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Abstract

The growing application of data-driven analytics in materials science has led to the rise of materials informatics. Within the arena of
data analytics, deep learning has emerged as a game-changing technique in the last few years, enabling numerous real-world appli-
cations, such as self-driving cars. In this paper, the authors present an overview of deep learning, its advantages, challenges, and
recent applications on different types of materials data. The increasingly availability of materials databases and big data in general,
along with groundbreaking advances in deep learning offers a lot of promise to accelerate the discovery, design, and deployment

of next-generation materials.

Introduction
In this era of big data, we are being bombarded with huge vol-
umes of data from a variety of different sources (experiments
and simulations) at a staggering velocity in practically all fields
of science and engineering, and materials science is no excep-
tion. This has led to the emergence of the fourth paradigm of
science, which is data-driven science, and builds upon the
big data created by the first three paradigms of science (exper-
iment, theory, and simulation). Advanced techniques for data-
driven analytics are needed to analyze these data in ways that
can help extract meaningful information and knowledge from
them, and thus contribute to accelerating materials discovery
and realize the vision of Materials Genome Initiative (MGI).[")
The fourth paradigm of science utilizes scalable machine learning
(ML) and data mining techniques to extract actionable insights
from such big data and inform materials design efforts at various
levels. Figure 1 depicts the four paradigms of science.”)

Materials science and engineering researchers rely on
experiments and simulations to try to understand the process-
ing—structure—property—performance (PSPP) relationships,'**!
which are far from being well-understood. In fact, almost
everything in materials science depends on these PSPP rela-
tionships, where the cause—effect relationships of science go
from left to right, and the goals—means relationships of engi-
neering go from right to left. In order to discover and design
new improved materials with desired properties, we need to
better understand this complex system of PSPP relationships.
Figure 2 depicts these PSPP relationships of materials science
and engineering. !

The scalable data-driven techniques of the fourth para-
digm of science have found numerous applications in a lot
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of diverse fields such as marketing and commerce,”™'® health-
care,'"1?1 climate science,l'>!¥ bioinformatics,[ls’lﬁ] social
media,'"!'® materials science,'*?% and cosmology,m’zz]
among many others. In particular, over the last few years,
deep learning!?*) has emerged as a game-changing technique
within the arena of data-driven analytics due to its revolu-
tionary success in several traditionally hard artificial intelli-
gence (Al) applications. Deep learning techniques are also
increasingly being used for materials informatics applica-
tions with remarkable success, which we refer to as deep
materials informatics.

In this paper, we discuss some of the recent advances in
deep materials informatics for exploring PSPP linkages in
materials, after a brief introduction to the basics of deep
learning, and its challenges and opportunities. Illustrative
examples of deep materials informatics that we review in
this paper include learning the chemistry of materials using
only elemental composition,'**! structure-aware property pre-
diction,*>?%! crystal structure prediction,?”) learning multi-
scale homogenization®?°1 and localization*®! linkages in
high-contrast composites, structure characterization!®'** and
quantification,®*** and microstructure reconstruction>> and
design.*®! We also discuss the future outlook and envisioned
impact of deep learning in materials science before summarizing
and concluding the paper.

Deep learning

Deep learning!*! refers to a family of techniques in Al and ML,
and is essentially a rediscovery of neural networks that were
algorithmically conceptualized back in the 1980s.27*%! The
availability of big data and big compute in recent years have
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Figure 1. The four paradigms of science in the context of materials. Historically, science has been largely empirical or observational, which is known today as
the experimental branch of science. When calculus was invented in the 17th century, it became possible to describe natural phenomena in the form of
mathematical equations, marking the beginning of second paradigm of science, which is model-based theoretical science. With time, these equations became
larger and more complex, and it was only in the 20th century when computers were invented that such larger and complex theoretical models (system of
equations) became solvable, enabling large-scale simulations of real-world phenomena, which is the third paradigm of science. The last two decades have seen
an explosive growth in the generation of data from the first three paradigms, which has far out-stripped our capacity to make sense of it. All this collected data can
serve as a valuable resource for learning and augmenting the knowledge from first three paradigms, and has led to the emergence of the fourth paradigm of
science, which is (big) data-driven science (reproduced from Ref. 2 under CC-BY license).

allowed these networks to grow deeper (hence the name deep
learning) and realize their promise to be universal approxima-
tors'®>”! capable learning and representing a wide variety of non-
linear functions. Deep learning has indeed emerged as a very

Materials informatics can generate “inverse models” for optimization and design

e.g., Maximize a property such that structure follows some constraints

Engineering relationships of goals and means

Processing Structure Properties Performance

Science relationships of cause and effect

Materials informatics can generate “forward models” for predictive analytics
e.g., Property = f(Processing, Composition, Structure)

Figure 2. The PSPP relationships of materials science and engineering,
where science flows from left-to-right, and engineering flows from
right-to-left. Interestingly, each relationship from left to right is many-to-one.
For example, many different processing routes can possibly result in the
same structure, and along similar lines, it is also possible that the same
property is achieved by multiple material structures. Materials informatics
approaches can help decipher these relationships via fast and accurate
forward models, which in turn can also help to realize the more difficult
inverse models of materials discovery and design (reproduced from Ref. 2
under CC-BY license).
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powerful method to automate the extraction of useful informa-
tion from big data, and has enabled ground-breaking advances
in numerous fields, such as computer vision™**' and speech
recognition.*>**! In the rest of this section, we will briefly
describe the unique advantages and limitations of deep learn-
ing, followed by the key components of a deep neural network,
and finally a few different types of networks being used for
deep materials informatics.

Deep learning: advantages and limitations
Deep learning has certain unique characteristics compared to
traditional ML techniques, which are crucial for determining
whether or not deep learning should be used for a given prob-
lem. These characteristics (both advantages and challenges) are
depicted in Fig. 3, and described below. There are three primary
advantages of deep learning compared to traditional ML
methods:

* Deep learning is largely feature-engineering-free: This is
perhaps the biggest advantage of deep learning. It is well-
known that the efficacy of a ML model depends a lot on
how the data are represented for the ML algorithm to learn
patterns from. Usually for a scientific or engineering applica-
tion, a good representation would often entail careful feature
engineering, which may require extensive domain knowledge
as well as significant manual and intuitive effort to come up
with the appropriate attributes. In contrast, deep learning is
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Figure 3. Pros and cons of deep learning. As with any technique, there are
advantages and challenges of using deep learning that need to be considered
carefully for successful application.

capable of automatically extracting the relevant features from
the training data in a hierarchical fashion, thereby eliminating
or at least reducing the effort for feature engineering. Not only
does this help save the manual effort of having to come up
with attributes, but also opens up opportunities to identify
new, non-intuitive features in a truly data-driven manner
that might help discover new insights.
Deep learning is generally more accurate with big data: Any
data-driven ML model is expected to become more accurate
with increasing training data, but the accuracy does saturate
at some point, after which additional training data does not
provide significant accuracy gains. It has been found that
although for small data, traditional ML based models are
more accurate than deep learning based models, they saturate
much sooner, so deep learning based models are usually more
accurate when big data is available. This is because of the
higher learning capacity possessed by deep neural networks
with multiple hidden layers.

* Deep learning can produce faster predictions: Although
training neural networks is computationally expensive, it is
only a one-time cost. Once trained properly, they are capable
of making very fast predictions.

The above-described advantages of deep learning clearly
give it an edge over traditional ML techniques, but it nonethe-
less has some characteristics that make its application challeng-
ing in some cases. There are four major challenges in applying
deep learning:

* Deep learning requires big data: In many cases, the biggest
limiting factor for applying deep learning is lack of sufficient
training data. As discussed before, deep learning requires big
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data in general. Although big, curated, and labeled datasets do
exist for several problems like image classification,**! they
are still a rarity in many scientific and engineering fields,
such as materials science.””

* Deep learning requires big compute: Training deep learning
based models is compute-intensive and can take a long time
with big data, even on the latest computing hardware.
Parallelization of neural network training algorithms is an active
area of research.!*>*¢!

* Deep learning network architecture search: Since a neural net-
work is essentially a network of interconnected neurons, there
are unlimited possibilities of network architectures. Although
there are some general guidelines for choosing an architecture
for a given problem based on prior successful designs, there are
no formal methods to identify the optimal architecture for a
given task, and it is an open research problem.*
Model interpretability: Deep learning based models are gen-
erally viewed as black-box models due to being highly com-
plex. Although researchers have tried with some success to
systematically study the workings of the neural network, in
general they are not as readily interpretable as some of the tra-
ditional statistical models like linear regression.[*”]

Deep learning: key components and concepts
Artificial neural networks (ANNs) are inspired by biological
neural networks in our brains. The fundamental computing
unit of ANNS is a neuron, which takes multiple inputs, and out-
puts a possibly non-linear function (called the activation func-
tion) of the weighted sum of its inputs. Several activation
functions are commonly used, such as sigmoid, linear, rectified
linear unit (ReLU), leaky ReLU, etc. Figure 4 illustrates a fully-
connected ANN, also known as multilayer perceptron (MLP),
and the ReLU activation function. A deep learning network is
an ANN with two or more hidden layers. The manner in which
the neurons are connected amongst themselves determines the
architecture of the network. The edges or interconnections
between neurons have weights, which are learned during neural
network training with the goal of making the ANN output as
close as possible to the ground truth, which is technically
referred to as minimizing the loss function. The training process
involves making a forward pass of the input data through the
ANN to get predictions, calculating the errors or loss, and sub-
sequently back-propagating them through the network to
update the weights of the interconnections via gradient descent
in order to try to make the outputs more accurate. A single pass
of the entire training data is called an epoch, and it is repeated
iteratively till the weights converge. Usually when the data are
large, the forward passes are done with small subsets of the
training data (called mini-batches), so an epoch would com-
prise of multiple iterations of mini-batches. The inputs of a neu-
ral network are generally normalized to have zero mean and
unit standard deviation, and the same concept is sometimes
applied to the input of hidden layers as well (called batch nor-
malization) to improve the stability of ANNs. Another useful
and interesting concept in ANNs is that of dropouts, where
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Figure 4. A fully-connected deep ANN with four inputs, one output, and five hidden layers with varying number of neurons (left). The ReLU activation function

(right).

some neurons are randomly turned off during a particular for-
ward or backward pass. It is a regularization technique for
reducing overfitting, and also turns out to be a remarkably effi-
cient approximation to multi-model averaging.!*®!

Convolutional neural networks

A convolutional neural network (CNN) is a special kind of
deep learning network which is designed to be used on spatial
data such as images, and consists of three types of hidden
layers. It is designed to appropriately capture spatially corre-
lated features in images using convolutional layers. A convolu-
tional layer consists of multiple kernels or filters with trainable
weights or parameters. Each filter is applied across the input
image as a convolving window to extract abstract features in
the form of feature maps, which are used as inputs for the
next layer. Pooling layers are usually used after one or more
convolutional layers to reduce the size of the feature maps by
subsampling them in both spatial dimensions using an

aggregation function (such as max, min, avg), which also
reduces the number of parameters and helps in controlling over-
fitting. After several blocks of convolutional and pooling lay-
ers, the outputs are flattened to a long one-dimensional (1-D)
vector, to be used as input to one or more filly connected layers
to finally give the CNN prediction, which could either be a
probability distribution (for classification problems) or a single
numerical value (for regression problems). Two-dimensional
(2-D) CNNs that work with 2-D input matrices (images) as
depicted in Fig. 5 are the most common type of CNNs, but
there are other variants such as 1-D and three-dimensional
(3-D) CNNs that take 1-D vectors and 3-D matrices respec-
tively as input, and graph CNNs™*>% that can work with
graphs (a collection of nodes and edges) as input.

Generative adversarial networks
A generative adversarial network (GAN)®! is one of the most
interesting type of deep learning network architectures in recent
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Figure 5. A CNN with three convolution layers, two pooling layers, and three fully connected layers. It takes a 64 x 64 RGB image (i.e., three channels) as input.
The first convolution layer has two filters resulting in a feature map with two channels (depicted in purple and blue). The second convolution layer has three
filters, thereby producing a feature map with three channels. It is then followed by a 2 x 2 pooling layer, which reduces the dimensionality of the feature map from
64 x 64 to 32 x 32. This is followed by another convolution layer of five filters, and another pooling layer to reduce feature map dimension to 16 x 16 (five

channels). Next, the feature map is flattened to get a 1-D vector of 16 x 16 x 5 = 1280 values, which is fed into three fully connected layers of 640, 64, and one

neuron(s) respectively, finally producing the output value.
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years, and has originated from game theory. It consists of not one
but two neural networks that are trained simultaneously in a com-
petitive fashion. One of the networks is called a generator, which
is essentially an inverse convolutional network, taking in a ran-
dom noise vector and up-sampling it to a fake image. Then there
is a discriminator, which is a standard convolutional network,
taking an image as input and down-sampling it to produce a
probability distribution, to classify the input image as fake or
real. Figure 6 illustrates the concept of GANs. A common anal-
ogy often used to describe GANSs is that the generator can be
thought of like a criminal trying to produce fake currency, and
the discriminator like the police whose aim is to identify the cur-
rency as fake or real. As the two networks are trained together,
they make each other progressively strong till they achieve the
Nash equilibrium.’? Tt is not surprising that GANs have
found numerous interesting applications in image analysis,
such as high-resolution image synthesis,>*! text to image synthe-
sis,°* image editing,”>>! blending,* inpainting,” etc., as well
as in non-image domains, like music generation.">*!
lllustrative deep materials informatics
We now review some recent applications of deep learning in
materials science for understanding PSPP relationships, both
in terms of forward models and inverse models. These exam-
ples also illustrate the previously discussed unique characteris-
tics of deep learning in the context of materials.

Learning the chemistry of materials from only
elemental composition

As described before, one of the biggest advantages of deep
learning is that it is feature-engineering-free and capable of
directly working on raw inputs without the need of manually
engineered features to incorporate domain knowledge. Jha
et al.** recently demonstrated the same on materials composi-
tion data, by developing a new deep learning network called
ElemNet, which takes only the elemental composition of a crys-
talline compound as input and predicts its formation enthalpy.

They used a large simulation dataset of density functional the-
ory (DFT) calculations from the Open Quantum Materials
Database (OQMD) for building the deep learning model. The
dataset consisted of 275,759 compounds and their correspond-
ing formation enthalpies. Previous studies”’®'! on formation
enthalpy prediction have relied on the use of hundreds of
composition-derived features called physical attributes (such
as average atomic number, average electronegativity, and so
on) for constructing ML models, in a bid to provide known
chemistry knowledge to the model. However, such a feature
extraction step depends heavily on human intuition and domain
expertise. Moreover, it may not always be possible to do this
step for all problems, as the necessary domain knowledge
may not be available or it may be difficult to transform it into
quantitative features for ML algorithms to use. Therefore, the
authors in Ref. 24 purposely did not provide any domain
knowledge to the model in order to investigate how well a
model can perform in such a situation. They explored different
depths of the fully-connected neural network until 24 layers.
The accuracy of the deep learning model rapidly improved
until 17 layers, after which it plateaued. ElemNet, the best-
performing 17-layer neural network was found to outperform
traditional ML algorithms, both with and without physical attri-
butes. The Random Forest model (the best performing tradi-
tional ML technique) gave a mean absolute error (MAE) of
0.157 eV/atom using only elemental compositions as features,
and 0.071 eV/atom using composition-derived physical attri-
butes as input. In contrast, ElemNet, which only uses elemental
compositions as input, was found to give a significantly lower
MAE of 0.055 eV/atom. Modeling experiments with different
training set size revealed that ElemNet performs better than
Random Forest model (even with physical attributes) for all
training set sizes greater than 4000, thereby serving as another
testimony of the superior performance of deep learning models
on large datasets. In terms of computation time, ElemNet took
significantly longer for training (about 7 h on a GPU for a train-
ing set of ~250,000 compounds), but was much faster in terms
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Figure 6. A GAN consists of two neural networks—generator and discriminator, and with proper training, is capable of generating realistic images/data from

noise.
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of prediction time (9.28 s on a CPU and 0.08 s on a GPU for a
test set of ~25,000 compounds). ElemNet was also evaluated
with two specially designed training-test splits (withholding
the Ti—O binary system and Na—Fe—-Mn—O quaternary system,
respectively) to find that it can also predict the phase diagrams
(convex hulls) for unseen materials systems.

In order to understand why ElemNet was performing well,
the authors also studied the representation learned by the net-
work, to try to interpret the model, by analyzing the activations
produced within the network at different layers for specific
inputs provided to the model. It was found that ElemNet self-
learns some interesting chemistry like groups (element similar-
ity) in the early layers, and charge balance (element interaction)
in later layers of the network, although no periodic table infor-
mation was provided to the model during training. For example,
the activations of first and second layers produced by group-I
elements such as Li, Na, K, Rb, and Cs were all clustered
together in a straight line (in that order), when projected in a
2-D space using principal component analysis (PCA).
Similarly, when binary combinations of group-I/Il and
group-VI/VII elements were passed through the model, it was
found that the charge balanced and unbalanced compositions
tend to cluster separately in the eighth layer of ElemNet. This
is consistent with other applications of deep learning, for example,
on images, where the initial layers learn simple features such as
edges and corners, and then use those features to learn more com-
plex ones such as shapes in next few layers, and so on. The high
accuracy and speed of ElemNet allowed the authors to perform
combinatorial screening on about half-a-billion compounds
in the quaternary space. They found a number of systems
with at least one new potential stable compound, including
several new compounds that were not in the OQMD but
exist in the Inorganic Crystal Structure Database (ICSD),
thereby confirming their stability.

Crystal structure aware property prediction
Although composition-based models can be quite accurate as
illustrated in the previous example, the role of structure is crit-
ical in materials, as allotropes and polymorphs can have con-
trasting properties with the same composition. Hence, it is
also important to build structure-aware models for materials
property prediction. There exist a number of studies that use
different set of attributes to represent the structure informa-
tion[*®3) for the ML algorithms to build predictive models.
Recently, deep learning has also been applied directly on the
crystal structure, as discussed next.

Xie and Grossman®” developed a crystal graph CNN
framework to directly learn material properties from the con-
nection of atoms in the crystal. Their approach first represents
the crystal structure by a crystal graph where nodes represent
the atoms in the unit cell and edges represent the bonds between
the atoms, and then builds a CNN on the graph with convolu-
tional layers, fully connected layers, and pooling layers, to
automatically extract optimum representations for modeling
the target properties. Their database consisted of 46,744
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materials from the Materials Project!®® covering 87 elements,
7 lattice systems, and 216 space groups. A simple convolution
function using a shared weight matrix for all neighbors of an
atom resulted in a MAE of 0.108 eV/atom for formation energy
prediction. However, it neglected the differences of interaction
strength between neighbors, so they designed a new convolu-
tion function taking into account the interaction strength in
the form of a learned weight matrix, which gave a much
improved MAE of 0.039 eV/atom. The same framework was
subsequently applied to other DFT-computed properties from
the Materials Project, such as absolute energy, band gap,
Fermi energy, bulk moduli, shear moduli, and Poisson ratio.
Apart from impressive model accuracies obtained by deep-
learning models, their framework also provided for model
interpretability to some degree, by removing the fully-
connected hidden layers after atom feature vector extraction
and directly performing a linear pooling to predict the property.
This allowed the model to learn the contribution of different
local chemical environments for each atom to the target prop-
erty, at the cost of a dip in accuracy [MAE of 0.130 eV/atom
on 3787 test perovskites (ABX3) with the interpretable model
versus 0.099 eV/atom with the full model]. The empirical
rules generalized from the perovskites study were found to be
consistent with known knowledge, and a combinatorial search
leveraging the learned chemical insights led to the discovery of
several new perovskites.

Of course, another way to take structure information into
account is to build structure-specific models, i.e., only train
on materials of a specific structure class. For example, Ye
et al.*®! recently demonstrated that ANNs utilizing just two
descriptors (the Pauling electronegativity and ionic radii of con-
stituent elements) can predict DFT formation energies of
C3A;,;D;30;, gamets and ABO; perovskites with low MAEs
of 0.007-0.010 eV/atom and 0.020-0.034 eV/atom, respec-
tively. For mixed garnets, i.e., garnets with more than one
type of species in the C, A, and D sites, the authors derived
an averaging scheme to model complete cation disorder and a
binary encoding scheme to account for the effect of orderings,
with minimal loss in accuracy.

Crystal structure prediction

One of the grand challenges in materials science has been crys-
tal structure prediction,’®”) much like protein structure predic-
tion in bioinformatics.°®! The problem of crystal structure
prediction for a given composition can be decomposed into
two primary sub-problems: generation of candidate structures,
followed by subsequent evaluation of those structures to iden-
tify the most likely one(s). Typically, structure generation
approaches use evolutionary algorithms with random initializa-
tion,[*7%) which are then evaluated by quantum mechanical
methods.”’"! Ryan et al.*”) recently presented a remarkable
application of deep learning for crystal structure prediction, in
particular for crystal structure evaluation. They reformulated
the crystal structure prediction problem into that of predicting
the likelihoods of individual atomic sites in the structure,
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thereby approximating the likelihood of a crystal structure to
exist by the product of the likelihoods for each element to reside
on a specific atomic site.

To calculate the element likelihood for a given atomic site
(element prediction problem), the authors in Ref. 27 designed
a deep neural network using training data from the ICSD and
Crystallographic Open Database, with 704,334 unique crystal-
lographic sites in 51,723 crystal structures. The input represen-
tation of atomic sites for model training consisted of multiple
perspectives of normalized atomic fingerprints, to capture the
local topology around each unique atomic site. This input repre-
sentation provided several useful characteristics such as transla-
tional invariance, fixed dimensionality, and retention of 3-D
information, and allowed the model to learn structural topolo-
gies rather than crystal structures with specific scale. The deep
neural network itself consisted of three subnetworks. First, a
42-layer convolutional variational autoencoder was used to
allow the model to learn its own representation of the atomic fin-
gerprints, which reduced the 3072-dimensional atomic finger-
prints to 64-dimensional latent representations. Then, these
latent representations were fed into a five-layer sigmoid classi-
fier to predict what combinations of elements were likely to
form specific structural topologies. Finally, the resulting likeli-
hoods from the sigmoid classifier were fed into a five-layer aux-
iliary softmax classifier with batch normalization and 118
output neurons to predict what specific element corresponded
to the input, thereby formulating the element prediction problem
as a 118-class classification problem. The average error rate on
the test set (20% of entire atomic fingerprints data) was found to
be 31%, which is quite impressive for a 118-class problem.
Interestingly, most of the errors made by the model were
found to be chemically reasonable (e.g., within blocks of 3d
and 4f elements). Further, a t-SNE (t-distributed stochas