FORMALLY NORMAL OPERATORS HAVING NO NORMAL EXTENSIONS

EARL A. CODDINGTON

1. Introduction. The domain and null space of an operator A in a Hilbert space \mathfrak{F} will be denoted by $\mathfrak{D}(A)$ and $\mathfrak{N}(A)$, respectively. A formally normal operator N in \mathfrak{F} is a densely defined closed (linear) operator such that $\mathfrak{D}(N) \subset \mathfrak{D}\left(N^{*}\right)$, and $\|N f\|=\left\|N^{*} f\right\|$ for all $f \in \mathfrak{D}(N)$. A normal operator in \mathfrak{W} is a formally normal operator N satisfying $\mathfrak{D}(N)=\mathfrak{D}\left(N^{*}\right)$. A study of the possibility of extending a formally normal operator N to a normal operator in the given \mathfrak{F}, or in a larger Hilbert space, was made in (1). Necessary and sufficient conditions for such an extension in \mathfrak{S} were presented, as well as sufficient conditions for a normal extension in a larger Hilbert space. At the time of the writing of that paper it was not known to us whether or not a given formally normal N always could be extended to a normal operator, in a possibly larger Hilbert space. The main purpose of this paper is to present an example of a formally normal N in a Hilbert space $\mathfrak{5}$ which has no normal extensions in \mathfrak{F} or in any larger Hilbert space. This situation thus contrasts sharply with that which obtains for symmetric operators, for every symmetric operator in \mathfrak{F} may be extended, in a trivial way, to a self-adjoint operator in a larger Hilbert space.

When we mentioned to B. Fuglede our suspicion that such an example existed, he recalled his knowledge of a pair of densely defined symmetric operators S_{1}, S_{2} in a Hilbert space \mathfrak{S} which have a common invariant domain $\mathfrak{D}\left(S_{1} \mathfrak{D} \subset \mathfrak{D}, S_{2} \mathfrak{D} \subset \mathfrak{D}\right), S_{1} S_{2} u=S_{2} S_{1} u$ for all $u \in \mathfrak{D}$, and the closures $\widetilde{S}_{1}, \widetilde{S}_{2}$ self-adjoint, but such that the spectral resolutions of $\widetilde{S}_{1}, \widetilde{S}_{2}$ do not commute. He then indicated to us that the closure of the operator $S_{1}+i S_{2}$ is a formally normal operator having no normal extensions. Although Fuglede never published his interesting example, a different pair of such operators S_{1}, S_{2} was exhibited by E. Nelson in (3, p. 606).

Our example is of a different nature, and is of interest since it has a certain minimum character. It is an ordinary differential operator of the third order for which $\operatorname{dim}\left(\mathfrak{D}\left(N^{*}\right) / \mathfrak{D}(N)\right)=1$. Using this operator one can construct further examples of formally normal operators N having no normal extensions, such that $\operatorname{dim}\left(\mathfrak{D}\left(N^{*}\right) / \mathfrak{D}(N)\right)$ is any given positive integer. In our example the symmetric operators $\operatorname{Re} N=(N+\bar{N}) / 2, \operatorname{Im} N=(N-\bar{N}) / 2 i(\bar{N}$ being the restriction of N^{*} to $\mathfrak{D}(N)$) have deficiency indices $(0,0)$ and $(0,1)$ respectively.

[^0]We indicate that, for our example, the domains of $\bar{N}^{*}, N^{*},(\operatorname{Re} N)^{*},(\operatorname{Im} N)^{*}$ are not comparable. In a concluding section we show that in some situations, where these domains are comparable for a formally normal N in \mathfrak{S}, normal extensions exist in \mathfrak{S}.
2. General considerations. Let $\mathfrak{G H}(T)$ denote the graph of an operator T in a Hilbert space \mathfrak{S}. If A, B are closed operators with dense domains, and $A \subset B$, then it is easy to verify that $(\mathfrak{J}(B) \ominus(\mathcal{J}(A)$ consists of all $\{u, B u\}$ $\in\left(\mathbb{O}(B)\right.$ such that $u \in \mathfrak{N}\left(I+A^{*} B\right)$, where I is the identity operator. Since

$$
\mathfrak{J}(B)=\mathfrak{G j}(A) \oplus[\mathfrak{J}(B) \ominus \mathfrak{G j}(A)],
$$

we have

$$
\begin{equation*}
\mathfrak{D}(B)=\mathfrak{D}(A)+\mathfrak{R}\left(I+A^{*} B\right), \tag{1}
\end{equation*}
$$

which is a direct sum.
If N is formally normal in $\mathfrak{S c}$, and \bar{N} is N^{*} restricted to $\mathfrak{D}(N)$, then $N \subset \bar{N}^{*}$ since $\bar{N} \subset N^{*}$. The above shows that

$$
\begin{array}{ll}
\mathfrak{D}\left(\bar{N}^{*}\right)=\mathfrak{D}(N)+\mathfrak{M}, & \mathfrak{M}=\mathfrak{M}\left(I+N^{*} \bar{N}^{*}\right), \\
\mathfrak{D}\left(N^{*}\right)=\mathfrak{D}(N)+\overline{\mathfrak{M}}, & \overline{\mathfrak{M}}=\mathfrak{M}\left(I+\bar{N}^{*} N^{*}\right) .
\end{array}
$$

The example we give is an N for which

$$
\begin{equation*}
\operatorname{dim} \mathfrak{M}=\operatorname{dim} \bar{M}=1, \quad \operatorname{dim}(\mathfrak{M} \cap \bar{M} \bar{M})=0 . \tag{2}
\end{equation*}
$$

We shall now indicate that any such N is maximal formally normal in \mathfrak{S} (has no proper formally normal extensions in \mathfrak{F}), and has no normal extensions in any Hilbert space containing \mathfrak{F} as a subspace.

Let N be a formally normal operator in \mathfrak{S} for which (2) is valid. It is not normal since $\mathfrak{D}(N) \neq \mathfrak{D}\left(N^{*}\right)$. Also N is a maximal formally normal operator in \mathfrak{S}. Indeed, the first condition in (1) will guarantee this. Suppose N_{1} is a formally normal extension of N in $\mathfrak{S y}$. Then we must have

$$
N \subset N_{1} \subset \bar{N}^{*}, \quad \bar{N} \subset N_{1}^{*} \subset N^{*}
$$

and an application of the result (1) gives

$$
\begin{array}{ll}
\mathfrak{D}\left(N_{1}\right)=\mathfrak{D}(N)+\mathfrak{M}_{1}, & \mathfrak{M}_{1}=\mathfrak{M}\left(I+N^{*} N_{1}\right) \tag{3}\\
\mathfrak{D}\left(N_{1}^{*}\right)=\mathfrak{D}(N)+\overline{\mathfrak{M}}_{1}, & \overline{\mathfrak{M}}_{1}=\mathfrak{M}\left(I+\bar{N}^{*} N_{1}{ }^{*}\right) .
\end{array}
$$

It is now clear from the definitions of \mathfrak{M} and \mathfrak{M}_{1} that $\mathfrak{M}_{1} \subset \mathfrak{M}$. Thus, if \mathfrak{M}_{1} is non-empty, and $\operatorname{dim} \mathfrak{M}=1$, we must have $\mathfrak{M}_{1}=\mathfrak{M}$. But then $N_{1}=\bar{N}^{*}$, which is not formally normal, since $\mathfrak{D}\left(\bar{N}^{*}\right)$ is not contained in the domain of $\left(\bar{N}^{*}\right)^{*}=\bar{N}$.

It is of interest to verify that the condition $\operatorname{dim}(\mathfrak{M} \cap \overline{\mathfrak{M}})=0$ also implies that N is maximal formally normal, for it is this condition that is used to show that N has no normal extensions in any larger Hilbert space. (Thus any formally normal N such that

$$
\operatorname{dim} \mathfrak{M}=\operatorname{dim} \overline{\mathfrak{M}}>0, \quad \operatorname{dim}(\mathfrak{M} \cap \bar{M})=0
$$

is maximal formally normal and has no normal extensions.) If N, N_{1} are formally normal in \mathfrak{S}, and $N \subset N_{1}$, then it will be shown that $\mathfrak{M} \subset \mathfrak{M} \cap \overline{\mathfrak{M}}$. Therefore, if $\operatorname{dim}(\mathfrak{M} \cap \overline{\mathfrak{M}})=0, N=N_{1}$; see (3). We have indicated that $\mathfrak{M}_{1} \subset \mathfrak{M}$. To show that $\mathfrak{M}_{1} \subset \overline{\mathfrak{M}}$ we note that, since $\mathfrak{D}\left(N_{1}\right) \subset \mathfrak{D}\left(N_{1}^{*}\right)$, $\mathfrak{M}_{1} \subset \mathfrak{D}\left(N_{1}{ }^{*}\right)=\mathfrak{D}(N)+\overline{\mathfrak{M}}_{1}$. If $\phi \in \mathfrak{M}_{1}$ we may write $\phi=f+\psi$, where $f \in \mathfrak{D}(N), \psi \in \mathscr{M}_{1}$. Then

$$
\begin{aligned}
\left(N_{1} \phi, N_{1} f\right) & =\frac{1}{4} \sum_{k=1}^{4} i^{k}\left\|N_{1}\left(\phi+i^{k} f\right)\right\|^{2} \\
& =\frac{1}{4} \sum_{k=1}^{4} i^{k}\left\|N_{1}^{*}\left(\phi+i^{k} f\right)\right\|^{2} \\
& =\left(N_{1}^{*} \phi, N_{1}^{*} f\right),
\end{aligned}
$$

or

$$
\left(N_{1} \phi, N f\right)=(\bar{N} f, \bar{N} f)+\left(N_{1}^{*} \psi, \bar{N} f\right)
$$

Thus

$$
\left(N^{*} N_{1} \phi, f\right)=\|\bar{N} f\|^{2}+\left(\bar{N}^{*} N_{1}^{*} \psi, f\right)
$$

and using the definitions of \mathfrak{M}_{1} and $\overline{\mathfrak{M}}_{1}$ we see that

$$
-(\phi, f)=\|\bar{N} f\|^{2}-(\psi, f)
$$

or

$$
\|\bar{N} f\|^{2}+(\phi-\psi, f)=\|\bar{N} f\|^{2}+\|f\|^{2}=0
$$

This implies that $f=0$ and consequently that $\phi=\psi$, showing that $\mathfrak{M}_{1} \subset \mathfrak{M}_{\text {. }}$.
The fact that $\operatorname{dim}(\mathfrak{M} \cap \mathfrak{M})=0$ implies that N has no normal extension in any Hilbert space $\mathfrak{S} \oplus \Omega$ was pointed out in (1, Theorem 4, Corollary). We sketch the reasoning briefly. If \mathscr{N}_{1} is a normal extension of a formally normal N in $\mathfrak{S} \oplus \Omega$, then $\bar{N} \subset \mathscr{N}_{1}{ }^{*}$, and a consideration of graphs shows that

$$
\begin{array}{ll}
\mathfrak{D}\left(\mathscr{N}_{1}\right)=\mathfrak{D}(N)+\mathbb{R}, & \mathbb{Z}=\mathfrak{N}\left(P+N^{*} P \mathscr{N}_{1}\right) \\
\mathfrak{D}\left(\mathscr{N}_{1}^{*}\right)=\mathfrak{D}(N)+\overline{\mathfrak{R}}, & \overline{\mathfrak{Z}}=\mathfrak{N}\left(P+\bar{N}^{*} P \mathscr{N}_{1}^{*}\right)
\end{array}
$$

where P is the orthogonal projection of $\mathfrak{S} \oplus \Omega$ onto \mathfrak{J}. An argument similar to the one above, where we showed that $\mathfrak{M}_{1} \subset \mathfrak{M} \cap \mathfrak{M}$, now can be used to show that $P \mathbb{R} \subset \mathfrak{M} \cap \bar{M}$. But $\mathfrak{M} \cap \bar{M}=\{0\}$, and \mathscr{N}_{1} normal implies that N must be normal, a contradiction.
3. The example. Let L denote the formal ordinary differential operator on $0<x<\infty$ given by

$$
L u=u^{\prime \prime \prime}+u^{\prime \prime}-3 x^{-2} u^{\prime}+\left(3 x^{-3}-2 x^{-2}\right) u .
$$

Let N_{0} be the operator in the Hilbert space $\mathfrak{S}=\Omega_{2}(0, \infty)$ with domain $\mathfrak{D}\left(N_{0}\right)=C_{0}^{\infty}(0, \infty)$, the set of complex-valued functions on $0<x<\infty$ of class C^{∞} which vanish outside compact subsets of $0<x<\infty$, and defined by $N_{0} u=L u$ for $u \in \mathfrak{D}\left(N_{0}\right)$. Let N be the closure of N_{0} in \mathfrak{y}. This N is formally normal and $\mathfrak{M}=\mathfrak{R}\left(I+N^{*} \bar{N}^{*}\right)$ satisfies (2).

We observe that L may be written as $L=L_{3}+L_{2}$, where

$$
\begin{aligned}
& L_{3} u=u^{\prime \prime \prime}-3 x^{-2} u^{\prime}+3 x^{-3} u \\
& L_{2} u=u^{\prime \prime}-2 x^{-2} u
\end{aligned}
$$

and these operators have formal adjoints $L_{3}{ }^{+}, L_{2}{ }^{+}$, satisfying $L_{3}{ }^{+}=-L_{3}$, $L_{2}{ }^{+}=L_{2}$, which implies that $L^{+}=-L_{3}+L_{2}$. Moreover, L_{2} and L_{3} formally commute, that is

$$
L_{2} L_{3} u=L_{3} L_{2} u, \quad u \in C^{\infty}(0, \infty)
$$

a fact which was pointed out by J. L. Burchnall and T. W. Chaundy in (2). This and Green's formula now imply that

$$
\begin{equation*}
\|L f\|=\left\|L^{+} f\right\|, \quad f \in \mathfrak{D}\left(N_{0}\right) \tag{4}
\end{equation*}
$$

Indeed, for such f we have

$$
\left(L_{2} f, L_{3} f\right)=-\left(L_{3} L_{2} f, f\right)=-\left(L_{2} L_{3} f, f\right)=-\left(L_{3} f, L_{2} f\right)
$$

and therefore

$$
\begin{aligned}
\|L f\|^{2}=\left\|\left(L_{3}+L_{2}\right) f\right\|^{2}= & \left\|L_{3} f\right\|^{2}+\left\|L_{2} f\right\|^{2}+\left(L_{2} f, L_{3} f\right)+\left(L_{3} f, L_{2} f\right) \\
& =\left\|L_{3} f\right\|^{2}+\left\|L_{2} f\right\|^{2}=\left\|\left(-L_{3}+L_{2}\right) f\right\|^{2}=\left\|L^{+} f\right\|^{2}
\end{aligned}
$$

From the equality (4) we see that if $f \in \mathfrak{D}(N)$, and $f_{n} \in \mathscr{D}\left(N_{0}\right), f_{n} \rightarrow f$, $L f_{n} \rightarrow g$, then $L^{+} f_{n}$ tends to some limit g^{+}. Thus f is in the domain of the closure of \bar{N}_{0}, the operator L^{+}defined on $\mathfrak{D}\left(N_{0}\right)$, and this closure is contained in $N_{0}{ }^{*}=N^{*}$. For $\mathfrak{D}\left(N^{*}\right)$ is the set of all $u \in \mathscr{S}$ such that $u \in C^{2}(0, \infty)$, $u^{\prime \prime}$ is absolutely continuous, and $L^{+} u \in \mathfrak{S}$; moreover, $N^{*} u=L^{+} u$ for $u \in \mathfrak{D}\left(N^{*}\right)$. Thus $\mathfrak{D}(N) \subset \mathfrak{D}\left(N^{*}\right)$. The operator \bar{N} is just L^{+}defined on $\mathfrak{D}(N)$, and $\bar{N}_{0}{ }^{*}=\bar{N}^{*}$ is L defined on $\mathfrak{D}\left(\bar{N}^{*}\right)$, which is the set of all $u \in \mathfrak{J}$ such that $u \in C^{2}(0, \infty), u^{\prime \prime}$ is absolutely continuous, and $L u \in \mathfrak{S}$. From (4) it now follows that $\|N f\|=\|L f\|=\left\|L^{+} f\right\|=\left\|N^{*} f\right\|$, for all $f \in \mathfrak{D}(N)$. We have thus verified that N is formally normal.

The space $\mathfrak{M}=\mathfrak{M}\left(I+N^{*} \bar{N}^{*}\right)$ consists of all solutions u of the differential equation

$$
\begin{equation*}
\left(I+L^{+} L\right) u=0 \tag{5}
\end{equation*}
$$

satisfying $u \in \mathfrak{F}, L u \in \mathfrak{S}$; whereas $\overline{\mathfrak{M}}=\mathfrak{M}\left(I+\bar{N}^{*} N^{*}\right)$ consists of all solutions u of the same differential equation satisfying $u \in \mathfrak{F}, L^{+} u \in \mathfrak{F}$. Note that all solutions of this question are analytic on $0<x<\infty$ since L and L^{+}
have analytic coefficients. To compute the dimensions of the spaces \mathfrak{M}, \bar{M}, and $\mathfrak{M} \cap \mathfrak{M}$, we introduce the function ϕ defined by

$$
\phi(x, \lambda)=\left(x^{-1}-\lambda\right) e^{\lambda x}
$$

for $0<x<\infty$, and all complex λ. It is readily verified that this function satisfies

$$
L_{3} \phi=\lambda^{3} \phi, \quad L_{2} \phi=\lambda^{2} \phi
$$

Thus

$$
L \phi=p(\lambda) \phi=\left(\lambda^{3}+\lambda^{2}\right) \phi, \quad L^{+} \phi=p^{+}(\lambda) \phi=\left(-\lambda^{3}+\lambda^{2}\right) \phi
$$

and

$$
\left(I+L^{+} L\right) \phi=q(\lambda) \phi=\left(p^{+}(\lambda) p(\lambda)+1\right) \phi .
$$

The polynomial $q(\lambda)=-\lambda^{6}+\lambda^{4}+1$ has no pure imaginary roots; for, if $\lambda=-\bar{\lambda}$,

$$
q(\lambda)=p^{+}(-\bar{\lambda}) p(\lambda)+1=\overline{p(\lambda)} p(\lambda)+1 \geqslant 1
$$

If λ is a root of q so are $\bar{\lambda},-\lambda$, and $-\bar{\lambda}$. The roots of q are distinct, and there is one negative real root λ_{1} such that $1<\left|\lambda_{1}\right|<\sqrt{ } 2$. Two other roots λ_{2}, $\lambda_{3}=\bar{\lambda}_{2}$ have negative real parts, and $\left|\lambda_{2}\right|=\left|\lambda_{3}\right|<1$. The other roots are $\lambda_{4}=-\lambda_{1}, \lambda_{5}=-\lambda_{2}, \lambda_{6}=-\bar{\lambda}_{2}$, and have positive real parts.

Let $\phi_{k}(x)=\phi\left(x, \lambda_{k}\right), k=1, \ldots, 6$, where the λ_{k} are the roots of q. The functions $\phi_{1}, \ldots, \phi_{6}$ form a basis for the solutions of the equation (5) on $0<x<\infty$. Indeed, if we have constants c_{1}, \ldots, c_{6} such that, on $0<x<\infty$,

$$
0=\sum_{k=1}^{6} c_{k} \phi_{k}(x)=\sum_{k=1}^{6} c_{k}\left(x^{-1}-\lambda_{k}\right) e^{\lambda_{k} x},
$$

then

$$
\sum_{k=1}^{6} c_{k}\left(1-\lambda_{k} x\right) e^{\lambda_{k} x}=0
$$

and a differentiation gives

$$
\sum_{k=1}^{6} c_{k} \lambda_{k}^{2} e^{\lambda_{k} x}=0
$$

Since the λ_{k} are distinct, and none are equal to zero, this implies that $c_{1}=c_{2}=\ldots=c_{6}=0$. The functions $\phi_{1}, \phi_{2}, \phi_{3}$ are in $\Omega_{2}(1, \infty)$, whereas $\phi_{4}, \phi_{5}, \phi_{6}$ are not in this space. It is easy to see that the solutions of equation (5) that are in $\mathfrak{R}_{2}(1, \infty)$ are spanned by $\phi_{1}, \phi_{2}, \phi_{3}$. Thus, if ϕ satisfies (5) and $\phi \in \mathscr{S}=\mathfrak{R}_{2}(0, \infty)$, we must have

$$
\phi(x)=\sum_{k=1}^{3} c_{k} \phi_{k}(x)=\sum_{k=1}^{3} c_{k}\left(x^{-1}-\lambda_{k}\right) e^{\lambda_{k} x},
$$

for some constants c_{1}, c_{2}, c_{3}. This function has the form

$$
\phi(x)=\left(c_{1}+c_{2}+c_{3}\right) x^{-1}+\tilde{\phi}(x)
$$

where $\tilde{\phi}$ is analytic at the origin. Thus $\phi \in \mathfrak{F}$ if and only if

$$
\begin{equation*}
c_{1}+c_{2}+c_{3}=0 \tag{6}
\end{equation*}
$$

Since

$$
L \phi=\sum_{k=1}^{3} c_{k} L \phi_{k}=\sum_{k=1}^{3} c_{k} p\left(\lambda_{k}\right) \phi_{k}
$$

we see that $L \phi \in \mathfrak{S}$ if and only if

$$
\begin{equation*}
c_{1} p\left(\lambda_{1}\right)+c_{2} p\left(\lambda_{2}\right)+c_{3} p\left(\lambda_{3}\right)=0 \tag{7}
\end{equation*}
$$

Similarly, $L^{+} \phi \in \mathscr{S}$ if and only if

$$
\begin{equation*}
c_{1} p^{+}\left(\lambda_{1}\right)+c_{2} p^{+}\left(\lambda_{2}\right)+c_{3} p^{+}\left(\lambda_{3}\right)=0 \tag{8}
\end{equation*}
$$

Thus $\phi \in \mathfrak{M}$ if and only if (6) and (7) are valid, and $\phi \in \overline{\mathfrak{R}}$ if and only if (6) and (8) hold.

The conditions (6) and (7) are independent. An easy way to see this is to note that if $\lambda_{j} \neq \lambda_{k}$, then $p\left(\lambda_{j}\right) \neq p\left(\lambda_{k}\right)$. Suppose, if possible that $\lambda_{j} \neq \lambda_{k}$ and $p\left(\lambda_{j}\right)=p\left(\lambda_{k}\right)$. Then, since $p^{+}\left(\lambda_{j}\right)=-\left[p\left(\lambda_{j}\right)\right]^{-1}$, we have $p^{+}\left(\lambda_{j}\right)=p^{+}\left(\lambda_{k}\right)$, and this implies that $\lambda_{j}{ }^{2}=\lambda_{k}{ }^{2}$ and $\lambda_{j}{ }^{3}=\lambda_{k}{ }^{3}$. Thus $\left(\lambda_{j} / \lambda_{k}\right)^{2}=\left(\lambda_{j} / \lambda_{k}\right)^{3}=1$. Since $\left(\lambda_{j} / \lambda_{k}\right) \neq 1$, we must have $\left(\lambda_{j} / \lambda_{k}\right)=-1$; but this contradicts $\left(\lambda_{j} / \lambda_{k}\right)^{3}=1$. Similarly, $\lambda_{j} \neq \lambda_{k}$ implies that $p^{+}\left(\lambda_{j}\right) \neq p^{+}\left(\lambda_{k}\right)$, which in turn yields the independence of the conditions (6) and (8). We have now proved that $\operatorname{dim} \mathfrak{M}=\operatorname{dim} \bar{M}=1$. The function $\phi \in \mathfrak{M} \cap \bar{M}$ if and only if (6), (7), and (8) are fulfilled. These constitute three independent conditions, for the determinant of the coefficients c_{1}, c_{2}, c_{3} is just

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
p\left(\lambda_{1}\right) & p\left(\lambda_{2}\right) & p\left(\lambda_{3}\right) \\
\frac{-1}{p\left(\lambda_{1}\right)} & \frac{-1}{p\left(\lambda_{2}\right)} & \frac{-1}{p\left(\lambda_{3}\right)}
\end{array}\right|=\left[p\left(\lambda_{1}\right) p\left(\lambda_{2}\right) p\left(\lambda_{3}\right)\right]^{-1}\left|\begin{array}{ccc}
1 & 1 & 1 \\
p\left(\lambda_{1}\right) & p\left(\lambda_{2}\right) & p\left(\lambda_{3}\right) \\
p^{2}\left(\lambda_{1}\right) & p^{2}\left(\lambda_{2}\right) & p^{2}\left(\lambda_{3}\right)
\end{array}\right|
$$

which is not zero, since $p\left(\lambda_{j}\right) \neq p\left(\lambda_{k}\right), j \neq k$. Therefore $\operatorname{dim}(\mathfrak{M} \cap \mathfrak{M})=0$, and we have verified that \mathfrak{M} and $\overline{\mathfrak{M}}$ for N satisfy (2).

4. Remarks on the example.

(i) Using the example N, which was exhibited in §3, we can construct other examples of maximal formally normal operators having no normal extensions. Let S denote the maximal symmetric operator defined as the closure in $\Omega_{2}(0, \infty)$ of the operator $i d / d x$ on $C_{0}{ }^{\infty}(0, \infty)$. Its \mathfrak{M}-space, which is identical with its \bar{M}-space, is $\mathfrak{R}\left(I+S^{* 2}\right)$, which has dimension one. Consider the operator

$$
N_{1}=N \oplus \ldots \oplus N \oplus S \oplus \ldots \oplus \mathrm{~S}
$$

where there are $p \geqslant 1 N$'s and $q \geqslant 0 S$'s in the sum. The operator N_{1} acts in the Hilbert space \mathfrak{S}_{1}, which is the direct sum of $p+q$ copies of $\Omega_{2}(0, \infty)$. Clearly,

$$
\begin{aligned}
& N_{1}^{*}=N^{*} \oplus \ldots \oplus N^{*} \oplus S^{*} \oplus \ldots \oplus S^{*} \\
& \bar{N}_{1}=\bar{N} \oplus \ldots \oplus \bar{N} \oplus S \oplus \ldots \oplus S \\
& \bar{N}_{1}^{*}=\bar{N}^{*} \oplus \ldots \oplus \bar{N}^{*} \oplus S^{*} \oplus \ldots \oplus S^{*}
\end{aligned}
$$

Any formally normal extension N_{2} of N_{1} in \mathscr{F}_{1} must satisfy $N_{1} \subset N_{2} \subset \bar{N}_{1}{ }^{*}$, and thus must be of the form

$$
N_{2}=N^{\prime} \oplus \ldots \oplus N^{\prime} \oplus S^{\prime} \oplus \ldots \oplus S^{\prime}
$$

where N^{\prime}, S^{\prime} are formally normal extensions of N, S, respectively. Since N, S are maximal formally normal, $N^{\prime}=N, S^{\prime}=S$, and thus N_{1} is maximal formally normal. The \mathfrak{M}-space for N_{1} is the direct sum of those for the N 's and the S 's, and this implies that

$$
\operatorname{dim} \mathfrak{M}=\operatorname{dim} \mathfrak{N}\left(I+N_{1}{ }^{*} \bar{N}_{1}{ }^{*}\right)=p+q .
$$

Thus N_{1} is not normal. Moreover, we have

$$
\operatorname{dim}(\mathfrak{M} \cap \overline{\mathfrak{M}})=q
$$

Now N_{1} can have no normal extension in any larger Hilbert space, since it was shown in (1, Theorem 9), that a necessary condition for such an extension is that $\mathfrak{M}=\bar{M}$ in case $\operatorname{dim} \mathfrak{M}<\infty$. Therefore, we have exhibited formally normal operators N_{1}, having no normal extensions, for which $\operatorname{dim} \mathfrak{M}$ may be any finite integer, and for which $\operatorname{dim}(\mathfrak{M} \cap \mathfrak{M} \mathfrak{M})$ may be any integer between zero and $\operatorname{dim} \mathfrak{M}-1$. inclusive. We do not know of any such example for which $\mathfrak{M}=\bar{M}$.
(ii) Let S_{1}, S_{2} denote the real and imaginary parts of the operator N of § 3; thus,

$$
S_{1}=(N+\bar{N}) / 2, \quad S_{2}=(N-\bar{N}) / 2 i
$$

and hence $S_{1}=L_{2}$ on $\mathfrak{D}(N)$, whereas $S_{2}=-i L_{3}$ on $\mathfrak{D}(N)$. These operators are symmetric, but not necessarily closed. Their deficiency spaces (and those for their closures) are the spaces

$$
\begin{array}{ll}
\mathfrak{F}_{1}(\pm i)=\left\{u \in \mathfrak{D}\left(S_{1}^{*}\right) \mid S_{1}^{*} u= \pm i u\right\}, & \text { for } S_{1}, \\
\mathfrak{E}_{2}(\pm i)=\left\{u \in \mathfrak{D}\left(S_{2}^{*}\right) \mid S_{2}^{*} u= \pm i u\right\}, & \text { for } S_{2} .
\end{array}
$$

The dimensions of these spaces may be readily computed with the aid of the function ϕ introduced in §3. Indeed, $S_{1}{ }^{*}=L_{2}$ and $S_{2}{ }^{*}=-i L_{3}$ on their respective domains, and so

$$
\begin{aligned}
& \mathfrak{F}_{1}(\pm i)=\left\{u \in \mathfrak{R}_{2}(0, \infty) \mid L_{2} u= \pm i u\right\} \\
& \mathfrak{E}_{2}(\pm i)=\left\{u \in \mathfrak{R}_{2}(0, \infty) \mid-i L_{3} u= \pm i u\right\} .
\end{aligned}
$$

Now $L_{2} \phi=\lambda^{2} \phi=i \phi$ if $\lambda^{2}=i$. Let λ_{1}, λ_{2} be the two roots of $\lambda^{2}-i$, with $\operatorname{Re} \lambda_{1}<0, \lambda_{2}=-\lambda_{1}$, and let $\phi_{1}(x)=\phi\left(x, \lambda_{1}\right), \phi_{2}(x)=\phi\left(x, \lambda_{2}\right)$. The solutions of $L_{2} u=i u$ are spanned by ϕ_{1}, ϕ_{2}. Since $\phi_{1} \in \mathfrak{R}_{2}(1, \infty), \phi_{2} \notin \Omega_{2}(1, \infty)$, the solutions that are in $\Omega_{2}(0, \infty)$ must be of the form $c \phi_{1}$, for some constant c. But this function behaves like c / x near the origin, and therefore cannot be in $\mathfrak{R}_{2}(0, \infty)$ unless $c=0$. Thus $\operatorname{dim} \mathfrak{E}_{1}(+i)=0$, and similarly $\operatorname{dim} \mathfrak{E}_{1}(-i)=0$, which implies that the closure of S_{1} is self-adjoint. An analogous argument for S_{2} leads to the result that $\operatorname{dim} \mathfrak{E}_{2}(+i)=0$, but $\operatorname{dim} \mathfrak{E}_{2}(-i)=1$, so that the closure of S_{2} is maximal symmetric but not self-adjoint.
(iii) We mentioned in Remark (i) above that a necessary condition for a maximal formally normal N (which is not normal) to have a normal extension in a larger space is that $\mathfrak{M}=\overline{\mathfrak{M}}$ in case $\operatorname{dim} \mathfrak{M}<\infty$, and consequently $\mathfrak{D}\left(\bar{N}^{*}\right)=\mathfrak{D}\left(N^{*}\right)$ must be valid. It is interesting to note that for the N of §3 ($N=S_{1}+i S_{2}$, in the notation of Remark (ii)) none of the domains $\mathfrak{D}\left(\bar{N}^{*}\right), \mathfrak{D}\left(N^{*}\right), \mathfrak{D}\left(S_{1}{ }^{*}\right), \mathfrak{D}\left(S_{2}{ }^{*}\right)$ are comparable-none is included in any of the others. The function α, given by

$$
\alpha(x)=\left(x^{-1}+1\right) e^{-x}-x^{-1},
$$

is in $\mathfrak{D}\left(\bar{N}^{*}\right)$ but in none of the other domains. Let β be a function defined by

$$
\beta(x)= \begin{cases}\left(x^{-1}-1\right) e^{x}-x^{-1}, & 0<x \leqslant 1 \\ 0, & 2 \leqslant x<\infty\end{cases}
$$

and β smoothed to be of class $C^{\infty}(0, \infty)$. This β is in $\mathfrak{D}\left(N^{*}\right)$, but in none of the other domains. If γ is given by

$$
\gamma(x)= \begin{cases}x^{2}, & 0<x \leqslant 1 \\ 0, & 2 \leqslant x<\infty\end{cases}
$$

and of class $C^{\infty}(0, \infty)$, then $\gamma \in \mathfrak{D}\left(S_{1}{ }^{*}\right)$, but is in none of the remaining domains. Finally, if δ is defined as

$$
\delta(x)= \begin{cases}x, & 0<x \leqslant 1 \\ 0, & 2 \leqslant x<\infty\end{cases}
$$

and $\delta \in C^{\infty}(0, \infty)$, then $\delta \in \mathfrak{D}\left(S_{2}{ }^{*}\right)$, but is in none of the other domains.
5. Further remarks. Let $N=S_{1}+i S_{2}$, where $S_{1}=\operatorname{Re} N, S_{2}=\operatorname{Im} N$, be formally normal in \mathfrak{y}. Here we consider some situations where the domains of $\bar{N}^{*}, N^{*}, S_{1}{ }^{*}, S_{2}{ }^{*}$ are comparable, and show that in these cases N has a normal extension in \mathfrak{y}. The closure of an operator T in \mathfrak{y} will be denoted by \widetilde{T}.

First, we note that if \widetilde{S}_{1} is self-adjoint, and $\mathfrak{D}\left(S_{1}{ }^{*}\right)=\mathfrak{D}\left(\bar{N}^{*}\right)$, then N must be normal. This can be seen by observing that the mapping $\left\{u, S_{1}{ }^{*} u\right\} \rightarrow$ $\left\{u, \bar{N}^{*} u\right\}$ is a closed mapping of the Banach space $\mathfrak{G}\left(S_{1}{ }^{*}\right)$ into the Banach space $\operatorname{sF}\left(\bar{N}^{*}\right)$. The closed graph theorem then implies that this mapping is continuous, and therefore there is a constant c such that

$$
\begin{equation*}
\left\|\bar{N}^{*} u\right\|^{2} \leqslant c\left(\left\|S_{1}{ }^{*} u\right\|^{2}+\|u\|^{2}\right), \quad u \in \mathfrak{D}\left(S_{1}^{*}\right) \tag{9}
\end{equation*}
$$

Thus

$$
\|N u\|^{2} \leqslant c\left(\left\|S_{1} u\right\|^{2}+\|u\|^{2}\right), \quad u \in \mathfrak{D}(S)
$$

From this it follows that if $u \in \mathfrak{D}\left(\widetilde{S}_{1}\right)=\mathfrak{D}\left(S_{1}{ }^{*}\right)$, then $u \in \mathfrak{D}(\widetilde{N})=\mathfrak{D}(N)$. Consequently, we have $\mathfrak{D}(N)=\mathfrak{D}\left(S_{1}\right) \subset \mathfrak{D}\left(\widetilde{S}_{1}\right)=\mathfrak{D}\left(\bar{N}^{*}\right) \subset \mathfrak{D}(N)$, and hence $\mathfrak{D}\left(\bar{N}^{*}\right)=\mathfrak{D}(N)$, which implies that N is normal.

The same result is valid if \widetilde{S}_{1} is self-adjoint and $\mathfrak{D}\left(S_{1}{ }^{*}\right)=\mathfrak{D}\left(N^{*}\right)$. Thus, in the Fuglede, or Nelson, examples mentioned in § 1, it must be true that the domains of \widetilde{S}_{1} or \widetilde{S}_{2} are not equal to the domains of \bar{N}^{*} or N^{*}.

The above argument can be carried a bit further in case $\operatorname{dim} \mathfrak{M}<\infty$. Indeed, suppose N, N_{1} are operators in \mathfrak{S} having all the properties of formally normal operators, except that they are not necessarily closed, and let

$$
N \subset N_{1}, \quad \operatorname{dim}\left[\mathfrak{D}\left(\bar{N}^{*}\right) / \mathfrak{D}(\tilde{N})\right]<\infty
$$

$$
S_{1}=\operatorname{Re} N, \quad S_{2}=\operatorname{Im} N, \quad T_{1}=\operatorname{Re} N_{1}, \quad T_{2}=\operatorname{Im} N_{1}
$$

If \widetilde{T}_{1} is self-adjoint, and $D\left(S_{1}{ }^{*}\right)=D\left(\bar{N}^{*}\right)\left(\right.$ or $D\left(S_{1}{ }^{*}\right)=D\left(N^{*}\right)$), then \widetilde{N}_{1} is normal.

Both \widetilde{N} and \widetilde{N}_{1} are formally normal; it remains to check that

$$
\mathfrak{D}\left(\widetilde{N}_{1}\right)=\mathfrak{D}\left(\widetilde{N}_{1}{ }^{*}\right)=\mathfrak{D}\left(N_{1}^{*}\right)
$$

The equality of the domains of $S_{1}{ }^{*}$ and \bar{N}^{*} implies, as before, an inequality (9). Since $N \subset N_{1}$ we have

$$
\begin{aligned}
& N \subset N_{1} \subset \bar{N}_{1}^{*} \subset \bar{N}^{*} \\
& \bar{N} \subset \bar{N}_{1} \subset N_{1}^{*} \subset N^{*}
\end{aligned}
$$

and thus

$$
S_{i} \subset T_{i} \subset T_{i}^{*} \subset S_{i}^{*} \quad(i=1,2)
$$

An application of (9) to $u \in \mathfrak{D}\left(T_{1}\right)=\mathfrak{D}\left(N_{1}\right)$ shows that $\mathfrak{D}\left(\widetilde{T}_{1}\right) \subset \mathfrak{D}\left(\tilde{N}_{1}\right)$, and using this inequality for $u \in \mathfrak{D}\left(S_{1}\right)=\mathfrak{D}(N)$, we obtain $\mathfrak{D}\left(\widetilde{S}_{1}\right) \subset \mathfrak{D}(\tilde{N})$. But, for $u \in \mathfrak{D}\left(T_{1}\right)$, we have

$$
\left\|T_{1} u\right\|=\frac{1}{2}\left\|\left(N_{1}+\bar{N}_{1}\right) u\right\| \leqslant \frac{1}{2}\left(\left\|N_{1} u\right\|+\left\|\bar{N}_{1} u\right\|\right)=\left\|N_{1} u\right\|,
$$

and this yields $\mathfrak{D}\left(\widetilde{N}_{1}\right) \subset \mathfrak{D}\left(\widetilde{T}_{1}\right)$; similarly $\mathfrak{D}(\widetilde{N}) \subset \mathfrak{D}\left(\widetilde{S}_{1}\right)$. Therefore

$$
\begin{equation*}
\mathfrak{D}\left(\widetilde{S}_{1}\right)=\mathfrak{D}(\widetilde{N}), \quad \mathfrak{D}\left(\widetilde{T}_{1}\right)=\mathfrak{D}\left(\widetilde{N}_{1}\right) \tag{10}
\end{equation*}
$$

The symmetric operator \widetilde{S}_{1} has a self-adjoint extension \widetilde{T}_{1}. Consequently,

$$
\begin{equation*}
\mathfrak{D}\left(S_{1}^{*}\right)=\mathfrak{D}\left(\widetilde{S}_{1}\right)+\mathfrak{N}\left(S_{1}^{*}+i I\right)+\mathfrak{N}\left(S_{1}^{*}-i I\right) \tag{11}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{dim} \mathfrak{N}\left(S_{1}^{*}+i I\right)=\operatorname{dim} \mathfrak{N}\left(S_{1}^{*}-i I\right)=k \tag{12}
\end{equation*}
$$

say. Then we know that

$$
\begin{equation*}
\mathfrak{D}\left(\widetilde{T}_{1}\right)=\mathfrak{D}\left(\widetilde{S}_{1}\right)+\Omega_{1}, \quad \operatorname{dim} \Omega_{1}=k \tag{13}
\end{equation*}
$$

Also, since \tilde{N} has the formally normal extension \widetilde{N}_{1}, we have

$$
\begin{equation*}
\mathfrak{D}\left(\bar{N}^{*}\right)=\mathfrak{D}(\widetilde{N})+\mathfrak{M}_{1}+\mathfrak{M}_{2}, \tag{14}
\end{equation*}
$$

a direct sum, with

$$
\begin{equation*}
\mathfrak{D}\left(\tilde{N}_{1}\right)=\mathfrak{D}(\tilde{N})+\mathfrak{M}_{1}, \quad \mathfrak{D}\left(N_{1}{ }^{*}\right)=\mathfrak{D}(\tilde{N})+\mathfrak{M}_{1}, \tag{15}
\end{equation*}
$$ where

$$
\begin{equation*}
\mathfrak{M}_{1} \subset \overline{\mathfrak{M}}_{1}=\bar{N}^{*} \mathfrak{M}_{2}, \quad \operatorname{dim} \overline{\mathfrak{M}}_{1}=\operatorname{dim} \mathfrak{M}_{2} ; \tag{16}
\end{equation*}
$$

see Theorem 2, and the remark following the proof of this result, in (1). Thus (10)-(16) yield

$$
\begin{gathered}
\operatorname{dim} \mathfrak{M}_{1}+\operatorname{dim} \overline{\mathfrak{M}}_{1}=\operatorname{dim}\left[\mathfrak{D}\left(\bar{N}^{*}\right) / \mathfrak{D}(\tilde{N})\right]=\operatorname{dim}\left[\mathfrak{D}\left(S_{1}{ }^{*}\right) / \mathfrak{D}\left(\widetilde{S}_{1}\right)\right]=2 k, \\
\operatorname{dim} \mathfrak{M}_{1}=\operatorname{dim}\left[\mathfrak{D}\left(\widetilde{N}_{1}\right) / \mathfrak{D}(\widetilde{N})\right]=\operatorname{dim}\left[\mathfrak{D}\left(\widetilde{T}_{1}\right) / \mathfrak{D}\left(\widetilde{S}_{1}\right)\right]=k,
\end{gathered}
$$

which implies $\operatorname{dim} \overline{\mathfrak{M}}_{1}=k=\operatorname{dim} \mathfrak{M}_{1}$. Since $\mathfrak{M}_{1}, \overline{\mathfrak{M}}_{1}$ are finite-dimensional, and $\mathfrak{M}_{1} \subset \mathfrak{M}_{1}$, we have $\mathfrak{M}_{1}=\overline{\mathfrak{M}}_{1}$. Then (15) shows that $\mathfrak{D}\left(\tilde{N}_{1}\right)=\mathfrak{D}\left(N_{1}{ }^{*}\right)$, and we have proved that \widetilde{N}_{1} is normal.

The argument is entirely similar if $\mathfrak{D}\left(S_{1}{ }^{*}\right)=\mathfrak{D}\left(N^{*}\right)$. Instead of (9) we have an inequality

$$
\left\|N^{*} u\right\|^{2} \leqslant c^{\prime}\left(\left\|S_{1}^{*} u\right\|^{2}+\|u\|^{2}\right), \quad u \in \mathfrak{D}\left(S_{1}^{*}\right)
$$

and use is made of the fact that

$$
\operatorname{dim}\left[\mathfrak{D}\left(\bar{N}^{*}\right) / \mathfrak{D}(\widetilde{N})\right]=\operatorname{dim}\left[\mathfrak{D}\left(N^{*}\right) / \mathfrak{D}(\widetilde{N})\right] .
$$

The above result may be applied to the case of regular ordinary differential operators. Let L_{1}, L_{2} be formally self-adjoint ordinary differential operators

$$
\begin{array}{ll}
L_{1}=a_{n} D^{n}+\ldots+a_{0}, & D=d / d x \\
L_{2}=b_{m} D^{m}+\ldots+b_{0}, & m \leqslant n
\end{array}
$$

with coefficients a_{k}, b_{k} of class C^{∞} on some finite, closed interval $a \leqslant x \leqslant b$, and $a_{n}(x) \neq 0, b_{m}(x) \neq 0$ there. Suppose $L_{1} L_{2} u=L_{2} L_{1} u$ for all $u \in C^{\infty}(a, b)$. Let S_{i} be L_{i} defined on $C_{0}{ }^{\infty}(a, b), i=1,2$. Then, in the Hilbert space $\mathfrak{R}_{2}(a, b)$, the operator $N=S_{1}+i S_{2}$ has all the properties of a formal normal operator, except that it is not closed. Moreover, it is easy to see that $\mathfrak{D}\left(S_{1}{ }^{*}\right)=\mathfrak{D}\left(\bar{N}^{*}\right)$ $=\mathfrak{D}\left(N^{*}\right)$, and $\operatorname{dim}\left[\mathfrak{D}\left(\bar{N}^{*}\right) / \mathfrak{D}(\widetilde{N})\right]=2 n$. The symmetric operator \widetilde{S}_{1} has selfadjoint extensions in $\mathbb{R}_{2}(a, b)$. If T_{1} is a symmetric extension of S_{1} such that \widetilde{T}_{1} is self-adjoint, and $N_{1}=T_{1}+i T_{2}$ is formally normal, but not necessarily closed, then \widetilde{N}_{1} is normal. Thus an example of the Fuglede, or Nelson, type cannot be found among regular ordinary differential operators.

References

1. G. Biriuk and E. A. Coddington, Normal extensions of unbounded formally normal operators, J. Math. Mech., 12 (1964), 617-638.
2. J. L. Burchnall and T. W. Chaundy, Commutative ordinary differential operators, Proc. London Math. Soc. (Ser. 2), 21 (1923), 420-440.
3. E. Nelson, Analytic vectors, Ann. Math., 70 (1959), 572-615.

University of Copenhagen,
University of California, Los Angeles

[^0]: Received September 1, 1964. This work was supported in part by the National Science Foundation.

