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TRIGONOMETRIC INTERPOLATION*

by T. N. T. GOODMAN and A. SHARMA

(Received 23rd August 1990)

We consider interpolation at In equidistant nodes in [0,n) from the space yK spanned by sines and cosines of
odd multiples of x. This interpolation problem is shown to be correct for an arbitrary sequence of derivatives
specified at all the nodes. Explicit expressions for the fundamental polynomials are obtained and it is shown
that under mild smoothness assumptions on the function f> interpolant from ^~N converges uniformly to / as
the node spacing goes to zero.

1980 Mathematics subject classification (1985 Revision): 42A15

1. Introduction

Generally in all problem of trigonometric interpolation, the underlying space of
functions considered is spanned by

{1, cos x, sin x,..., cos Nx, sin Nx}, (1.1)

or by the functions

l,cosx, sinx, ...,cosNx, sinNx, cos I (N+ l)x + — H (1.2)

where e = 0 or 1. The problem of (0,m1,...,mq) interpolation on equidistant nodes refers
to the above spaces of trigonometric polynomials ([3,4,6,7,8,9]).

However there seems to be no a priori reason to choose the above underlying spaces.
Recently Goodman and Lee [2] have used a different system of trigonometric functions
in their work related to trigonometric splines. They consider the space spanned by
{sinx, cos x, sin 3x, cos 3x,..., sin (2N — l)x,cos(2N — l)x}. These functions satisfy the
condition f(x + n)= — /(x) and so in this case it is natural to limit ourselves to the
interval [0, n) instead of [0,2n) as we do in the earlier literature.

Let us denote the space spanned by {sin(2; — l)x,cos(2j—l)x}"=1 by ^N and let

•This work was initiated when the second author visited the first author at Dundee under a grant from the
Edinburgh Mathematical Society.
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458 T. N. T. GOODMAN AND A. SHARMA

xk~(k=0,l,...,2n-l)
In

be 2« equidistant nodes in [0,n). We propose the following problems:

Pj. Given integers 0^m1<m2<-- <mp, find the conditions necessary and sufficient
p

for the regularity of (wi1,...,mp) interpolation on the nodes
metric polynomials from the space ST^.

by trigono-

It may be observed that since 1$&~N, the smallest integer
happens to be the case in the classical situations.

need not be zero, as

P2. Find the fundamental polynomials of interpolation.
P3. If f(x)eC[0,7t], find the convergence behaviour of the trigonometric interpolant

to the function on 1 from STN as n-»oo.

In Section 2, we state some lemmas on determinants which will be required later. In
Section 3, we state and prove the main result. It turns out that regularity (or unique
solvability) of this interpolation from 3TN is always possible for all choices of distinct
integers {mv}{. This is in contrast with the case when the underlying space is (1.1) or
(1.2), for then regularity depends upon the difference between the number of even and
odd integers in the set {mv}[. In Section 4, we find explicit expressions for the
fundamental polynomials. Section 5 is devoted to the properties of two determinants
which occur in the expressions for the fundamental polynomials given in Section 4.
Finally we state and prove the convergence theorem in Section 6.

2. Some lemmas

We shall need the following three lemmas:

Lemma 1. (cf. [1]). / / 0 < t 1 < t 2 < " <ts are given real numbers and if 0^m1
••• <ms are positive integers, then the generalized Vandermondian A is positive, where

If in the above,
where

t j t2 . . . ts

-ti+l, we shall be interested in the sign of the determinant A*

A*: =
tu. .,ts

t"1 ... til mxt

... tr m2t

C mst

•i C+2

r~l tTi2

i c i + 2

t
. m i

. . . I,

• (2-2)
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TRIGONOMETRIC INTERPOLATION

Lemma 2. / / 0 < t 1 < - - < t ,<( j + 2 <- • <ts and O^m^-- <ms, then A*>0.

Since we could not find this stated explicitly in the literature we sketch the proof.

Proof. Suppose A* = 0. Then there exist a1,...,as not all zero such that

459

Thus the polynomial Q(t) = Yj=iajtmi vanishes for t = tl,...,tl,ti+2,...,t, and
Thus Q has s zeros counting multiplicity in (0, oo). By Descartes' rule, Q(t) cannot have
more than s— 1 zeros in (0, oo) and so A*#0.

If in (2.1) we set ti+l = ti+h, h>0, then the corresponding A(h)>0. Subtracting the ith
column from the (i + l)th and dividing by h, the resulting determinant is still > 0.
Letting h->0, we see that A*kO. Thus A*>0, which completes the proof. •

Lemma 3. (cf. [9]). Let 0<tl<t2<-- <ts be given real numbers where s = p + q. Let
0^m1<m2<-- <mp and 0 g m i < m ' 2 < ••• <m'q be two sets of integers {not necessarily
different from each other). IfD denotes the determinant given below, then

where

D: =

sgn £>=(-] 9-D/2

. - l t m i

3. Regularity of Problem / \

The number of data in this case is 2JV = 2np and so we shall consider trigonometric
polynomials from the class $~N. More precisely, set

Tnp(x):=
np—l

j=o
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460 T. N. T. GOODMAN AND A. SHARMA

Equivalently, we may write

Tnp(x) = "j: "Z {cj,xe-^+^ + ̂  + djiXe^+2X"+^}. (3.1)

X = 0 j = 0

The homogeneous interpolation problem is given by

T<pv)(**) = 0, v = l , . . . ,p;fc = 0 , l , . . . , 2 n - l , (3.2)
where

xk=—, k = 0, l , . . . ,2n— 1.
2M

Theorem 1. The problem of {ml,m2,...,mp) interpolation by trigonometric polynomials
from the class 2Tnp on In equidistant nodes xk (fc = 0, l , . . . ,2n—1) is regular for all distinct
positive integers m1,m2,...,mp.

Proof. Clearly it is enough to show that if Tnp(x) is given by (3.1) and satisfies (3.2),
then it is identically zero. From (3.1) and (3.2), we see on putting zk = eiXk, that

" l " l CjJ2j + Ihi + 1R( - l)<m')zt-
(2j+"(-1)"1

-1 = 0 j = 0

+ " l "l djJ2j+21n + l ) m ' ( -1)^ + 1 =0.
X=0j=0

Multiplying both sides by zl"~l and changing j into n—j—1 in the first summation, we
obtain

n-l rp-1

-1 = 0
(3.3)

If fc is even, Zj"= 1, and when fe is odd, zjf"= — 1. The above conditions (3.3) show that
when k is even (and similarly when k is odd), we have an equation of degree n — 1
having n zeros. This observation leads to the following system of equations:

,1 = 0

(v=l,...,p, j = 0,!,...,«— 1, when k is even), (3.4)
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TRIGONOMETRIC INTERPOLATION 461

/=0 /=0

( v = l , . . . , p , ; = 0 , l , . . . , n - l , when k is odd). (3.5)

Suppose there are s even and / odd integers in the set 0, l,...,p— 1. Then s + l = p and
s = l if p is even, and s = / + l if p is odd. We now rewrite the equations (3.4) and (3.5)
after replacing X by 2X or 2A+1 as needed. Then adding and subtracting, we get the
following two systems of p equations for every j (J = 0, . . . , n — 1):

I c n _ J _ 1 , 2 , ( - i r ( 4 2 n + 2 n - 2 ; - i r + X dh2i+1(4Xn + 2n + 2j + l ) - = 0, v = l , . . . , p
;=o ;.=o

(3.6)

and

I cn_J ._1 > 2 , + 1 ( - i r (4An + 4 n - 2 J , - i r + SX^.2A(4An + 2 ; + i r = 0, v = l , . . . , p . (3.7)
A = 0 /=0

The system of equations (3.6) (and similarly (3.7)) has p unknowns. Let us denote the
determinants of systems (3.6) and (3.7) by A ^ and A2 J respectively.

We now examine AltJ more closely and show that it cannot vanish. Any row of the
determinant AlfJ; is given by

- 2n)m" (2j + 1 - 6n)m"... (2j +1 - 4sn + 2n)m<

+ 2n)m' (2j + 1 + 6n)m-... (2; + 1 + 4/n - 2n)m'.

So the first s terms of the row are decreasing successively and the next / terms are
increasing by 4n. The absolute values of these terms can be arranged in increasing order
as follows:

If all the mjs have the same parity, then A l j # 0 by Lemma 1. If some of the mv's are
even and some are odd, then if the columns are arranged so that the terms in each row
are increasing in absolute value, then the sign of all terms in a row are positive if the
terms have power my (mv even) and are alternately positive and negative if mv is odd. It
then follows from Lemma 3 that A i j / 0 . Similar reasoning shows that A2,,#0. Indeed
a close scrutiny of the determinants shows that

Since the determinants of (3.6) and (3.7) are not zero, Tnp(x) is identically zero which
completes the proof. •
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462 T. N. T. GOODMAN AND A. SHARMA

4. Fundamental polynomials

Let us denote the fundamental polynomials of this problem by pk,my(
x),

(/c = 0, l,...,2n— 1). They will satisfy the following conditions:

= np, (4.1)

p£!L(x,) = 0, /i * v, / = 0,1,. . . , 2n - 1 , (4.2)

ptlM = Su. (4.3)

It is clear that pk,mv(
x)-po,mXx~**)• 1° y i e w of the equations (3.6) and (3.7) which are

used in the proof of regularity, we set

p - l n - l
n (v\— V V in ,-(2j + 2/n+l) , J -2j+2Xn+l\
P0,mAX>— la 2-, \Cj,iZ +aj,iZ l>

i=Oj=O

where z = eix. From (4.2) and (4.3), it follows that

= <U, . . . ,2n- l

The conditions (4.4) yield the conditions

Thus if k is even, we have from the above

and if k is odd

n-1 p - 1

j = 0 -1 = 0

Hence for every j , (j; = 0,1, . . . , n — 1), we have from (4.6)
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' l cn-j-,,;(2n + 2 A / i - 2 / - i n - l ) m ' ( - Vf-'Z djiX(2j + 2Xn+ l ) m ' ( - 1)4 = 0. (4.7)
=o x=o )

From (4.5), we have

P - 1 P - 1 - - m »

X 1P=—. (4.8)

Adding and subtracting (4.7) and (4.8) yields

"X cn_;_1.;.(2« + 2 A « - 2 ; - i n - i r + Pi:1 da2j + 2An+irJ-^. (4.9)
;. = o / = o -̂ N

/even /.odd

and

P £ c_J_1>,(2n + 2 A i i - 2 j - i n - l ) - + "^ di t ,(2; + 22«+ l)m' = ̂ . (4.10)
;. = o / = o *-n

/odd /even

Similarly, if we use the property (4.2), we obtain

P£ cn_J._li,(2« + 2 ^ - 2 ; - i n - i r + " Z 1 ^ ^ + 2An+ir = 0, (4.11)
X=O /=O
/even X odd

"l cn_J._1,/i(2« + 2 ^ - 2 ; - i n - i r ' ' + P X ,̂,(27 + 2^+l)m" = 0, (4.12)
A=0 A=0
/•odd /even

for /x=l ,2 , . . . ,p , / i#v. From (4.9) and (4.11), we obtain the values of cn_j_1) {Ieven)
and of djk (A odd), (A=0, l,...,p—1). The values of cn-j-lx {k odd) and djA (Aeven) are
given by (4.10) and (4.12). The determinants of the system of equations (4.9) and (4.11)
and of (4.10) and (4.12) agree with Altj and A2,j respectively as defined in Section 3.

Let AlJv(z) denote the determinant obtained from As 7- by replacing the vth row by
the following

z2j+l-2n Z2j+l-6n Z2j+1 - 2n(2s-1) Z2n+2j+l Z6n + 2j+l Z 2 n ( 2 / - 1 ) +tz2j+l-2n Z2j+l-6n Z2j+1 - 2n(2s-1) Z2n+2j+l Z6n + 2j+l Z 2 n ( 2 / - 1 ) + 2 j + 1 \

Similarly, A2 J v(z) will denote the determinant obtain by A2,j after replacing the vth row
by the row

( Z 2 Z Z Z Z + 4 n ( s - 1 ) \

If we set
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where

T. N. T. GOODMAN AND A. SHARMA

Po.m,(x) = "l (Pj.mX

p - l p - l

£ Cn-J-l..

\ even

p - l

SoC"-J-1J
/.odd

Z2J+l

Z2j+1-

-2Xn-2n

•2Xn-2n _

+ E °
/.odd

p - l

Aeven

J z2j+l+2An

1 2j+l+2;.n
j,m,(Z)—

then it follows from (4.9), (4.11) and (4.10), (4.12) that

In

It may be observed that for l ^ a ^ s , the (i,a)th term of A1,n-l-j equals the (i,a + /)th
term of A2j multiplied by ( — 1)"", while the (v,a)th term of Al n_1_J V(z) equals the
(v,a + /)th term of A2,;,v(z) with z replaced by z~l. Similarly for l ^ a ^ / , the (i,s + a)th
term of A1>B_1_J- equals the (j,a)th term of A2tJ multiplied by ( — 1)"", while the
(v,s + a)th term of A(J B_J_I I V(Z) equals the (v,«) term of A2,j,u(z) with z replaced by z"1.
Thus

J,y(z)^, „ , A2,J|V(Z"1)
(4.13)

Thus we have

ReAljv(z)
/

3 = 0

y """w-*6', mvOdd.

5. Properties of A,-,,- and A1,_;,v(z)

In the following two sections we shall take m, =0.

(4.14)

https://doi.org/10.1017/S0013091500005745 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005745


TRIGONOMETRIC INTERPOLATION 465

Determining the convergence behaviour of this type of interpolation depends upon
examining the nature of the determinant AtJ and the polynomial AliJ>v(z) more
carefully. In order to do so, we rearrange the columns of A1YJ and set ((2j + l)/2«) = t.
Then if p = 2r — 1 or 2r, we set

1

r —2r+l)m

( t -2 r+ l ) m * ( r -

1 1

2r + 2p-l)m2

2r + 2p-l)m-

(5.1)

If we denote by (j)kt{t) the co-factor of the (k, I) term in <p(t), we can show that

(5.2)

It follows from Lemma 3, that <p(t)=£O for 0 < t < 1. To see this one must rearrange the
columns of (5.1) as is done in the proof of Theorem 1. The following Lemma describes
the multiplicities of its zeros at 0 and 1.

Lemma 4. / / the polynomial 4>(t) in (5.1) has zeros of multiplicity <x and /? at 0 and 1
respectively, then the polynomial <pkl{t) has zeros of multiplicity at least a — 1 and ft—I at
0 and 1 respectively.

Proof. Without loss of generality we may suppose that m1,m2,...,ms are even and
mJ+1,...,mp are odd. We shall prove the lemma for the case when p is even ( = 2r) and
s^r. We then show that <j>{t) has a zero of exact multiplicity s — r at 0. To see this, we
observe that the ith row of $(t) is

( t - 2 r + l ) m i ( t - mi . . . (t + 2 r - l ) m i .

Subtracting the (p+1— /)th column from the jth column for ; = 1,2,...,r, then dividing
the first r columns by t and multiplying the last p — r rows by t, we see that <j>(i) has a
factor f-<p-s» = ^ - r . Thus

where \j/(f) is a determinant of order p (which is a polynomial in t). We claim that
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Indeed we have

A B
i]/(0)=( — 2Y

C 0

where A,B matrices of order sxr, C is a matrix of order (p-s)xr and 0 is the zero
matrix of order (p — s)x r. More precisely if A=(aij), B = {bi]) and C = (Cij) then

"'-1 i=fly=m,(2r+l-2y)

c o = ( 2 r + l - 2 j ) m i , i = s + l , . . . , p ; ; = l,...,r.

We may arrange the first r column of i/f(0) in increasing order and then use Laplace
expansion in terms of the last p — s rows. If we denote by

the determinant of order k obtained from the rearranged ^(0) with rows ilt...,ik and
columns j u . . . ,jk, then

*K0)=2rcZ(-iyi+-+1'-DJs+l'-;'p)DJ .!'•"*
\Jlf • •> Jp-sJ \Jlf • •) ]s-rir~^~ '>• • •> j

where the summation runs over l^jl<j2<---<jp_s^r and {/ j's-r}
 =

{l,...,r}\{jlt..., jp-s} and C is a constant with absolute value 1. The determinant

D

is formed from the rows and columns of the matrix [A B] and its r columns from the
(r + l)th to the last are identical with those of B. The columns j \ , . . . , j ' s - r are from A.
The elements of these columns are the derivatives of corresponding elements in certain
columns from r+1 to p. More precisely, column /„ is the derivative of the column r + / v

(v = l,...,s—r). If therefore we juxtapose these columns into new positions so that a
column is followed by its derivative column (if any), then by Lemma 2, the rearranged
determinant will be positive. Thus

i,...,s
Ju---, Js-r,r+\,...,p
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where DJ>0 is the juxtaposed matrix. Thus we see that

467

Jl> Jp-

Consider now the polynomial <j>k^t). For l ^ j £ r , if 1^ /^ r and j^l or r + ^
and j^p + l — l, then subtract the column with (t + 2r + 1 — 2j)mi from the column with
[t — 2r—l+2j)m, (i= l , . . . ,p , i#fc) and divide each of the resulting columns by t. Then
multiplying the last p — 1 rows by t gives

where il/kl{t) is a determinant of order p which is a polynomial in t.
We have thus shown that at 0, 4>(t) has a zero of exact multiplicity s — r and 0H(t) has

a zero of multiplicity at least s — r— 1. Similarly, we can show that at 1, <£(f) has a zero
of exact multiplicity s—r—I and that (f>u{t) has a zero of multiplicity at least s — r —2.

The same reasoning as above can be easily used mutatis mutandis to prove the lemma
in the remaining cases.

As an example, consider p = 4, m 1 =0, m2 = 2, m3 = 6, m4 = 3. Then r = 2, s = 3 and

1 1 1 1

(r-3)2 ( t -1)2 (t+1)2 (t + 3)2

(t-3)6 (£- l ) 6 (t+1)6 (t + 3)6

( t-3)3 ( t -1) 3 (t + 1)3 (t + 3)3

= t

0

-12

•12.35+0(t)

-54+0(t2)

1 10
- 4 (t + 1)2 (t + 3)2

-12+0(t) (t+1)6 (t + 3)6

- 2 + 0(t2) t(t + l)3 t(t + 3)3

So

= 4

by Lemma 2.

0 0 1 1

6 2 I2 32

6.3s 6 I6 36

27 1 0 0

= 4 27
1
I2

I6

0
2.1

6.5

1
32

36

+
1
I2

I6

1
32

36

0
2.3

6.3s

6. Convergence

The convergence problem requires estimates on the sum
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2 n - l

E
k = 0

and to this effect we prove

Lemma 5. / / 0 = mu m2,..., mp are distinct integers then

E |po.-,(x-**)| = 0(«1--),v = l,.
«t = 0

Proof. From (4.14) and (5.2), we see that

Since (j>,,x(t) =

where

and

i(t) + (l-t)0,. i(t), wehave

p-i

~;.=o (2n

" 1

- V
— L

) = - / 2 ; + A z -
ZlX A V 2" J2n-2j-l

(6.1)

(6.2)

By Lemma 4, r(t) is continuous on [0,1] and hence of bounded variation. By
summation by parts, we have

so that

| s c max
OSjSn-l

_2v+l
Z

? iW (6.3)

Similarly, |S2;J is also bounded by the same expression with z replaced by z.
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In order to estimate |Slt / i | we see that for 0<X<TI , we have

469

^ cos(2v+l)x

v?o 2v+l

j n/2

£ J sin(2v+l)t<fc
v = 0 x

"12 j

J £ sin(2v +
x v = 0

; sint
log cot2 -

Since it is well known that

± sin(2v+l)x
2v+l

is uniformly bounded on [0, n), we see that

Hence from (6.2) we obtain

"
k = 0

Since it can be seen as in [3] that

\ n n

"v1 . /21ogn 1 , A _41ogn 2
X rain ^-,-g(x-xf c) ^ — ^ - + -
= 0 \ n n J n Tt

2 n -

the proof of (6.1) is complete.

Now let Jn(x;f) denote the Jackson polynomial of / of degree n. Note that if
f(x + n)= -f{x), then Jn(x + n; f) = - Jn(x; f) and so Jn(x;

Lemma 6. / / f(x) in C(U) satisfies the Zygmund condition
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470 T. N. T. GOODMAN AND A. SHARMA

f(x + h)-2f(x)+f(x-h) = o(h) (6.4)
then

sup |/(x)-•/„(*;/•)| = o Q V (6.5)

;f)\ = o(nJ-1) for j*2. (6.6)

Moreover if f is in C\U), then

\f'(x)-J'n(x;f)\=o(l). (6.7)

Proof. It is known ([5, p. 56]) that

sup\f(x)-Jn(x;f)\^A(o2(fA. (6.8)

So if / satisfies (6.4), then (6.8) gives (6.5). It is also known ([10, see 4.8.6 formula (18)])
that for any trigonometric polynomial Tn of degree n,

sup | Tm(x) | g Bn2 sup | #,.r.(x) |. (6.9)
X X

From the definition of the Jackson polynomial, we have

sup\^lnJn(x;t)\^co2(f,fj = o(^\ (6.10)

so that from (6.9) and (6.10), we have

•/;'(*;/)=<>(«)

which yields (6.6).
If / is continuously differentiable, then

| | | (6.11)

Theorem 3. / / 0 = m 1 < m 2 < - < m p be integers, suppose that feC(U) satisfies
f(x + n)=—f(x) and the Zygmund condition (6.4). Moreover if m 2 =l , then suppose
feC'iU).

Let Tnp e STft satisfy the interpolary conditions

Tnp(xk) =
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TRIGONOMETRIC INTERPOLATION 471

and for k = 0, l,...,2n-l,j = 2,...,p,

(xk), if nij = 1

n1"''1) otherwise.

Then Tnp converges uniformly to f on U.

Proof. From Theorem 2, we have

2 n - l

+ t l! T%\xk)p0,mj(x-xk).
j=2 k = 0

Now

f(x) - Tnp(x) = / (x) - Jn(x; f) + Jn(x; f) - Tnp(x)

and

Jn{x;f)-Tnp(x)= £ (Jm(xk;f)-f(xk))po,o(x-xk)

i=i *=o

t £ T%\xk)p0,mj(x-xk).
j=2 *=0

The result now follows from Lemmas 5 and 6.

7. Remarks

It seems natural to ask why we consider only the case when the number of nodes is
In. When the number of nodes is 2n +1, we have to consider again two cases: (i) when p
is even and (ii) when p is odd.

The case (i) when number of nodes is In +1 and p is even can be treated the same
way as above. The case (ii) when p is odd will be discussed elsewhere.
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