong to Lp.
3:2:12: Proof. The pseudo-Legendrian homotopies shown in Figures 3 and 4

imply that for any m > 0 the knot K�m;�m is in Lp. Similar considerations show that

Km;m is also in Lp. &

Figure 4. A pseudo-Legendrian homotopy changing the fð1; 1Þ; ð�1;�1Þg pair of kinks to a fð1;�1Þ;
ð�1;�1Þg pair of kinks.
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PROPOSITION 3.2.13. The statements of Propositions 3:2:2; 3:2:3; 3:2:5; 3:2:7, and

3:2:11 are true if one substitutes everywhere in the statements of these Propositions

pseudo-Legendrian knots by singular pseudo-Legendrian knots, and Legendrian knots

by singular Legendrian knots.

The Proof of this Proposition is straightforward. One has to observe that it is pos-

sible to pull a kink through a transverse double point of a singular pseudo-

Legendrian knot by a pseudo-Legendrian isotopy of the singular knot.

LEMMA 3.2.14. Let ðM;CÞ be a contact manifold with a cooriented contact structure

and let VC be a vector field that coorients the contact structure. Let L be a connected

component of the space of Legendrian curves in ðM;CÞ and let Lp be the corresponding
component of the space of pseudo-Legendrian ðwith respect to VCÞ curves.

ðaÞ Let K 2 Lp be a pseudo-Legendrian knot, then there exists n 2 N such that the

knot K�n;�n is pseudo-Legendrian isotopic to a Legendrian knot from L.
ðbÞ Let Ks 2 Lp be a singular pseudo-Legendrian knot ðwhose only singularities are i

transverse double pointsÞ, then there exists n 2 N such that the knot K�n;�n
s is

pseudo-Legendrian isotopic to a singular Legendrian knot from L.

3:2:15: Proof. We prove statement b of Lemma 3.2.14. The Proof of statement a

of Lemma 3.2.14 is obtained as a particular case of the proof of b, when the number

of double points of a singular knot is zero.

The result of W. L. Chow [3] and P. K. Rashevskii [11] says that every unframed

knot K is isotopic to a Legendrian knot Kl (and this isotopy can be made C
0-small).

Similar considerations show that every singular unframed knot Kus with n double

points is isotopic to a singular Legendrian knot (and this isotopy can be made C0-

small).

Let Kls be a singular Legendrian knot that is C0 small isotopic to Ks as an

unframed knot. By the version of Proposition 3.2.3 for singular knots, see 3.2.13,

we get that there exist i; j 2 Z such that Ki;js is pseudo-Legendrian isotopic to Kls.

The version of Proposition 3.2.7 for singular knots, see 3.2.13, says that the

pseudo-Legendrian isotopy classes of singular knots Ki�1;js and of Ki;j�1s are also rea-

lizable by singular Legendrian knots. By the versions of Propositions 3.2.2 and 3.2.5

for singular knots, see 3.2.13, we get that Ki�1;js is pseudo-Legendrian isotopic to

K�1;0
ls and Ki;j�1s is pseudo-Legendrian isotopic to K0;�1ls . Using these facts we get that

there exist m 2 N such that K�m;�m
s is pseudo-Legendrian isotopic to a singular

Legendrian knot.

The version of Proposition 3.2.11 for singular knots, see 3.2.13, says that K�m;�m
s is

in Lp. Since by Propositions 3.2.9 there is at most one component of the space
of Legendrian curves contained in Lp, we get that K�m;�m

s is realizable by a singular

Legendrian knot from L. This finishes the proof of statement b of Lemma 3.2.14. &
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PROPOSITION 3.2.16. Every component of the space of pseudo-Legendrian curves

contains exactly one component of the space of Legendrian curves.

3:2:17: Proof. Let Lp be a connected component of the space of pseudo-

Legendrian curves, and let K 2 Lp be a pseudo-Legendrian knot. One verifies that
the proof of Lemma 3.2.14 contains the proof of the fact that there exists n 2 N such

that K�n;�n 2 Lp is pseudo-Legendrian isotopic to a Legendrian knot. In particular
this means that Lp contains at least one component of the space of Legendrian
curves. Combining this with Proposition 3.2.9 we get the statement of the

Proposition. &

3.3. PROOF OF THEOREM 2.2.2

The fact that statement I of Theorem 2.2.2 implies statement II is clear. Thus we

have to show that statement II implies statement I. This is done by showing that

there exists a homomorphism c : VL
n ! V

Lp
n such that f � c ¼ idVL

n
and c � f ¼

idVL
n p
.

Let x 2 VL
n be an invariant. In order to construct cðxÞ 2 V

Lp
n we have to specify the

value of cðxÞ on every pseudo-Legendrian knot K 2 Lp.

3.3.1. Definition of cðxÞ

If the pseudo-Legendrian isotopy class of the knot K 2 Lp is realizable by a

Legendrian knot Kl 2 L, then put cðxÞðKÞ ¼ xðKlÞ. The value cðxÞðKÞ is well-defined
because if K0

l 2 L is another knot realizing K, then xðKlÞ ¼ xðK0
lÞ by statement I of

Theorem 2.2.3.

Fix a pseudo-Legendrian knot K. We explain how to define the value of cðxÞ on
the pseudo-Legendrian isotopy classes of all the Km;m, m 2 Z. (Proposition 3.2.11

says that all the Km;m also belong to Lp.)
There are two cases: either 1Þ all the isotopy classes of Km;m, m 2 Z, are realizable

by Legendrian knots from L or 2Þ there exists q 2 Z such that the class of Kq;q is rea-

lizable by a Legendrian knot from L (see 3.2.14) and the class of Kqþ1;qþ1 2 Lp is not
realizable by a Legendrian knot from L. (In this case the classes of Kqþ2;qþ2;Kqþ3;qþ3
etc. also are not realizable by Legendrian knots from L, see 3.2.7.) In the case 1Þ the
value of cðxÞ is already defined on all the pseudo-Legendrian knots from Lp that are
pseudo-Legendrian isotopic to Km;m, for some m 2 Z.

In case ð2Þ, Propositions 3.2.5 and 3.2.7 imply that the pseudo-Legendrian isotopy

classes of

Kqþ1;qþ1;Kqþ2;qþ2;Kqþ3;qþ3; . . . ð5Þ

are all pairwise distinct. We put

cðxÞðKqþ1;qþ1Þ ¼
Xnþ1
i¼1

ð�1Þiþ1
ðnþ 1Þ!

i!ðnþ 1� iÞ!
cðxÞðKqþ1�i;qþ1�iÞ

� �
: ð6Þ
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(Proposition 3.2.7 implies that the sum on the right-hand side is well-defined.) Simi-

larly we put

cðxÞðKqþ2;qþ2Þ ¼
Xnþ1
i¼1

ð�1Þiþ1
ðnþ 1Þ!

i!ðnþ 1� iÞ!
cðxÞðKqþ2�i;qþ2�iÞ

� �
;

cðxÞðKqþ3;qþ3Þ ¼
Xnþ1
i¼1

ð�1Þiþ1
ðnþ 1Þ!

i!ðnþ 1� iÞ!
cðxÞðKqþ3�i;qþ3�iÞ

� �
; etc:

ð7Þ

Doing this for all the classes of ðm;mÞ-stabilization equivalence for which case 2

holds we define the value of cðxÞ on all the knots from Lp.
Below we show that cðxÞ is an order 4 n invariant of knots from Lp. We start by

proving the following Proposition.

PROPOSITION 3.3.2. Let Kqþ1;qþ1 be a pseudo-Legendrian knot from Lp, then cðxÞ
defined as above satisfies identity ð6Þ.

3:3:3: Proof. If the pseudo-Legendrian isotopy class of Kqþ1;qþ1 is not realizable

by a Legendrian knot from L, then the statement of the proposition follows from the

formulas (6), (7) we used to define cðxÞðKqþ1;qþ1Þ.
If the pseudo-Legendrian isotopy class of Kqþ1;qþ1 is realizable by a Legendrian

knot Kl, then consider a singular Legendrian knot Kls with ðnþ 1Þ double points that

are vertices of ðnþ 1Þ small kinks such that we get Kl if we resolve all the double

points positively staying in the class of the Legendrian knots. (To create Kls we per-

form the first half of the homotopy shown in Figure 5 in nþ 1 places on Kl.)

Let S be the set of the 2nþ1 possible resolutions of the double points of Kls. For

s 2 S put signðsÞ to be the sign of the resolution, and put Ks
ls to be the nonsingular

Legendrian knot obtained via the resolution s. Since x is an order 4 n invariant of

Legendrian knots we get that

0 ¼
X
s2S

signðsÞxðKs
lsÞ

� �

¼ cðxÞðKqþ1;qþ1Þ þ
Xnþ1
i¼1

ð�1Þi
ðnþ 1Þ!

i!ðnþ 1� iÞ!
cðxÞðKqþ1�i;qþ1�iÞ: ð8Þ

Figure 5.
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(A straightforward verification shows that if we resolve i double points of Kls nega-

tively, then we get the pseudo-Legendrian isotopy class of Kqþ1�i;qþ1�i.) This finishes

the proof of the Proposition. &

3.3.4. Let Ks 2 Lp be a singular pseudo-Legendrian knot with ðnþ 1Þ double points.

Let S be the set of the 2nþ1 possible resolutions of the double points of Ks. For s 2 S
put signðsÞ to be the sign of the resolution, and put Ks

s to be the pseudo-Legendrian

isotopy class of the knot obtained via the resolution s.
In order to prove that cðxÞ is an order 4 n invariant of framed knots from Lp, we

have to show that

0 ¼
X
s2S

ðsignðsÞcðxÞðKs
s ÞÞ; ð9Þ

for every singular Ks 2 Lp with ðnþ 1Þ double points.

First we observe that the fact whether identity (9) holds or not depends only on the

pseudo-Legendrian isotopy class of the singular pseudo-Legendrian knot Ks with

ðnþ 1Þ double points.

If the isotopy class of Ks is realizable by a singular Legendrian knot from L, then
identity (9) holds for Ks, since x is an order 4 n invariant of Legendrian knots (and

the value of cðxÞ on a pseudo-Legendrian knot K 2 Lp realizable by a Legendrian
knot Kl 2 L was put to be xðKlÞ).

Lemma 3.2.14(b) and the version of 3.2.11 for singular knots, see 3.2.13, imply

that there exists r 2 N such that the isotopy class of the singular pseudo-Legendrian

knot K�r;�r
s 2 Lp is realizable by a singular Legendrian knot from L.

If all the isotopy classes of singular pseudo-Legendrian knotsKm;ms 2 Lp,m 2 Z, are

realizable by singular Legendrian knots from L, then (9) automatically holds for Ks.
Otherwise Lemma 3.2.14.b and the version of Proposition 3.2.7 for singular knots

(see 3.2.13) imply that there exists q 2 Z such that Kq;qs is realizable by a singular

Legendrian knot from L and such that Kqþ1;qþ1s ;Kqþ2;qþ2s ;Kqþ3;qþ3s ; . . . are not realiz-

able by a singular Legendrian knot from L.
The version of Proposition 3.2.7 for singular knots, see 3.2.13, says that Kq�i;q�is ,

i > 0, are realizable by singular Legendrian knots from L and hence identity (9)

holds for Kq�i;q�is , i5 0. Using Proposition 3.3.2 and the fact that identity (9) holds

for Kq�i;q�is , i5 0, we show that (9) holds for Kqþ1;qþ1s . Namely,X
s2S

signðsÞcðxÞððKqþ1;qþ1s Þ
s
Þ

¼
X
s2S

signðsÞ
Xnþ1
i¼1

ð�1Þiþ1
ðnþ 1Þ!

i!ðnþ 1� iÞ!
cðxÞððKðqþ1�iÞ;ðqþ1�iÞ

s Þ
s
Þ

 !

¼
Xnþ1
i¼1

ð�1Þiþ1
ðnþ 1Þ!

i!ðnþ 1� iÞ!
�

X
s2S

signðsÞcðxÞððKðqþ1�iÞ;ðqþ1�iÞ
s Þ

s
Þ

 ! !

¼
Xnþ1
i¼1

ð�1Þiþ1
ðnþ 1Þ!

i!ðnþ 1� iÞ!
� ð0Þ

� �
¼ 0: ð10Þ
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Similarly we show that (9) holds for Kqþ2;qþ2s ;Kqþ3;qþ3s ; etc � � �.

3.3.5. Clearly c is a homomorphism and f � c ¼ idVL
n
.

Considering the values of y 2 V
Lp
n on the 2nþ1 possible resolutions of a singular

pseudo-Legendrian knot with nþ 1 singular fragments shown in the middle part

of Figure 4 we get that y should satisfy identity (6). Hence, c � f ¼ idVL
n p
and this

finishes the proof of Theorem 2.2.3. &
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