ON SUPERSOLVABLE GROUPS AND A THEOREM OF HUPPERT

BY
N. P. MUKHERJEE AND PRABIR BHATTACHARYA

Abstract

We obtain the following generalization of a well known result of Huppert. If p is the largest primer divisor of the order of a finite group G and q is any prime distinct from p, then G is supersolvable if and only if every maximal subgroup whose index is relatively prime to either p or q, has prime index.

1. Introduction. It is a well known result of Huppert [1, Hauptsatz 9.5, Kapitel VI] that a finite group G is supersolvable if and only if every maximal subgroup of G is of prime index in G. It would be interesting to investigate whether G is supersolvable if instead of assuming that every maximal subgroup of G is of prime index, one assumes this hypothesis only for a certain subclass of maximal subgroups of G. We prove:

Theorem 1. Let G be any group. Let p and q be two distinct primes, p being the largest prime dividing the order of G. Then G is supersolvable if and only if the following condition holds:
(*) every maximal subgroup whose index is relatively prime to either p or q, has prime index.
2. Preliminaries. We recall the definition of a particular analog of the Frattini subgroup ([2-3]). For any finite group G and any prime q, define

$$
S_{q}(G)=\cap\left\{M: M<. G,[G: M]_{q}=1,[G: M] \text { is composite }\right\}
$$

where $M<. G$ denotes that M is a maximal subgroup of G. If G has no maximal subgroup M such that both $[G: M]_{q}=1$ and $[G: M]$ is composite, then one sets $S_{q}(G)=G$.

The subgroup $S_{q}(G)$ is a characteristic subgroup of G containing the Frattini subgroup. Various properties of $S_{q}(G)$ have been investigated in [2-3]. To prove Theorem 1 we shall use the following result.

Proposition 2. ([2, Theorem 8(i)]). Let p be the largest prime dividing the order of a group G. Then $S_{p}(G)$ is solvable.

[^0]
3. Proof.

Proof of theorem 1. Assume the hypothesis (*). Then, clearly $S_{p}(G)=S_{q}(G)=G$. By Proposition 2, it now follows that G is solvable. Therefore each maximal subgroup of G has prime power index and hence must be relatively prime to either p or q. So, condition (*) now implies that each maximal subgroup of G has prime index. Hence G is supersolvable by Huppert's theorem.

The converse follows trivially by Huppert's theorem.
Corollary 3 (also [2]). Let G be a group and p be the largest prime dividing the order of G, q be any prime distinct from p. Then G is supersolvable if and only if

$$
G=S_{p}(G)=S_{q}(G) .
$$

Thus some purely set-theoretical conditions may force a group to be supersolvable.

References

1. B. Huppert, Endliche Gruppen I. Springer Verlag, Berlin, 1967.
2. N. P. Mukherjee and P. Bhattacharya, On the intersection of a class of maximal subgroups of a finite group, Canadian J. Math. 39 (1987), 603-611.
3. On the intersection of a family of maximal subgroups containing the Sylow subgroups of a finite group. Canadian J. Math. 40 (1988), 352-359.

Jawaharlal Nehru University, New Delhi, INDIA

University of Nebraska-Lincoln,

[^0]: Received by the editor January 30, 1989.
 AMS (1980) Subject Classification: Primary 20D10, 20D25, Secondary 20D99, 20D25.
 Key words. solvable, supersolvable, Frattini subgroup.
 © Canadian Mathematical Society 1989.

