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Sparse Bounds for a Prototypical Singular
Radon Transform

Richard Oberlin

Abstract. We use a variant of a technique used by M. T. Lacey to give sparse Lp(log(L))4 bounds
for a class ofmodel singular andmaximal Radon transforms.

1 Introduction

Suppose µ and σ are ûnite signed and positive measures, respectively, supported on
the unit ball B(1) ⊂ Rn with dµ = ρ dσ for some bounded density ρ, µ(Rn) = 0, and
(using ⋅̂ to denote the Fourier transform)

(1.1) max ( ∣σ̂(ξ)∣ , ∣µ̂(ξ)∣) ≲ ∣ξ∣−α

for some α > 0. (Our main examples of interest are when σ is surface measure on a
compact piece of a ûnite-type submanifold of Rn and ρ is a smooth function on Rn

with σ-mean zero.) Deûne µ j by

∫ f dµ j = ∫ f (2 jx) dµ(x).

Given a collection of coeõcients {є j} j∈Z, with ∣є j ∣ ≤ 1 we can consider the singular
Radon transform

T[ f ] ∶=∑
j
є jµ j ∗ f

and themaximal averaging operator

T∗
[ f ](x) ∶= sup

j
σ j ∗ ∣ f ∣(x).

It is well known that condition (1.1) implies that T and T∗ are bounded on Lp for
1 < p <∞.

_e following “sparse bound” for T∗ was recently proved in [Lac17a] (see also re-
lated work [CO]).

_eorem 1.1 (Lacey) Suppose σ is surface measure on the unit sphere in Rn and
1 < p < q <∞ are exponents such that convolution with σ is a bounded operator from
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Lp to Lq . For 0 < θ < 1, let
1
pθ

∶=
1 − θ
p

+
θ
2

and 1
qθ

∶=
1 − θ
q

+
θ
2
.

_ere is a ûnite Cθ such that for every pair of compactly supported f1 , f2 there is a sparse
collection of cubes Q such that
(1.2) ∣⟨T∗

[ f1], f2⟩∣ ≤ Cθ ∑
Q∈Q

∣Q∣⟨∣ f1∣⟩Q ,pθ ⟨∣ f2∣⟩Q ,q′θ ,

where
⟨∣ f ∣⟩Q ,p ∶= (

1
∣Q∣

∫
Q
∣ f ∣p dx)

1/p
.

Above,we use ∣Q∣ to denote the Lebesguemeasure ofQ, and the collectionQ is said
to be sparse if there is a collection of pairwise disjoint sets {FQ}Q∈Q with ∣FQ ∣ ≥ 1

2 ∣Q∣

and FQ ⊂ Q. Bounds such as (1.2) (as well as those which give pointwise or norm
domination by sparse operators) have been ofmuch recent interest. See, for example,
[Ler10,LN15,Ler16,DDU16, BBL16, BFP16,CKL16,CDO16,Lac17b,KL17,NPTV17].

_eorem 1.1 is nontrivial (given that T∗ is known to be bounded on Lp), since
q′θ < p′θ . Furthermore, the range of exponents is sharp up to the small θ-loss in in-
terpolation. (Since there is positive distance between the center of the sphere and the
support of the measure, a sparse bound as above implies that convolution with σ is
bounded from Lpθ to Lqθ .) Lacey’s argument does not appear to depend on the geom-
etry of the sphere, and likely extends without modiûcation to compactly supported
positivemeasures satisfying (1.1).

Our purpose here is to explore the relationship between the method of [Lac17a]
andmore traditional approaches (which use a regularization of the single scale oper-
ator) for bounding T∗. _iswill allow us to push a little closer to the natural endpoint
exponents (p, q). We have also organized our argument1 to facilitate bounds for the
singular integral T .

Given a cube Q, deûne

(1.3)
f 0Q ∶= f ⋅ 1{x∈Q ∶∣ f (x)∣≤⟨∣ f ∣⟩Q ,p} ,
f mQ ∶= f ⋅ 1{x∈Q ∶2m−1⟨∣ f ∣⟩Q ,p<∣ f (x)∣≤2m⟨∣ f ∣⟩Q ,p} , m > 0.

Our bounds will be in terms of the following “restricted-type Lp log(L)4" averages:

⟨∣ f ∣⟩Q ,p+ ∶= ∑
m≥0

(m + 1)4
⟨∣ f mQ ∣⟩Q ,p .

It is straightforward to check that for each p̃ > p ≥ 1,

⟨∣ f ∣⟩Q ,p ≤ ⟨∣ f ∣⟩Q ,p+ ≤ C p̃⟨∣ f ∣⟩Q , p̃ .

_eorem 1.2 Suppose µ, σ are ûnite signed and positive measures, respectively, sup-
ported on the unit ball with µ(Rn) = 0. If µ and σ satisfy (1.1) and 1 < p < q < ∞ are
exponents such that convolution with µ is a bounded operator from Lp to Lq , then there

1Speciûcally, we use a Calderón–Zygmund decomposition of both functions, as was done in the
original version of [Lac17a]. Later versions feature a streamlined argument that relies instead on the
orthogonality of the linearizing functions and does not seem to immediately bound T.
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is a ûnite C such that for every pair of compactly supported functions f1 , f2 there is a
sparse collection of cubes Q such that

∣⟨T[ f1], f2⟩∣ ≤ C ∑
Q∈Q

∣Q∣⟨∣ f1∣⟩Q ,p+⟨∣ f2∣⟩3Q ,q′+ .

Essentially the same proof (simply replace the coeõcients є j by linearizing func-
tions є j(x)) can be used to bound themaximal operator.

_eorem 1.3 Suppose σ is a ûnitemeasure supported on the unit ball satisfying (1.1),
and that 1 < p < q < ∞ are exponents such that convolution with σ is a bounded
operator from Lp to Lq ._ere is a ûnite C such that for every pair of compactly supported
f1 , f2, there is a sparse collection of cubes Q such that

(1.4) ∣⟨T∗
[ f1], f2⟩∣ ≤ C ∑

Q∈Q
∣Q∣⟨∣ f1∣⟩Q ,p+⟨∣ f2∣⟩3Q ,q′+ .

It was pointed out to us by Jim Wright that our argument also controls the maxi-
mally truncated singular integral. Deûning

T∗∗
[ f ](x) = sup

j
∣ ∑

j′≥ j
µ j′ ∗ f (x)∣ ,

Duoandikoetxea and Rubio de Francia [DRdF86] showed that T∗∗ is bounded on
Lp , 1 < p < ∞. Using their estimate and a linearization as in _eorem 1.3 gives the
following theorem.

_eorem 1.4 Suppose µ, σ are ûnite signed and positive measures, respectively, sup-
ported on the unit ball with µ(Rn) = 0. If µ and σ satisfy (1.1) and 1 < p < q < ∞ are
exponents such that convolution with µ is a bounded operator from Lp to Lq , then there
is a ûnite C such that for every pair of compactly supported functions f1 , f2, there is a
sparse collection of cubes Q such that

(1.5) ∣⟨T∗∗
[ f1], f2⟩∣ ≤ C ∑

Q∈Q
∣Q∣⟨∣ f1∣⟩Q ,p+⟨∣ f2∣⟩3Q ,q′+ .

_e exponent four in the deûnition of ⟨∣ f ∣⟩Q ,p+ is not optimal and could be low-
ered slightly by following the numerology more carefully. We conjecture (based on
parallels in themethods of proof) that the sharp bounds for (1.5) and (1.4) maymatch
the (currently unknown) sharp estimates at L1 for T and T∗ . Speciûcally, that for a
given σ , (1.4) should hold with ⟨∣ f1∣⟩Q ,p⟨∣ f2∣⟩3Q ,q in place of ⟨∣ f1∣⟩Q ,p+⟨∣ f2∣⟩3Q ,q′+ if
and only if T∗ satisûes a weak-type L1 estimate (and similarly for bounds with loga-
rithmic losses). _iswould suggest that, at the very least,_eorems 1.2 and 1.3 should
hold with Lp log(L) in place of Lp log(L)4 .

2 A Review of the Lp Theory

We quickly recall a now standardmethod, which seems to originate in [DRdF86], for
proving Lp estimates for T (and T∗). _is section is purely expository and may be
skipped by the experts.
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_e L2 → L2 bound for T is immediate from (1.1). To prove a bound near L1,
perform a Calderón–Zygmund decomposition

f = g +∑
Q
bQ

where bQ is supported on the cube Q and has mean-zero. _e contribution from the
good function g is handled, as usual, using the L2 estimate.

Let ℓ(Q) denote the sidelength of a cube Q. If µ had an integrable derivative, we
could deduce a weak-type L1 estimate by leveraging the smoothness of the µ j at scale
2 j against the cancellation of bQ for 2 j ≥ ℓ(Q), and by using the decay of the µ j at
scale 2 j against the support of bQ for 2 j ≤ ℓ(Q) (this, of course, is just the classic
Calderón–Zygmundmethod).

In general, one can write
µ = ∑

k≤0
µ ∗ ηk ,

where µ ∗ ηk is smooth at scale 2k . _en (µ ∗ ηk) j is smooth at scale 2 j+k , and so the
contribution from bQ is acceptable, as above, when 2 j+k ≥ ℓ(Q). Here, however, (µ ∗
ηk) j only has decay at scale 2 j and so, other than the trivial bound (i.e., the (µ ∗ ηk) j
are uniformly in L1 and so each of them gives a bounded convolution operator on
Lp), one is not le� with an obvious good option for ℓ(Q) < 2 j < 2−kℓ(Q). _is gives
a weak-type estimate

(2.1) ∥T k
[ f ]∥L1,∞ ≲ (1 − k)∥ f ∥L1 ,

where
T k

[ f ] ∶=∑
j
є j(µ ∗ ηk) j ∗ f .

On the other hand, provided ηk is chosen with appropriate cancellation (1.1) implies

(2.2) ∥T k
[ f ]∥L2 ≲ 2kα

∥ f ∥L2 .

_en T is bounded on Lp for 1 < p <∞ from theMarcinkiewicz interpolation theo-
rem. It is not diõcult, also using real interpolation, to do a little better (the following
lemma is only meant for illustration, and we omit its proof).

Lemma 2.1 Suppose {Tk}k≤0 is any sequence of operators satisfying (2.1) and (2.2).
_en2 for r > 4

T ∶= ∑
k≤0

T k

satisûes the “weak-type L(log(L))r estimate”

∣{∣T[ f ]∣ > λ}∣ ≲ ∫
∣ f (x)∣

λ
( log ( e + ∣ f (x)∣

λ
))

r
dx , λ > 0.

In fact, by incorporating the interpolation into the proof rather than crudely using
it as a black-box, one ûnds that our operator T satisûes a weak-type L log(L) bound,
and for many measures µ one can apply more sophisticated techniques to push even
closer to L1. See, for example, [STW04,CK17] and the references therein.

2It is only coincidence that the “4” herematches the “4” in the deûnition of ⟨∣ f ∣⟩Q ,p+
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3 Proof of Theorem 1.2

We will use a sparse bound adaptation (inspired by [Lac17a]) of themethod outlined
in Section 2. _e principle use of the Lp → Lq estimate for convolution with µ is to
replace the “trivial L1 bound” used for scales ℓ(Q) < 2 j < 2−kℓ(Q) above.

_rough a limiting argument and appropriate choice of dyadic grid,we can assume
that there are ûnite N1 ,N2 such that є j = 0 for j outside of [N1 ,N2] and that f1 , f2
are supported on Q0 and 3Q0, respectively, where Q0 is a dyadic cube with ℓ(Q0) =

2N2 (the bounds givenwill be independent of theN j). Our proofwill rely on recursion,
each instance of which reduces N2 and the support of the functions. A�er a ûnite
number of steps, we are le� with a null operator.

Write

Ar
p[ f ](x) ∶= (

1
∣B(r)∣ ∫B(r)

∣ f (x + y)∣p dy)
1
p
,

Mp[ f ](x) ∶= sup
r>0

Ar
p[ f ](x),

T∗
high[ f ] ∶= sup

2 j≤ℓ(Q0)
σ j ∗ ∣ f ∣,

f m1 ∶= ( f1)m
Q0
, f m2 ∶= ( f2)m

3Q0
(using notation as in (1.3)).

We then deûne

E1 = {Mp[ f1] > D⟨∣ f1∣⟩Q0 ,p} ∪ {M1[T∗
high[ f1]] > D⟨∣ f1∣⟩Q0 ,p}

∪ ⋃
m≥0

{Mp[ f m1 ] > (m + 1)D⟨∣ f m1 ∣⟩Q0 ,p} ,

and similarly for E2 with f2 in place of f1, 3Q0 in place of Q0 , and q′ in place of p.
Choosing D very large (depending on the Lp , Lq′ bounds for T∗ andMp), we can

force ∣E∣ ∶= ∣E1 ∪ E2∣ ≤
1
2 ∣Q0∣ and, say, E ⊂ 6Q0 . Using a Whitney decomposition,

write E as the disjoint union of a collection of dyadic cubes

E = ⋃
Q∈Q1

Q ,

each of which satisûes

(3.1) 5
√

nℓ(Q) ≤ distance (Q , ( ⋃
Q′∈Q1

Q′)
c
) < 11

√
nℓ(Q).

We then have, for example, that for every cube Q′ that contains a cube Q ∈ Q1

⟨ ∣ f1∣⟩Q′ ,p ≲ ⟨ ∣ f1∣⟩Q0 ,p
.

Perform a Calderón–Zygmund decomposition of f1:

f1 =∶ g1 + ∑
Q∈Q1

1Q( f1 − ⟨ f1⟩Q ,1) =∶ g1 + ∑
Q∈Q1

b1,Q = g1 + ∑
Q∈Q1
Q⊂Q0

b1,Q ,

where, for the last identity, we use that, since Q0 /⊂ E, if Q ∩ Q0 /= ∅, then Q ⊂ Q0 .
_e good function is bounded

∥g1∥L∞ ≲ ⟨∣ f1∣⟩Q0 ,p .
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We will also use repeatedly that for any cube Q′ and r ≥ 1

∥ ∑
Q⊂Q′

b1,Q∥Lr ≲ ∥ f1∥Lr(Q′) .

Decompose

(3.2) ∣ ⟨T[ f1], f2⟩∣ ≤ ∣ ⟨T[g1], f2⟩∣ + ∣ ∑
Q∈Q1

⟨T[b1,Q], f2⟩∣ .

_e Lq boundedness of T implies that the ûrst term on the right above is

∣⟨T[g1], f2⟩∣ ≲ ∣Q0∣⟨∣ f1∣⟩Q0 ,p⟨∣ f2∣⟩3Q0 ,q′ .

Writing
TQ[ f ] ∶= ∑

2 j≤ℓ(Q)
є jµ j ∗ (1Q f ),

the second term of (3.2) can be written as

(3.3) ∣ ∑
Q∈Q1

⟨T[b1,Q], f2⟩∣ =

∣ ∑
Q∈Q1
Q⊂Q0

⟨(T − TQ)[b1,Q], f2⟩ + ⟨TQ[ f1], f2⟩ − ⟨ f1⟩Q ,1⟨TQ[1Q], f2⟩∣ .

By induction on N2 − N1, for each Q ⊂ Q0 above, we can ûnd a sparse collection QQ
of dyadic subcubes of Q such that

∣⟨TQ[ f1], f2⟩∣ ≲ ∑
Q′∈QQ

∣Q′
∣⟨∣ f1∣⟩Q′ ,p+⟨∣ f2∣⟩3Q′ ,q′+ .

Setting FQ0 = Q0 ∖ E, we have that

Q ∶= {Q0} ∪ ⋃
Q∈Q1
Q⊂Q0

QQ

is sparse, and so it now remains to bound the sums of the ûrst and third terms on the
right of (3.3) to be

≲ ∣Q0∣⟨∣ f1∣⟩Q0 ,p+⟨∣ f2∣⟩3Q0 ,q′+ .
Using the Lq boundedness of TQ and the fact that the 3Q are ûnitely overlapping

(from (3.1)), the sum of the third term is

≲ ∑
Q∈Q1

⟨∣ f1∣⟩Q0 ,p ∣Q∣
1/q

∥ f2∥Lq′(3Q) ≲ ∣Q0∣⟨∣ f1∣⟩Q0 ,p⟨∣ f2∣⟩3Q0 ,q′ .

_e last, andmain, step of the proof will be to show that

(3.4) ∣ ∑
Q∈Q1

⟨(T − TQ)[b1,Q], f2⟩ ∣ ≲ ∣Q0∣⟨ ∣ f1∣⟩Q0 ,p+
⟨ ∣ f2∣⟩ 3Q0 ,q′+

.

Perform a Calderón–Zygmund decomposition of f2:
f2 =∶ g2 + ∑

Q∈Q1

1Q( f2 − ⟨ f2⟩Q ,1) =∶ g2 + ∑
Q∈Q1

b2,Q .

_e second good function is bounded

∥g2∥L∞ ≲ ⟨ ∣ f2∣⟩ 3Q0 ,q′
,
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which, using the Lp boundedness of T and TQ (separately), gives

∣ ∑
Q∈Q1

⟨(T − TQ)[b1,Q], g2⟩ ∣ ≲ ∥ ∑
Q∈Q1

b1,Q∥
Lp
∥g2∥Lp′ + ∑

Q∈Q1

∥b1,Q∥Lp∥g2∥Lp′(3Q)

≲ ∣Q0∣⟨ ∣ f1∣⟩Q0 ,p
⟨ ∣ f2∣⟩ 3Q0 ,q′

.

Expanding T − TQ , (3.4) will be ûnished once we estimate

(3.5) ∣ ∑
Q ,Q′∈Q1

∑
2 j≥ℓ(Q)

є j⟨µ j ∗ b1,Q , b2,Q′⟩∣ .

_en (3.5) is

(3.6) ≤ ∣ ∑
Q ,Q′∈Q1

∑
j

2 j≥max(ℓ(Q),ℓ(Q′))

є j⟨µ j ∗ b1,Q , b2,Q′⟩∣

+ ∣ ∑
Q ,Q′∈Q1

∑
j

ℓ(Q)≤2 j<ℓ(Q′)

є j⟨µ j ∗ b1,Q , b2,Q′⟩∣ .

If a term in the right sum from (3.6) is nonzero, then Q ∩ 2Q′ /= ∅, and so, by (3.1),
ℓ(Q) = 1

2 ℓ(Q
′) = 2 j . For each such Q ,Q′, rescaling the Lp → Lq bound for µ gives

∣ ⟨µ j ∗ b1,Q , b2,Q′⟩∣ ≲ ∣Q′
∣⟨ ∣ f1∣⟩ 3Q′ ,p⟨ ∣ f2∣⟩Q′ ,q′ ,

and thus the right sum from (3.6) is

≲ ∑
Q′∈Q1

∣Q′
∣⟨∣ f1∣⟩3Q′ ,p⟨∣ f2∣⟩Q′ ,q′

≤ sup
Q∈Q1

⟨∣ f2∣⟩
1− q′

p′

Q ,q′ ∑
Q′∈Q1

∣Q′
∣⟨∣ f1∣⟩3Q′ ,p⟨∣ f2∣⟩

q′
p′

Q′ ,q′

≲ sup
Q∈Q1

⟨∣ f2∣⟩
1− q′

p′

Q ,q′ ∣Q0∣⟨∣ f1∣⟩Q0 ,p⟨∣ f2∣⟩
q′
p′

3Q0 ,q′

≲ ∣Q0∣⟨∣ f1∣⟩Q0 ,p⟨∣ f2∣⟩3Q0 ,q′ .

We bound the le� sum from (3.6) by two terms that are treated in the sameman-
ner (it is irrelevant to the argument whether or not the diagonal ℓ(Q) = ℓ(Q′) is
included), one of which is

(3.7) ∣ ∑
Q ,Q′ , j

ℓ(Q)≤ℓ(Q′)≤2 j

є j⟨µ j ∗ b1,Q , b2,Q′⟩∣ .

It will be useful to decompose µ. Let η̃ be a Schwartz function with ̂̃η identically 1
on B(1) and supported on B(2) and η ∶= η̃−1− η̃ so that η̂ is supported on B(4)∖B(1)
and

̂̃η +∑
k≤0
η̂k = 1.
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_en (3.7) is

≤ ∣ ∑
Q ,Q′ , j

ℓ(Q)≤ℓ(Q′)≤2 j

є j⟨(η̃ ∗ µ) j ∗ b1,Q , b2,Q′⟩ ∣

+∑
k≤0

∣ ∑
Q ,Q′ , j

ℓ(Q)≤ℓ(Q′)≤2 j

є j⟨(ηk ∗ µ) j ∗ b1,Q , b2,Q′⟩ ∣

=∶ ∣S̃∣ +∑
k≤0

∣Sk ∣.

For S̃, we ûx Q and 2 j ≥ ℓ(Q) =∶ 2l . Using the cancellation of b1,Q , we have

∣η̃ j ∗ b1,Q(x)∣ ≲ ⟨∣ f1∣⟩Q0 ,p2
2(l− j)

(1 + ∣distance(x ,Q)∣/2 j
)
−N

for large N , giving (we will abuse notation by identifying µ with its conjugate re�ec-
tion)

∣ ⟨ (η̃ ∗ µ) j ∗ b1,Q , ∑
Q′

ℓ(Q)≤ℓ(Q′)≤2 j

b2,Q′⟩ ∣

≲ ⟨∣ f1∣⟩Q0 ,p2
l− j

∣Q∣M1[ µ j ∗ ∑
Q′

ℓ(Q)≤ℓ(Q′)≤2 j

b2,Q′](x′)

≲ 2l− j
∣Q∣⟨ ∣ f1∣⟩Q0 ,p

⟨ ∣ f2∣⟩ 3Q0 ,q′
,

where x′ ∈ Ec . (To obtain the second inequality above, we write∑ b2,Q′ as the diòer-
ence of 1⋃Q′ f2 and∑ 1Q′⟨ f2⟩Q′ ,1 . _e contribution from the former term is bounded
by positivity ofM1 ○T∗ and the fact that x′ ∈ Ec , the contribution from the latter term
instead uses the L∞ boundedness ofM1[µ j ∗ ⋅].) Summing over j and Q′ then gives

∣S̃∣ ≲ ∣Q0∣⟨∣ f1∣⟩Q0 ,p⟨∣ f2∣⟩3Q0 ,q′ .

We now ûx k ≤ 0 and turn our attention to Sk . We bound the low frequency
component

∑
Q

∑
j

2 j>2−2k ℓ(Q)

∣ ∑
Q′

ℓ(Q)≤ℓ(Q′)≤2 j

є j⟨(ηk ∗ µ) j ∗ b1,Q , b2,Q′⟩∣ ≲ 2k
∣Q0∣⟨∣ f1∣⟩Q0 ,p⟨∣ f2∣⟩3Q0 ,q′

using the same reasoning as for S̃ (and here, in contrast to S̃, it is important that
x′ ∈ Ec , since u j is at a coarser scale than ηk+ j).
For i = 1, 2, write

bm
i ,Q ∶= 1Q( f mi − ⟨ f mi ⟩Q ,1) .

Since
f i = ∑

m≥0
f mi ,

we have
b i ,Q = ∑

m≥0
bm
i ,Q .
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Decompose

(3.8) ∑
Q

∑
j

2 j≤2−2k ℓ(Q)

∑
Q′

ℓ(Q)≤ℓ(Q′)≤2 j

є j⟨(ηk ∗ µ) j ∗ b1,Q , b2,Q′⟩ =

∑
m1 ,m2≥0

∑
Q

∑
j

2 j≤2−2k ℓ(Q)

∑
Q′

ℓ(Q)≤ℓ(Q′)≤2 j

є j⟨(ηk ∗ µ) j ∗ bm1
1,Q , b

m2
2,Q′⟩ .

For pairs (m1 ,m2) with m1 +m2 ≤
−kα
2 , we use the L2 estimate for convolution with

ηk ∗ µ. Writing

Qm
i ∶= Q ∩ { f mi /= 0}

for each 0 ≤ h ≤ −kα
2 and 0 ≤ i ≤ i′ ≤ −2k, we have

∑
m≤h

∑
l
∣ ⟨ (ηk ∗ µ)l+i′ ∗ ∑

ℓ(Q)=2 l
bm
1,Q , ∑

ℓ(Q)=2 l+i
bh−m
2,Q ⟩ ∣

≲ 2kα
∑
m≤h

∑
l
∥ ∑

ℓ(Q)=2 l
bm
1,Q∥

L2
∥ ∑

ℓ(Q)=2 l+i
bh−m
2,Q ∥

L2

≲ 2kα
∑
m≤h

∑
l
∥ ∑

ℓ(Q)=2 l
1Q f m1 ∥

L2
∥ ∑

ℓ(Q)=2 l+i
1Q f h−m

2 ∥
L2

≲ 2kα+h
⟨∣ f1∣⟩Q0 ,⟨∣ f2∣⟩3Q0 ,q′ ∑

m≤h
∑
l
∣ ⋃
ℓ(Q)=2 l

Qm
1 ∣

1
2 ∣ ⋃

ℓ(Q)=2 l+i
Qh−m

2 ∣
1
2

≲ 2kα+h
∣Q0∣⟨∣ f1∣⟩Q0 ,p⟨∣ f2∣⟩3Q0 ,q′ .

Summing over i , i′ and then h,we have that themagnitude of the restriction of the
sum on the right side of (3.8) to m1 +m2 ≤

−kα
2 is

≲ 2
kα
4 ∣Q0∣⟨ ∣ f1∣⟩Q0 ,p

⟨ ∣ f2∣⟩ 3Q0 ,q′
,

which sums over k ≤ 0 to an acceptable contribution.
For m1+m2 >

−kα
2 ,we use the Lp improving property of the µ averages. Fixm1 ,m2

and 0 ≤ i ≤ i′ ≤ 2k. _en

(3.9) ∑
l
∣ ⟨(ηk ∗ µ)l+i′ ∗ ( ∑

ℓ(Q)=2 l
bm1
1,Q) , ( ∑

ℓ(Q)=2 l+i
bm2
2,Q)⟩ ∣ ≲

∥ f m2
2 ∥Lq′ (∑

l
∥ µ l+i′ ∗ ( ∑

ℓ(Q)=2 l
bm1
1,Q)∥

q

Lq
)

1/q
.
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_e second factor on the right of (3.9) is

≲ (∑
l

∑
Q′

ℓ(Q′)=2 l+i
′

∥ µ l+i′ ∗ ( ∑
ℓ(Q)=2 l

bm1
1,Q)∥

q

Lq(Q′)
)

1/q

≲ (∑
l

∑
Q′

ℓ(Q′)=2 l+i
′

∣Q′
∣⟨ ∣ ∑

ℓ(Q)=2 l
bm1
1,Q ∣ ⟩

q

3Q′ ,p
)

1/q

≲ sup
Q′′ , l

ℓ(Q′′)=2 l+i
′

⟨ ∣ ∑
ℓ(Q)=2 l

bm1
1,Q ∣ ⟩

1− p
q

3Q′′ ,p
(∑

l
∑
Q′

ℓ(Q′)=2 l+i
′

∣Q′
∣⟨ ∣ ∑

ℓ(Q)=2 l
bm1
1,Q ∣ ⟩

p

3Q′ ,p
)

1/q

≲ (m1 + 1)⟨ ∣ f m1
1 ∣⟩

1− p
q

Q0 ,p
∥ f m1

1 ∥
p
q
Lp

≲ (m1 + 1)∣Q0∣
1
q ⟨ ∣ f m1

1 ∣⟩Q0 ,p

where, above, we sum over all dyadic cubes Q′ of sidelength 2l+i′ . _is implies that
the sum over (i , i′) of (3.9) is

≲ k2
(m1 + 1)∣Q0∣⟨ ∣ f m1

1 ∣⟩Q0 ,p
⟨ ∣ f m2

2 ∣⟩ 3Q0 ,q′
,

and so the sum over k of themagnitude of the restriction of the sum on the right side
of (3.8) to m1 +m2 >

−kα
2 is

≲ ∣Q0∣ ∑
m1 ,m2

(m1 +m2 + 1)4⟨ ∣ f m1
1 ∣⟩Q0 ,p

⟨ ∣ f m2
2 ∣⟩ 3Q0 ,q′

≲ ∣Q0∣(∑
m
(m + 1)4⟨ ∣ f m1 ∣ ⟩Q0 ,p)(∑

m
(m + 1)4⟨ ∣ f m2 ∣⟩ 3Q0 ,q′

)

= ∣Q0∣⟨ ∣ f1∣⟩Q0 ,p+
⟨ ∣ f2∣⟩ 3Q0 ,q′+

,

thus ûnishing the proof.
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