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Turbulent secondary flows are defined as Prandtl’s secondary flow of the first or second
kind, the former produced by stretching and/or tilting of vorticity, the latter produced via
spatial heterogeneity of Reynolds stresses. Both mechanisms are instantaneously active
within inertia-dominated wall turbulence; Reynolds stress spatial heterogeneity is required
for Reynolds-averaged secondary flows. Spanwise-variable surface roughness can induce
turbulent stress spatial heterogeneity in the spanwise–wall-normal plane and provide
sustenance for streamwise-aligned mean secondary flows. Herein, we demonstrate that
turbulent secondary flows can also be sustained by spanwise variability in the surface
heat flux in unstably stratified turbulent channels, defined hereafter as Prandtl’s secondary
flow of the third kind. Support for this mechanism is established with scaling arguments,
while large-eddy simulation is used to model inertia-dominated channel turbulence
responding to a lower boundary with uniform aerodynamic/hydrodynamic roughness
but spanwise-variable surface heat flux. Transport equations for streamwise vorticity
and turbulent kinetic energy, k, outline the conditions needed for third-kind production:
shear and buoyancy production over the elevated heat flux regions necessitates lateral
entrainment of low-k fluid, inducing mean counter-rotating secondary cells aligned such
that upwelling and downwelling occur over the high and low heat flux regions, respectively.
Buoyancy-driven production of k alters aggregate flow response and thus is a distinctly
different mechanism responsible for sustenance of secondary flows.
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1. Introduction

Wall turbulence regulates surface exchange rates of momentum, heat, mass and other
quantities. These exchanges are vitally important to flows in geophysics, affecting
emissions of dust, water vapour, greenhouse gases, etc. In addition, external and internal
flows in engineering applications affect aerodynamic profiles of lifting bodies and thermal
efficiency of vapour power systems. For the case of inertia-dominated, neutrally stratified
wall flows, transport of Reynolds-averaged vorticity, 〈ω〉t = ∇ × 〈u〉t, where u is velocity
and 〈· · · 〉t denotes time averaging, is sustained via the so-called stretching and tilting and
‘turbulent torque’ mechanisms (Bradshaw (1987), and references therein):

〈u〉t · ∇〈ω〉t = 〈ω〉t · ∇〈u〉t︸ ︷︷ ︸
Stretching and tilting

− ∇ × (∇ · 〈T 〉t)︸ ︷︷ ︸
Turbulent torque

, (1.1)

where T = u′ ⊗ u′ is the Reynolds (turbulent) stress tensor. Note that in this article, the
first, second and third components of any vector correspond to its constituent magnitudes
in the streamwise (x), spanwise (y) and vertical (z) directions, respectively, where velocity
is denoted via u = uîx + vîy + wîz. The stretching and tilting and turbulent torque terms
are mechanistically responsible for sustenance of Prandtl’s secondary flow of the first and
second kinds, respectively. The streamwise component of (1.1) for adiabatic channel flows
reduces to

〈ui〉t∂i〈ωx〉t = −εxqi∂q∂j〈T ji〉t, (1.2)

where the Reynolds-averaged stretching and tilting term vanishes for streamwise
homogeneity; early contributions in this area were provided by those studying
Reynolds-averaged secondary flows in ducts (Prandtl 1952; Hoagland 1960; Brundrett
& Baines 1964; Perkins 1970; Gessner 1973). More recently, there has been significant
interest in adiabatic, isothermal turbulent wall flows responding to spanwise heterogeneity
in surface texture, including surface hydrophobicity (Jelly, Jung & Zaki 2014; Lee, Jelly
& Zaki 2015), hydraulic flows responding to spanwise variation in bed gravel roughness
(Wang & Cheng 2005; Vermaas, Uijttewall & Hoitink 2011), complex roughness
with predominant spanwise heterogeneity (Barros & Christensen 2014; Pathikonda &
Christensen 2017), and canonical arrangements (Willingham et al. 2013; Anderson et al.
2015; Vanderwel & Ganapathisubramani 2015; Kevin et al. 2017; Yang & Anderson
2017; Chung, Monty & Hutchins 2018; Hwang & Lee 2018; Medjnoun, Vanderwel &
Ganapathisubramani 2018; de Silva et al. 2018; Anderson 2019; Kevin, Monty & Hutchins
2019; Vanderwel et al. 2019; Stroh et al. 2020; Wangsawijaya et al. 2020; Zampiron,
Cameron & Nikora 2020, 2021; Schafer et al. 2022). In the context of spanwise roughness
heterogeneity, Anderson et al. (2015) demonstrated that the resultant roughness-driven
secondary flows are, indeed, a manifestation of Prandtl’s secondary flow of the second
kind. This was accomplished via rough surfaces composed of ‘strips’ of relatively high
and low aerodynamic roughness, zH

0 and zL
0, respectively, as shown in figure 1(a).

Beyond spatial heterogeneity in aerodynamic/hydrodynamic surface roughness, one
can envision a multitude of practically-important turbulent wall flows affected by
spatial heterogeneity in surface thermal conditions. Foremost engineering and geophysics
examples include heat exchangers and landscape heterogeneities in sensible heat flux,
respectively. Recent review articles have provided literature benchmarks in the area of
land–atmospheric interactions and spatial heterogeneity in thermal conditions (Bou-Zeid
et al. (2020), Stoll et al. (2020) and references therein), while yet more recent work
based upon extensive field measurements has provided additional insights on the
surface flux-driven mechanisms responsible for flow response (Margairaz, Pardyjak &
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Figure 1. Schematic illustrating spatial heterogeneity in surface conditions due to spanwise variation in
aerodynamic roughness length (a) and heat flux (b), where the former has been considered previously
(Willingham et al. 2013; Anderson et al. 2015). Flux heterogeneity caused by strips of width �H , composed
of relatively higher roughness length zH

0 (a), or heat flux QH
0 (b), adjacent to strips of width �L, composed of

relatively smaller roughness length zL
0 (a), or heat flux QL

0 (b). For this article, the heat flux ratio β = QH
0 /QL

0
was prescribed to exceed unity for all cases and was varied systematically; the area-averaged heat flux, Q0 =∫

d2x Q0(x) d2x/
∫

d2x d2x, is constant for all spanwise-heterogeneous cases and equivalent to the homogeneous
case. Problem parameters addressed in this study are summarized in table 1.

Calaf 2020a,b; Morrison et al. 2021). Other recent work has provided new insight into the
spatial and dynamical nature of unstably stratified inertia-dominated channel turbulence
(Salesky & Anderson 2018, 2019, 2020). However, no prior study has specifically
addressed canonical spanwise variability in heat flux, illustrated in figure 1(b). This panel
shows spanwise-aligned strips of widths �H and �L, where relatively high and low heat
fluxes, QH

0 and QL
0, are prescribed over the former and latter, respectively. In this sense,

the present cases represent a ‘thermal analogue’ of the preceding spanwise roughness
cases illustrated by figure 1(a), but the resulting unstable flow physics result in a distinctly
different secondary flow response.

It is important to distinguish between turbulent secondary flows that form in response
to thermally heterogeneous surface conditions, and horizontal convective rolls (HCRs)
(Lemone 1973; Moeng & Sullivan 1994; Khanna & Brasseur 1998; Salesky, Chamecki &
Bou-Zeid 2017) that form in the convective atmospheric boundary layer over thermally
homogeneous surfaces when the surface heat flux is small and mean wind shear is
strong. Reviews of HCR structure and formation mechanisms can be found elsewhere
(Young et al. 2002; Salesky et al. 2017). While HCRs also have horizontal vorticity
that is generated by thermal torque, they are typically aligned 10◦–20◦ to the left of
the geostrophic wind in the northern hemisphere, and advect due to the mean wind.
While HCRs and other quasi-linear structures (Young et al. 2002) are of interest for
convective boundary layer dynamics, we focus herein on the mechanisms responsible for
the formation of thermal secondary flows that arise in response to thermally heterogeneous
surface conditions and therefore are ‘locked in’ to the heterogeneity. Furthermore, in this
work we establish the link between the surface-heterogeneity-induced circulations and
their corresponding mathematical representation as a Prandtl’s secondary flow of the third
kind.

The presence of unstable stratification within a channel flow is prescribed
mathematically via a buoyancy force, f B, in the momentum transport equation

f B = ex0 + ey0 + ez
g
θ0

δθ, (1.3)
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where ex = {1, 0, 0}, ey = {0, 1, 0} and ez = {0, 0, 1} are the standard basis functions, g
is acceleration due to gravity, θ0 is a reference potential temperature, and δθ is thermal
variation, defined as δθ = (θ − θ0). Application of the curl operation to the buoyancy
force yields a thermal torque, f ω

B , within (1.1) and (1.2):

f ω
B = ∇ × f B = ex

g
θ0

∂y δθ + ey0 + ez0. (1.4)

With this, the streamwise component of the thermal torque vector (1.4) appears within a
revised equation (1.2):

〈ui〉t∂i〈ωx〉t︸ ︷︷ ︸
ΩA

= −εxqi∂q∂j〈T ji〉t︸ ︷︷ ︸
ΩT

+ g
θ0

∂y δθ︸ ︷︷ ︸
ΩB

, (1.5)

where underbraces are used to introduce symbols for advection ΩA, turbulent torque
ΩT , and thermal torque ΩB. In the absence of spanwise-variable thermal gradients –
i.e. δθ( y, z) → δθ(z) – the second right-hand-side term vanishes, ΩB → 0. However,
via prescribed spanwise-variable heat flux, the second right-hand-side term provides
sustenance for the balance of Reynolds-averaged streamwise vorticity. And although this
mechanism acts in conjunction with the turbulent torque term, its distinctly different
origins render the term exclusive, herein defined as Prandtl’s secondary flow of the third
kind.

This third kind transport can, alternatively, be appreciated via transport of
Reynolds-averaged turbulent kinetic energy, 〈k〉t = (1/2)〈u′ : u′〉t:

0 = Ak + PS + PB − ε, (1.6)

where the first right-hand-side term is advection of 〈k〉t, Ak = −〈u〉t · ∇〈k〉t, the
second and third right-hand-side terms represent production via shear and buoyancy,
PS = −〈u′ ⊗ u′〉t : ∇〈u〉t and PB = −(g/θ0)〈w′θ ′〉t, respectively, and the fourth
right-hand-side term is dissipation, ε = 〈−T : S〉xt. Note that under the Boussinesq
(eddy viscosity) modelling framework, the deviatoric stresses are proportional to the
Reynolds-averaged strain-rate tensor, T = −νtS, where νt is eddy viscosity. With
this, ε = νt〈S : S〉xt, illustrating that dissipation is positive definite, such that negative
ε – as it appears in (1.6) – serves to deplete 〈k〉t. For the ‘fully rough’ or
inertial-dominated conditions assessed here, 〈k〉t transport due to pressure fluctuations,
turbulent fluctuations and diffusion is vanishingly small and subsequently omitted;
this is typical of high-Reynolds-number flows of practical importance in engineering
and geophysics (Pope 2000). Inspection of (1.6) highlights readily how any relative
production–dissipation imbalance necessitates the existence of a finite advective term
(even in the Reynolds-averaged limit). In subsequent developments, we will demonstrate
how thermal torque (1.5) and buoyancy-driven production of turbulence (turbulent
torque) affect resultant Reynolds-averaged secondary flows in flow over surfaces with
spanwise-variable prescribed heat flux (i.e. figure 1b).

1.1. Dimensional analysis of the vorticity equation
Prior to investigating the formation and attributes of thermally-driven secondary
circulations across a range of relevant parameters using large-eddy simulation, it is
instructive to first leverage dimensional arguments of the reduced streamwise vorticity
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equation (1.5). As demonstrated in the following developments, these rudimentary
arguments yield robust guidance on the role of thermal torque in the balance of streamwise
vorticity in turbulent flows responding to surfaces with spanwise thermal variability. These
scaling arguments offer preliminary evidence that thermal torque is a distinct driver of
streamwise vorticity, which herein is defined as Prandtl’s secondary flow of the third kind.

We first normalize (1.5) by the mean advection of vorticity, and rewrite (1.5) as
a simplified balance between two non-dimensional ratios: production of vorticity by
turbulent torque over advection (ΩT/ΩA), and production of vorticity by thermal torque
over advection (ΩB/ΩA). This is

ΩT

ΩA
= 1 − ΩB

ΩA
. (1.7)

By adopting this simplified non-dimensional representation of (1.5), the streamwise-
averaged vorticity equation can be described advantageously by a single non-dimensional
term, which we choose as ΩB/ΩA. In this case, when ΩB/ΩA = 0, turbulent torque is
solely responsible for the existence of any advection. Alternatively, when ΩB/ΩA = 1, it
is indicative that either the turbulent torque is zero, or it is very small in comparison to
the advective transport since ΩT/ΩA = 0. For values of ΩB/ΩA > 1, ΩT/ΩA becomes
negative, indicating that the turbulent torque depletes Reynolds-averaged streamwise
vorticity, or that it is balanced by thermal torque.

Because we have selected the ratio ΩB/ΩA to be the relevant non-dimensional term, we
proceed by developing a scaling analysis for this term only; the implications of variation
in this term have been established in the preceding developments (equation (1.7) and
accompanying text). The ratio ΩB/ΩA is considered to be relatively more instructive,
compared to ΩT/ΩA, since it precludes the need for a priori definition of characteristic
scales for the range of different turbulent stress terms within the turbulent torque term
(εxqi∂q∂j〈T ji〉t = (∂2

z − ∂2
y )〈T yz〉t + ∂yz(〈T yy〉t − 〈T zz〉t).

For the flows considered herein, mean spanwise velocity scales as surface shear velocity,
〈v〉t ∼ uτ , while mean vertical velocity scales with the Deardorff convective velocity
scale, 〈w〉t ∼ w�, where w� = (gQ0zi/θ0)

1/3 (g is acceleration due to gravity, Q0 is surface
heat flux, zi is vertical extent of the flow, and θ0 is surface temperature). The ‘∼’ symbol
is used here to mean ‘scales on’, and should not be interpreted as an exact equality.
Similarly, spanwise position can be normalized by the spanwise heat flux heterogeneity
extent, y ∼ �H . These arguments can be used within the Reynolds-averaged continuity
equation to recover �d, a scale for the vertical extent of thermally-driven secondary cells:

∇ · 〈u〉t = ∂y〈v〉t + ∂z〈w〉t → �d ∼ �H
w�

uτ

, (1.8)

where streamwise variability vanishes for the thermally-unstable channels considered
herein. Note that �d ≤ zi, that is, the depth of the secondary flow may not exceed the
boundary layer depth. Using these scaling variables, and the (1.8) result, we recover a
subsequent normalizing scale for streamwise vorticity:

〈ωx〉t = εxjk∂j〈uk〉t ∼
(

w�

�H
,

uτ

�d

)
∼
(

w�

�H
,

w�

�H

[
uτ

w�

]2
)

∼ w�

�H
, (1.9)

since uτ /w� ∼ O(1), which supports the final deduction leading to (1.9) (discussion of
simulation attributes to follow). Note that uτ /w� ∼ O(1) for the parameter space that we
consider in this work; however, the scaling arguments hold true more generally, as long
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as w� remains finite. With these developments, we recover a scaling argument for the
advective term:

ΩA = 〈v〉t∂y〈ωx〉t + 〈w〉t∂z〈ωx〉t ∼
(

uτ w�

�2
H

,
w2

�

�H�d

)
∼ uτ w�

�2
H

. (1.10)

Similarly, we recover a scaling argument for thermal torque, ΩB ∼ (g/�H)(δΘ/θ0), where
δΘ is a scale for the near-wall spanwise thermal difference while θ0 is a representative
surface temperature. With this, we subsequently recover scaling arguments for the
aforementioned ratio of thermal torque to vorticity advection term:

ΩB

ΩA
∼
(

g�H

u2
τ

δΘ

θ0

)(
uτ

w�

)
∼ H uτ

w�

, (1.11)

Equation (1.11) indicates that the normalized contribution of the thermal torque can be
characterized by the product of two main non-dimensional terms. Readers will recognize
H = (g�H/u2

τ )(δΘ/θ0) as a modified Richardson number (Stull 1988), which quantifies
the capacity for thermal gradients to sustain mixing in the spanwise–wall-normal plane.
Such a deduction is thoroughly consistent with the arguments proposed herein: spanwise
thermal gradients sustain mean secondary cells, and this mechanism for secondary flow
sustenance differs distinctly from turbulent torque. The second non-dimensional term,
uτ /w�, quantifies the relative efficiency of shear- and thermally-driven mixing. Using the
definitions of the Deardorff convective velocity scale and the Obukhov length

L = −u3
τΘ0

κgQ0
, (1.12)

where κ is the von Kármán constant, one can write

uτ

w�

= κ1/3 (−zi/L)−1/3 ; (1.13)

thus one could express the velocity ratio in (1.11) in terms of the global stability
parameter −zi/L. Note that −zi/L → 0 for neutral stratification, and −zi/L → +∞ in
the free-convective limit. In the present work, we consider cases where −zi/L ≈ 4 and
vary the properties of the surface thermal heterogeneity.

It is stressed, also, that Margairaz et al. (2020b) recently demonstrated how H
serves to determine when mean horizontal transport of heat is large in comparison to
turbulent transport when the flow is perturbed by randomly-distributed surface thermal
heterogeneities. In their work this result was used to determine the conditions when
horizontal transport of heat cannot be neglected in the study of atmospheric boundary layer
flows. Similarly, the velocity ratio uτ /w� was recently identified in De Roo et al. (2018) as
a scaling variable determining the relative contribution of large secondary circulations in
the imbalance for the closure of the surface energy. To this extent, the arguments leading
to (1.11) exhibit underlying consistency with prior contributions in complementary areas.

1.2. This study
The scaling arguments outlined in § 1.1 provide direct guidance regarding the underlying
importance of spanwise thermal heterogeneity (Margairaz et al. 2020a,b). Large-eddy
simulation (LES) has been used to model flow over a series of surfaces with a priori
prescribed spanwise-variable heat flux; a schematic of the surface configuration can be
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found in figure 1(b). We have systematically varied two problem parameters: heat flux
ratio, β = QH

0 /QL
0, and strip width ratio, λ = �H/�L, while for all cases the aggregate

heat flux is held constant, 〈Q0〉xy = ∫
d2x Q0(x) d2x/

∫
d2x d2x. Specifically, we impose

〈Q0〉xy = 0.16 K m s−1. For the value of pressure gradient force selected (ρ−1
0 ∂xP =

5.0 × 10−4 m s−2), the global stability parameter is −zi/L ≈ 4, which corresponds to
sheared convection. Our main focus is on how secondary flow properties vary with the heat
flux ratio β, the strip width ratio λ, and the product of the modified Richardson number
and the velocity scale ratio Huτ /w�. While variability in −zi/L is also of interest, this
would expand the parameter space significantly beyond what we are able to address in
the present article. We show instantaneous and Reynolds-averaged first- and second-order
turbulence statistics, in addition to constituent terms regulating transport of 〈k〉t, all
of which point consistently to the ability of spanwise heat flux variability to sustain
Reynolds-averaged secondary flows (as per (1.4) and (1.5)). Turbulence statistics are used
within the transport equation for Reynolds-averaged k, which provides support for the
observed secondary flow direction. The results are cast against prior results for flow over
spanwise-heterogeneous surface roughness (Anderson et al. 2015), which provides context
for the relative differences in secondary flow response due to thermal heterogeneity,
and supports defining the flow response as Prandtl’s secondary flow of the third kind.
Additional turbulence statistics are used to demonstrate monotonic trends in secondary
flow intensity with variation in salient forcing parameters.

In § 2, we outline briefly the LES code, accompanying numerical procedures, and details
of the considered cases. Results are presented in § 3, which culminates in demonstrating
that thermal torque is a distinctly different secondary flow driver and thus produces
Prandtl’s secondary flow of the third kind; this result is summarized via a concluding
schematic. Concluding remarks and perspectives are presented in § 4.

2. Numerical procedure and cases

2.1. Large-eddy simulation
The LES code employed in the present work, described in Albertson & Parlange
(1999) and Kumar et al. (2006), solves the three-dimensional filtered momentum and
potential temperature equations written in rotational form. Horizontal spatial derivatives
are calculated in Fourier space (pseudo-spectral projection), while vertical derivatives
are calculated via second-order centred finite differencing. Time integration is performed
through the fully explicit second-order Adams–Bashforth method. Nonlinear terms are
fully dealiased, following the 3/2 rule (Canuto et al. 2012). The subgrid-scale (SGS) model
for momentum uses the Lagrangian scale-dependent (LASD) dynamic model (Bou-Zeid,
Meneveau & Parlange 2005), where the dynamic procedure (Germano et al. 1991) is
applied by averaging over Lagrangian trajectories of fluid parcels (Meneveau, Lund &
Cabot 1996) to determine the optimal value of the Smagorinsky coefficient. The SGS heat
flux is modelled using a constant SGS Prandtl number model: qsgs = −ν

sgs
t /Prsgs∇θ̃ ,

where ν
sgs
t = (csΔ)2|S̃| is the SGS eddy viscosity, Δ = (ΔxΔyΔz)

1/3 is the LES filter
width, |S̃| = (S̃ : S̃)1/2 is the magnitude of the resolved scale strain rate tensor, and cs is
the dynamic Smagorinsky coefficient obtained from the LASD model for momentum. The
SGS Prandtl number is set to Prsgs = 0.4 (Kang & Meneveau 2002; Kleissl et al. 2006).

In the wall model for momentum, Monin–Obukhov similarity is imposed in a local
sense (Kumar et al. 2006), with filtering at scale 2Δ, which has been shown to better
reproduce the mean surface stress (Bou-Zeid et al. 2005). For potential temperature, the
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lower boundary condition corresponds to a spatially variable surface heat flux Q0(x, y)
that is imposed at the first vertical grid level, located at height Δz/2. The upper boundary
condition is stress-free with no flow through the upper boundary (∂(·)/∂x = ∂(·)/∂y =
w̃ = 0|z=Lz , where Lz is the domain height). In order to prevent the reflection of gravity
waves from the upper boundary, a sponge layer is used in the upper 25 % of the domain
following the method of Nieuwstadt et al. (1993). The LES algorithm is parallelized in
vertical slabs using message passing interface (MPI).

2.2. Cases
Simulations were conducted on an {Lx, Ly, Lz} = {6 km, 6 km, 2 km} domain at resolution,
NxNyNz = 1603. (Demonstration of resolution insensitivity has been provided in numerous
prior articles, for example Salesky & Anderson 2018, 2019, 2020.) Such insensitivity has
been established via assessment of relative contribution from resolved and unresolved
quantities, and via computation of spectral density of resolved velocity and potential
temperature fluctuations. This resolution is less than the highest-resolution environmental
LES completed in recent times (Wilczek, Stevens & Meneveau 2015), but is nonetheless
adequate for the purposes of this study. The time step was set to Δt = 0.05 s. Grid
convergence for the homogeneous heat flux convective boundary layer (CBL) simulations
on this domain was examined by Salesky et al. (2017), who found that first- and
second-order moments were well-converged on the 2563 grid (for Δ = 25.8 m, where
Δ = (ΔxΔyΔz)

1/3), and there was not a significant difference between mean vertical
profiles on the 1603 grid (Δ = 41.3 m) and the 2563 grid.

Table 1 provides salient attributes on the range of simulations considered for this article;
case H is for a homogeneous heat flux, i.e. β = QH

0 /QL
0 = 1, which provides a benchmark

against which the relative influences of β and λ = �H/�L can be quantified. Alphanumeric
case numbering is used for the cases, where ‘A’, ‘B’ and ‘C’ correspond to λ = 1/5, 1/2
and 2, respectively (see also figure 1(b) for graphical depiction), while numeric values are
equivalent to β. The spacing between the centres of the high heat flux strips is equivalent,
s/zi = (1/2)Ly/zi = (�H + �L)/zi = 2.5. In complementary work on flow response to
aerodynamic roughness heterogeneities (example cases shown in figure 1a), Anderson
et al. (2015) and Yang & Anderson (2017) have shown that this spacing is optimal for
sustenance of zi-scale secondary flows, which is the focus of this work. The aerodynamic
and thermal heterogeneous cases cannot be compared directly, but, as will be shown, the
figure 1 cases both induce zi-scale circulations.

For all cases, the aggregate heat flux is equivalent to case H – that is, Q0 =∫
d2x Q0(x) d2x/

∫
d2x d2x – yet we record differing bulk flow properties, as evidenced by

the stability parameter, −zi/L, and the heterogeneity parameter, H (discussion to follow).
For perspective, figure 2 shows bulk properties for the table 1 cases. Figure 2(a) shows
the bulk stability parameter and figure 2(b) the heterogeneity parameter, against β for
cases A (squares), B (circles) and C (asterisks). Shown in figure 2(a) is −zi/L for case
H; it is emphasized once more that the aggregate heat flux is held constant for all cases,
indicating that variable β, and to a far lesser extent λ, causes −zi/L to rise. This is a
product of enhanced mixing associated with a priori prescribed spanwise variability in
surface fluxes, which induces concurrent variability in Obukhov length that subsequently
affects the bulk flow attributes (results to follow).
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Figure 2. Graphical summary of table 1 case attributes shown against β. Panels (a,b) show the
Reynolds-averaged bulk stability parameter and the heterogeneity parameter, respectively. In (a), −zi/L for
the homogeneous case is superimposed, for context, while the direction of increasing λ is shown in (b). In both
panels, square, circle and asterisk datapoints correspond with cases A, B and C, respectively.

Figure 2(b) shows H (see (1.11)) against β (note that, by definition, H = 0 for case H).
Here, H is computed via a characteristic thermal gradient

δθ = arg max︸ ︷︷ ︸
y

(〈θ〉xt( y, zc) − θ0), (2.1)

where zc is a predefined elevation at which the characteristic thermal gradient is recovered;
for the purpose of this work, we will use the first computational level at which data
are stored. Here, θ0 is a reference surface temperature, θ0 = 〈θ〉xyt(zc). The datapoints
illustrate monotonic response to variation in β and λ. Thus secondary flow intensity
– a quantity predicated upon H, representative of thermal torque through a modified
Richardson number using (1.5) and (1.11) – is clearly evident. There is a temptation to
conflate β = QH

0 /QL
0 and H, given that the latter is dependent intrinsically on the former

since H ∼ δθ and β = QH
0 /QL

0 = (QL
0 + δQ0)/QL

0 = 1 + δQ0/QL
0. However, it is also

stressed that ambient shear-driven mixing precludes any such direct correlation between a
priori prescribed heat fluxes and resultant thermal distributions. It is for this reason that
H ∼ βn in figure 2(b), where n /= 1; it is also for this reason that H and β are separated
throughout this narrative.

Simulations were forced by a mean pressure gradient force in the streamwise direction
ρ−1

0 ∂xP = 5.0 × 10−4 m s−2. For reference, this would correspond to a geostrophic wind
magnitude |Ug| = 5 m s−1 at latitude ϕ = 43.3◦ N, where the Coriolis parameter is f =
1.0 × 10−4 s−1. However, in order to simplify the analysis of secondary flow processes,
we do not consider the Rossby number dependence of secondary flow processes in the
present work, and therefore omit the Coriolis force from our present simulations (similar to
Salesky & Anderson 2019). The aerodynamic roughness length was set to z0 = 0.10 m, and
the initial CBL depth was set to zi = 1000 m. The CBL depth was calculated as the height
corresponding to the minimum kinematic heat flux w′θ ′. Note that an order of magnitude
estimate of the ratio of z0 to roughness element height h can be taken as z0/h = 0.1 (e.g.
Raupach, Antonia & Rajagopalan 1991). Thus zi/h = 0.1zi/z0 ∼ O(103), which is well
within the range where outer similarity can be considered valid (Raupach et al. 1991;
Jimenez 2004; Volino, Schultz & Flack 2007; Wu & Christensen 2007; Flack & Schultz
2010). The present results therefore are not sensitive to the value of z0 employed. The
initial temperature profile was imposed using the three-layer profile described in Sullivan
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Prandtl’s secondary flow of the third kind

& Patton (2011), i.e.

Θ(z) =

⎧⎪⎨
⎪⎩

300 K, z ≤ 1000 m,

300 K + (z − 1000 m) Γ1, 1000 m ≤ z < 1100 m,

308 K + (z − 1100 m)Γ2, z ≥ 1100 m,

(2.2)

where Γ1 = 0.08 K m−1 and Γ2 = 0.003 K m−1. For these simulations, the large-eddy
turnover time is Tl ≈ zi/w� = 637 s. Simulations were run for 5 hours of dimensional
time, or approximately 28.5Tl, which required 360 000 steps for LES on the 1603 grid.
Turbulence statistics are derived from the final ≈ 11.4Tl of the simulation.

It is emphasized that for the present work, the lower boundary condition for temperature
is imposed through surface variable heat fluxes, rather than through spatially-variable
surface temperature. In the case of the latter, sensible heat fluxes are a consequence of
relative thermal gradients and momentum, as opposed to a prescribed surface heat flux.
This modelling choice offers practical convenience, and it has been proven to be a useful
approach in past studies of daytime conditions over land as discussed in Basu et al.
(2008).

3. Results

Herein we present first- and second-order turbulence statistics, in addition to constituent
terms regulating transport of 〈k〉t, all of which provide the foundation to demonstrate
efficacy of the aforementioned third kind arguments. Where possible, the results are
discussed in the context of prior studies on roughness-driven secondary flows, for which
‘second kind’ secondary flows occur due to turbulent torque (Anderson et al. 2015). These
comparisons are needed to highlight distinct mechanistic differences between the turbulent
and thermal torque mechanisms, as reviewed in § 1.

3.1. First- and second-order turbulence statistics
In figure 3, we provide instantaneous flow visualization in the streamwise–spanwise plane
(panels a–f ) and spanwise–wall-normal plane (panels g–l) at z/zi = 0.225 and x/zi = 2.6,
respectively. The panels include annotations for the width and centre of the elevated
heat flux strips, which are defined in the caption. We have shown arbitrarily selected
instantaneous realizations for cases A1.25 (figure 3a–c,g–i) and C6 (figure 3d–f ,j–l),
which are the limiting cases addressed here with respect to β = QH

0 /QL
0 and λ = �H/�L,

as per table 1.
In the streamwise–spanwise plane, elevated heat flux manifests as an added drag,

evident from the relative streamwise momentum deficit aloft the warm strip (figures 3a,d).
This relative streamwise momentum deficit corresponds to upwelling (figures 3b,e). The
flow response is a product of elevated heat fluxes, which manifest as elevated potential
temperature above the strips (figures 3c, f ). This flow response appears to be, at least based
on instantaneous realizations, consistent with changes in β and λ: variation in relative strip
width and heat flux ratio does not alter the underlying flow physics. In complementary
prior work wherein the roughness of adjacent strips was varied, downwelling occurs above
the relatively more rough strips (figure 1(a) and Anderson et al. 2015). Here, however,
elevated heat injection above the warm strips manifests as a buoyancy force that drives
upwelling.

In the spanwise–wall-normal plane, we observe that the relative streamwise momentum
deficits in figures 3(a,d) occupy the extent of the flow (figures 3g,j). These streamwise
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Figure 3. Instantaneous realizations of first-order flow quantities selected at an arbitrary computational time,
ti, during LES. Panels (a–c,g–i) and (d–f, j–l) correspond to cases A1.25 and C6, respectively. From left to
right, columns (a,d,g,j), (b,e,h,k) and (c, f,i,l) correspond to ũ(x, ti), w̃(x, ti) and θ̃ (x, ti), respectively. Panels
(a–f ) and (g–l) show instantaneous realizations in the streamwise–spanwise plane at elevation z/zi = 0.225,
and the spanwise–wall-normal plane at streamwise location x/zi = 2.6, respectively (x/zi = 2.6 denoted with
solid vertical lines on (a–f ); z/zi = 0.225 denoted with solid horizontal lines on (g–l)). Dashed lines indicate
locations of spanwise heterogeneity; solid horizontal lines on (a–f ) and solid vertical lines on (g–l) denote
centre of warm strip (see also figure 1).

momentum deficits exist as ‘plumes’ above the elevated heat flux regions. This flow
response is concurrent with the instantaneous upwelling above QH

0 , as per figures 3(h,k).
Figures 3(i,l) show potential temperature, where we observe the greatest wall-normal
thermal gradients above QH

0 . Recall (1.3), (1.4) and (1.11), where rudimentary deductions
related to the thermal torque illustrate how spanwise thermal gradients can sustain a
streamwise secondary flow. Inspection of figures 3(j,l) shows how positive and negative
thermal gradients across the warm strips yield a thermal torque responsible for sustenance
of the secondary flows, which are evident from inspection of figures 3(g,h,j,k).
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Figure 4. Reynolds-averaged first-order flow quantities in the spanwise–wall-normal plane at streamwise
location x/zi = 2.6, where (a,b) and (c,d) correspond to cases A1.25 and C6, respectively. From left to right,
columns (a,c) and (b,d) correspond to 〈ũ〉t(x) and 〈θ̃〉t(x), respectively, where corresponding vector maps,
{〈ṽ〉xt( y, z), 〈w̃〉xt( y, z)}, are superimposed to demonstrate vortical structure. Dashed lines indicate locations
of spanwise heterogeneity; solid vertical lines denote centre of warm strip (see also figure 1). Grey curves
denote spanwise profiles of outer-normalized Obukhov length, −L/zi, recovered a posteriori.

The instantaneous flow response is also exhibited in the Reynolds-averaged statistics, as
reported in figure 4. Panels (a,c) and (b,d) show Reynolds-averaged streamwise velocity
and potential temperature, respectively, with vector maps, {〈ṽ〉xt( y, z), 〈w̃〉xt( y, z)},
superimposed to highlight secondary flow structure. As per figure 3, we show only
results for the limiting parameters captured with cases A1.25 and C6; this structural flow
response was consistent across the λ and β parameter space considered – although relative
secondary flow intensity varied monotonically, as will be reviewed in subsequent results –
and for brevity visualizations for intermediate cases are omitted.

The Reynolds-averaged contours are structurally consistent with the instantaneous
observations: elevated wall-normal thermal gradients above the relatively warm strip
impose buoyancy fluxes that induce upwelling over the depth of the flow, introducing
the relative streamwise momentum deficit over the depth of the flow and sustaining
the secondary flow. Alternatively, this can be interpreted via the thermal torque due to
spanwise thermal gradients, as per (1.3) and (1.4). Note, too, that the spatial extent of the
mean secondary cells is roughly equivalent between case A1.25 (figures 4a,b) and case C6
(figures 4c,d) – roughly zi-scale counter-rotating secondary cells flanking the centreline of
the warm strips – yet the width of the high heat flux strips varies significantly between the
cases. This result is similar conceptually to prior work on variation of the width of high
roughness strips (figure 1(a) and Willingham et al. 2013; Anderson et al. 2015).

In order to consolidate presentation of first-order Reynolds-averaged flow statistics into
a single figure, we have elected to show vertical profiles of dispersive fluctuations of
streamwise velocity, vertical velocity and temperature in figures 5(a–c), 5(d–f ) and 5(g–i),
respectively. The profiles are shown above the centre of the high (dashed lines) and low
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Figure 5. Vertical profiles of large-scale spatial variability relative to the underlying Reynolds-averaged
distribution (dispersive fluctuation) shown above the high (dashed lines) and low (solid lines) heat
flux regions, where the former and latter are defined with δũH(z)/uτ = (〈ũ〉xt( yH, z) − 〈ũ〉xyt(z))/uτ and
δũL(z)/uτ = (〈ũ〉xt( yL, z) − 〈ũ〉xyt(z))/uτ , respectively, where (a–c) and (d–f ) show streamwise and vertical
velocity, respectively. Panels (g–i) show dispersive potential temperature, where δθ̃H(z)/θτ = (〈θ̃〉xt( yH, z) −
〈θ̃〉xyt(z))/uτ and δθ̃L(z)/uτ = (〈θ̃〉xt( yL, z) − 〈θ̃〉xyt(z))/uτ . Here, yH and yL are discrete spanwise locations
coincident with the centre of the high and low heat flux regions, respectively (see also figure 1). Panels (a,d,g),
(b,e,h) and (c, f,i) correspond to λ = 1/5, 1/2 and 2, respectively. In all panels, the outer-normalized Obukhov
length, −L/zi, is denoted by a vertical grey band.

(solid lines) heat flux regions, respectively, as annotated on the figure ordinate labels.
In each panel, the effect of varying β is shown for λ = 0.2 (figures 5a,d,g), λ = 0.5
(figures 5b,e,h) and λ = 2 (figures 5c, f,i), where the outer-normalized Obukhov length
is superimposed, for reference.

Elevated heat fluxes above the high flux region manifest as an ‘added drag’, inducing a
relative streamwise momentum deficit (figures 5a–c) and a relative vertical momentum
excess (figures 5d–f ) associated with plumes of low streamwise momentum fluid
throughout the domain. This corresponds with elevated temperatures throughout the depth
of the flow (figures 5g–i). This flow construct provides underlying sustenance of the
secondary cells, as conservation of mass necessitates concurrent streamwise momentum
excess and vertical momentum deficit above the relatively low heat flux region (solid lines).
This ‘downwelling’ provides an ongoing supply of relatively cool fluid, as observed in
figures 5(g–i). The broad response in all quantities to variable β is, by itself, preliminary
evidence that spanwise heterogeneity in surface heat flux forcing and the resultant
thermal torque provide distinctly different mechanistic sustenance for Reynolds-averaged
secondary flows (i.e. Prandtl’s secondary flow of the third kind).
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Prandtl’s secondary flow of the third kind

In all panels of figure 5, it is clear that with increasing β – i.e. increasingly dramatic
spanwise gradient in thermal forcing – the relative dispersive fluctuations increase
monotonically. The response to λ is somewhat less evident, particularly for momentum
(figures 5a–f ). The exception is temperature, where we observe monotonically declining
temperature above the high heat flux region with increasing λ. This result is a consequence
of the underlying surface attributes: since cumulative heat flux is equivalent across all
cases, even with variable β, and because λ = 0.2 and λ = 2 correspond to relatively
narrow and wide high heat flux strips, respectively, it follows that for λ = 0.2 a relatively
elevated heat flux is necessitated across the high heat flux area. Likewise, for λ = 2,
it follows that a relatively lesser heat flux is needed over the high heat flux region to
accomplish the same values of β. The inverse relationship is true, too, for temperature
across the low heat flux region.

For λ = 0.2, elevated temperature over the high heat flux regions induces significant
upwelling (figure 5d), which declines monotonically with decreasing temperature (figures
5e, f ). As would be expected, maximum values in dispersive vertical velocity fluctuation
occur above the Obukhov length (vertical grey bar), which highlights the transition
between shear- and thermal-dominated production of turbulent kinetic energy. The kinks in
the dispersive fluctuations in the temperature profiles near z/zi = 1 are due to the increase
in temperature in the entrainment zone and are evidence that the inversion strength over
the high and low heat flux regions differs from that of the planar average.

To further the analysis, we now shift our attention to higher-order turbulence statistics.
Figure 6 shows salient second-order turbulence statistics for cases A1.25 (panels a–c), B2
(panels d–f ) and C6 (panels g–i), where the vertical dashed and solid lines denote heat flux
transitions and high heat flux centreline, respectively; we show streamwise–wall-normal
turbulent stresses, −〈u′w′〉t (panels a,d,g), turbulent transport of potential temperature,
−〈w′θ ′〉t (panels b,e,h), and turbulent kinetic energy (panels c, f,i). In the interests of
brevity, we have not presented all second-order statistics. The horizontal lines in figure 6
show −L/zi, where L is the Obukhov length, which collapses independent parameters
governing the ensemble mean wall-normal gradient of streamwise velocity (Obukhov
1946). The Obukhov length physically represents the wall-normal elevation at which the
dominant turbulent kinetic energy production mechanism transitions from mechanical
shear to buoyancy:

L( y) = −uτ ( y)3 Θ0

κg Q0( y)
, where uτ ( y) =

[
τw

ρ
(n̂( y) : n̂( y))

]1/2

. (3.1)

Here, n̂( y, z) = 〈ũ〉xt( y, z)/〈ũ : ũ)1/2〉xt( y, z) is the unit vector based on the velocity
vector, κ is the von Kármán constant, and Q0( y) = QL

0 or QH
0 , depending on location

across the surface (see also figure 1 for illustration of heat flux variation). For unstable
flows such as those considered in this article (table 1), −L/zi provides a literal visualization
of the mechanisms responsible for k production. In this sense, superposition of (−zi/L)−1

is instructive for the present cases.
Recall that a homogeneous roughness is prescribed for the present cases, yet

figures 6(a,d,g) demonstrate that −〈u′w′〉t exhibits large-scale spanwise heterogeneity
across the surface. This highlights how buoyancy-driven secondary flows redistribute k
throughout the domain, such that the high and low heat flux regions manifest physically
as relatively more and less rough, respectively. Here, (−zi/L)−1 is lowest over the QH

0
region, indicating that production of k by buoyancy is larger over this region, relative
to mechanical shear, even given the larger −〈u′w′〉t across the high heat flux strip.
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Figure 6. Contours of turbulent stresses for cases A1.25 (a–c), B2 (d–f ) and C6 (g–i) in the
spanwise–wall-normal plane at streamwise location x/zi = 2.6. From left to right, columns show −〈u′w′〉t
(a,d,g), 〈w′θ ′〉t (b,e,h), and k = (1/2)〈u′ : u′〉t (c, f,i). Dashed lines indicate locations of spanwise
heterogeneity, solid vertical lines denote centre of warm strip (see also figure 1). Grey curves denote spanwise
profiles of outer-normalized Obukhov length, −L/zi, recovered a posteriori.

In contrast, across the low heat flux region, (−zi/L)−1 rises dramatically, illustrating the
relative dominance of mechanical shear production across the QL

0 region.
Figures 6(b,e,h) show the corresponding vertical turbulent flux of potential temperature,

〈w′θ ′〉t. The spatial distributions of 〈w′θ ′〉t resemble −〈u′w′〉t; note, however, that
the colourbar limits for (a,d,g) and (b,e,h) are −0.1 � z/zi � 1.5 and −2 � z/zi � 6,
respectively, which confounds visual inference on the value of (−zi/L)−1. Thus although
the −〈u′w′〉t and 〈w′θ ′〉t contours are similar, in fact the relative difference in magnitude
illustrates why −zi/L declines across the QH

0 strip.
Finally, figures 6(c, f,i) provide spatial contours of turbulent kinetic energy for the cases

noted in the caption. The panels show plumes of elevated k above the QH
0 strips. The

plume structure is consistent with those for −〈u′w′〉t and 〈w′θ ′〉t, which is consistent with
the underlying production mechanisms as per (1.6).

The figures demonstrate that second-order statistics increase monotonically with
β, evidenced by relative increases in the magnitudes of −〈u′w′〉t, 〈w′θ ′〉t and k
over the high heat flux region. Note, however, that the spatial distributions in these
quantities do not respond materially to λ. This is consistent with the Reynolds-averaged
first-order statistics shown in figures 4 and 5, where spanwise heat flux variability
yields counter-rotating zi-scale secondary cells centred about the centreline of the QH

0
region.

3.2. Interpreting secondary flows from turbulent kinetic energy transport
In this subsection, the inertia-dominated (Reynolds-averaged) k transport equation (1.6)
is used to discern the underlying physics responsible for the secondary flow processes
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Prandtl’s secondary flow of the third kind

presented in § 3.1. This follows from Hinze (1967), who used k transport to characterize
secondary flow processes in turbulent duct flow, arguing that secondary flow advection
is necessitated by an imbalance in production and dissipation, such that ‘turbulence
poor’ fluid is entrained by regions of ‘turbulence rich’ fluid. This argument has been
used to infer secondary transport in roughness-driven secondary flows in hydraulic flows
(Wang & Cheng 2005; Vermaas et al. 2011) and engineering roughness (Anderson et al.
2015). Others have used the Reynolds-averaged transport equation for in-plane vorticity
(Hoagland 1960), but balancing this equation is problematic. In particular, large residuals
usually are found when calculating terms in the mean streamwise vorticity budget,
regardless of whether one calculates it from experimental or numerical simulation data.
This may be due to the spontaneous reversals of the rotational direction of secondary
cells that complicate averaging (Anderson 2019), although the underlying reason is not
abundantly clear. We therefore declined this avenue in favour of the 〈k〉t balance equation
(1.6) (Madabhushi & Vanka 1991; Anderson et al. 2015).

As summarized in (1.6), transport of Reynolds-averaged 〈k〉t is regulated by the interplay
between production and dissipation, where the former occurs via mechanical shear
(PS) and buoyancy (PB), while the latter is quantified here for the inertia-dominated
(Reynolds-averaged) form of (1.6), such that ε = 〈−T : S〉xt. Figure 7 shows contours for
constituent terms within (1.6) for cases A1.25 (panels a,b,g,h), B2 (panels c,d,i,j) and C6
(panels e, f,k,l), where the colour flood contours and isocontour values are defined in the
figure caption.

In the results shown – which, we emphasize, are also representative of intermediate
table 1 cases – we see a consistent pattern of upwelling and downwelling over the
high and low heat flux surface regions, respectively. Comparison of shear-driven 〈k〉t
production PS (figures 7a,e,i) shows similar patterns, although λ changes substantially
across these cases. We see a consistent ‘plume’ of elevated PS across the centre of the
QH

0 region, and this pattern is ostensibly insensitive to λ. This result contrasts against the
superimposed profiles of outer-normalized Obukhov length −L/zi, which show that shear
driven-production is relatively weakest across the warm strips. Noting that (−zi/L)−1 → 0
and (−zi/L)−1 → ∞ for free convection and canonical channel turbulence, respectively,
large-scale spatial spanwise variability in (−zi/L)−1 highlights the distinct ways that
spanwise heat flux heterogeneity affects the resultant flow processes. Recall, however, that
turbulent transport of temperature is relatively greater across the warm strip, as per figures
6(b,e,h). With this, the dominant production mechanism above the QH

0 strip transitions
from mechanical shear (figures 7a,c,e) to buoyancy (figures 7b,d, f ).

Advection of Reynolds-averaged turbulent kinetic energy, Ak = −〈ũ〉t · ∇〈k〉t, is shown
in figures 7(g,i,k) (see also (1.6) and accompanying text). The advection contours provide
a unique avenue to interpret the resultant secondary flow: across the centre of the QH

0 strip,
−〈ũ〉t · ∇〈k〉t → −〈w̃〉t∂z〈k〉t. Here, vertical velocity is positive, and the vertical gradient
of turbulent kinetic energy is negative; thus advection is necessarily positive given the
relative imbalance between the production and dissipation of turbulence (Hinze 1967;
Anderson et al. 2015). This deduction illustrates that since ∂z〈k〉t > 0 (as per figures 6c, f,i),
〈w̃〉t must also be positive, which is reported above the centre of the warm strip (figures
3b,e,h,k, 4 and 5d,e, f ).

The negative of Reynolds-averaged dissipation, which serves as the principal sink term
in the 〈k〉t transport equation, −ε = −〈−T : S〉xt, is shown in figures 7(h,j,l). For the
non-Hamiltonian conservative systems considered herein, ε is everywhere positive; thus
−ε is negative definite and serves as a sink of 〈k〉t. The spatial distribution of −ε reaches its
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Figure 7. Constituent terms of the 〈k〉t transport equation for cases A1.25 (a,b,g,h), B2 (c,d,i,j) and C6 (e, f,k,l).
Panels show shear production, PS (a,c,e), buoyancy production, PB (b,d, f ), advection, 〈ũ〉t · ∇〈k〉t (g,i,k),
and dissipation (as it appears in (1.6)), −ε = −〈−T : S〉xt (h,j,l); see also (1.6). Included in the panels are
isocontours of vertical velocity with values w̃(x, t)/uτ = 0.2 (red) and −0.2 (blue). Dashed lines indicate
locations of spanwise heterogeneity; solid vertical lines denote centre of warm strip (see also figure 1).
Horizontal line denotes spanwise profile of outer-normalized Obukhov length, −L/zi, recovered a posteriori
(see also (3.1)).

maximum magnitude in the roughness sublayer and within the base of the shear-dominated
〈k〉t production region above QH

0 .
When characterizing mechanisms responsible for turbulent secondary flow, Hinze

(1967) introduced the notion of ‘turbulence poor’ and ‘turbulence rich’ fluid, where
the former is necessarily entrained by the latter, setting in motion the secondary
flow direction. Later, Anderson et al. (2015) used this argument to discern underlying
mechanisms responsible for roughness-driven secondary flows in channel flows over
surfaces depicted by figure 1(a). For such flows, figure 8(a) illustrates how a pronounced
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Figure 8. Schematic illustrating problem parameters addressed in this study (see also table 1 for quantitative
details). Panel (a) shows the case of roughness-driven secondary flows, where the turbulent torque term and
production–dissipation imbalance above the relatively high-roughness region, zH

0 , induce downwelling and
formation of high- and low-momentum pathways as shown (Willingham et al. 2013; Barros & Christensen
2014; Anderson et al. 2015); upwelling occurs above the relatively low-roughness region, zL

0 . In contrast, for
the cases considered herein, shear-driven k production is also concentrated above the relatively elevated flux
region, but this region is itself capped by a region of buoyancy production (b). This additional k production
necessitates lateral entrainment of low-k fluid, reversing the secondary flow direction such that an LMP forms
over QH

0 . The outer-normalized Obukhov lengths for the spanwise heterogeneous (grey) and homogeneous
(black) heat flux cases are illustrated in (b); shown also in (b) are �H and representative �d .

production–dissipation imbalance across the high-roughness strip, zH
0 , necessitates

downwelling of low-〈k〉t fluid from directly above (dark red region in figure 8a). This
resultant mean flow yields a large-scale undulation in 〈ũ〉t, such that a mean excess and
deficit in 〈ũ〉t occurs above zH

0 and zL
0, respectively. This has previously been defined as

low- and high-momentum pathways (LMP, HMP) (Barros & Christensen 2014).
In contrast, the case of spanwise heterogeneous heat fluxes – as per figure 8(b) –

yields a complete reversal in secondary flow direction as compared to the roughness
heterogeneity case. This is quantified by spanwise variability of the Obukhov length,
where −L/zi exhibits a relative minimum above QH

0 due to elevated shear (dark red region
in figure 8b). Above −L/zi, however, buoyancy continues active production of turbulent
kinetic energy (yellow region in figure 8b). As such, a relative production–dissipation
imbalance persists over the depth of the flow, and ‘turbulence poor’ fluid can not readily
be entrained from aloft. In fact, the production–dissipation imbalance can be resolved only
via lateral entrainment, thereby reversing the mean secondary flow polarity relative to the
roughness-driven case and resulting in formation of an LMP above QH

0 . We have provided
annotations on figure 8 for the locations of HMPs and LMPs (Barros & Christensen 2014),
which summarizes polarity reversal due to thermal torque.

3.3. Reynolds-averaged flow attributes
In this final subsection, we focus on aggregating bulk statistics from the suite of cases used
in this study and summarized in table 1. Combining bulk results in this manner provides
an avenue to identify underlying trends in turbulence statistics with variation in β and λ.
We elected to provide profiles showing spanwise distribution of the similarity parameter,
−L/zi, and compensated circulation (discussion to follow). These results complement
quantities already presented in preceding sections.

Figures 9(a), 9(b) and 9(c) provide spanwise profiles of −L/zi for cases in groups A,
B and C, respectively, where specific cases are summarized in the panel legend. In all
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Figure 9. Spanwise profiles of Obukhov length for all cases, recovered a posteriori from LES (profiles defined
in panel legends). Dashed lines indicate locations of spanwise heterogeneity; solid vertical lines denote centre
of warm strip (see also figure 1). Horizontal dashed line denotes −L/zi for case H.

panels, we have superimposed the reference value, (−zi/L)−1 = 0.26, for case H, which
is the homogeneous heat flux case. For all table 1 cases, the area-averaged heat flux, Q0 =∫

d2x Q0(x) d2x/
∫

d2x d2x, is equivalent (including case H). Figure 9 illustrates monotonic
trends in the deviation in (−zi/L)−1 relative to the values for a homogeneous heat flux: as
β increases, shear-driven production of turbulence is relatively weaker and stronger above
QH

0 and QL
0, respectively. As per (3.1), the Obukhov length is based on the prescribed heat

flux and corresponding surface friction velocity; the ‘step-wise’ profile in (−zi/L)−1 is
thus a product of the prescribed heat fluxes as per figure 1(b).

In addition to figure 9, figure 10 shows datapoints for compensated circulation:

Γ ∗ = Γ

w�zi
=
∫

d2x
|〈ω̃x〉xt( y, z)| d2x, (3.2)

where the absolute value of Reynolds-averaged streamwise vorticity, |〈ω̃x〉xt( y, z)|, is used
to quantify secondary flow intensity (Yang & Anderson 2017). Without computation
based on the absolute value of streamwise vorticity, Γ ∗ → 0 due to the presence of
Reynolds-averaged counter-rotating secondary cells. Figure 10 shows Γ ∗ against H (1.11),
where the symbols are defined in the figure. Figure 10 is shown with ordinate range
0 ≤ Γ ∗ ≤ 15, where the lower limit, Γ ∗ = 0, is an important benchmark for assessing
the influence of spanwise heterogeneity: for spanwise spacing, s/zi = 0 and s/zi = ∞,
there is no differential heat flux to induce thermal torque, thus Γ ∗ → 0 is expected in
the Reynolds-averaged limit. Between these limits, however, the preceding results have
illustrated how thermal torque sustains zi-scale secondary cells (figures 3, 4, 5, 6 and 7).
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Figure 10. Datapoints for compensated circulation (see (3.2)) for the cases considered in this study (with the
exception of case H, for which Γ ∗ = 0; see also table 1). Values of Γ ∗ are shown against H(uτ /w�) = ΩB/ΩA
(abscissa; see table 1 for case attributes) for the values of λ denoted in the figure.

The figure 10 results can be understood readily via consideration of the scaling
arguments presented in § 1.1. Since 〈ω̃x〉xt ∼ w�/�H (see (1.9)) and d2x ∼ �H�d ∼
�2

H(w�/uτ ) (see (1.8)), it follows that Γ ∗ ∼ �d/zi. (Recall that �H and �d correspond to the
heterogeneity length scale and the depth of the secondary cells, respectively.) Therefore,
given that zi presents only small variations between the cases analysed in this work (see
table 1), potential changes in compensated circulation should then be mostly attributed
to changes in �d. However, from the results presented earlier, in figures 3 and 7, it is
found that �d does not significantly respond to changes in β and λ. This explains the
almost-constant behaviour of compensated circulation as a function of ΩB/ΩA, as shown
in figure 10. Furthermore, this result is clear evidence that in all cases considered in
this work, the thermal torque provides sustenance for the balance of Reynolds-averaged
streamwise vorticity, and hence they are examples of Prandtl’s secondary flow of the third
kind.

4. Conclusions

In recent years, a significant research effort has been dedicated towards assessing turbulent
wall flow response to surfaces with spanwise aerodynamic/hydrodynamic roughness
heterogeneity (Wang & Cheng 2005; Vermaas et al. 2011; Willingham et al. 2013;
Anderson et al. 2015; Vanderwel & Ganapathisubramani 2015; Kevin et al. 2017; Yang
& Anderson 2017; Chung et al. 2018; Hwang & Lee 2018; Medjnoun et al. 2018; de Silva
et al. 2018; Anderson 2019; Kevin et al. 2019; Vanderwel et al. 2019; Stroh et al. 2020;
Wangsawijaya et al. 2020; Zampiron et al. 2020, 2021). This body of work has focused on
flow responses to a variety of spanwise-heterogeneous roughness arrangements, but in all
cases the resultant outcome has been equivalent conceptually: such surfaces induce and
sustain Reynolds-averaged secondary flows (that is, secondary circulations aligned with
the primary transport direction). For canonical and complex arrangements, it has been
shown that these secondary flows are a manifestation of Prandtl’s secondary flow of the
second kind (Anderson et al. 2015), as per Bradshaw (1987) and references therein.

In the present work, we have used scaling arguments and a comprehensive suite
of LES cases to quantify flow response to surfaces with equivalent aerodynamic
roughness, but spanwise-variable prescribed heat flux (i.e. a ‘thermal analogue’ of the
spanwise-heterogeneous rough walls, as per figure 1). A priori assessment of the equations
governing transport of Reynolds-averaged streamwise vorticity and turbulent kinetic
energy highlight the potential for spanwise-variable heat fluxes to induce a thermal torque,
and the aforementioned scaling arguments indicate that this thermal torque is capable of
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a non-trivial contribution to the sustenance of Reynolds-averaged streamwise vorticity.
This result, by itself, is significant: although spatial heterogeneity in heat fluxes induces
subsequent spatial heterogeneity in the turbulent stresses – sustaining Prandtl’s secondary
flows of the second kind – scaling arguments indicate that thermal torque provides an
additional contribution to the balance of streamwise vorticity. It is for this reason that
the resultant mechanism compels generalized nomenclature, where herein we demonstrate
that thermal torque induces Prandtl’s secondary flows of the third kind.

We assembled a suite of LES cases designed to capture flow response over a range
of salient parameters. The results indeed confirm that spanwise heterogeneous heat flux
and thermal torque alter the balance of streamwise vorticity. We showed a series of first-
and second-order turbulence statistics to illustrate this result, and in all cases we recover
monotonic trends with variation in forcing parameters; these quantities were also used to
capture transport of 〈k〉t. We also illustrate how geometric attributes of the surface serve
to regulate the spatial extent of secondary cells and their intensity.
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